1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/* $Id: irplib_flat.c,v 1.15 2007-08-07 12:15:41 llundin Exp $
*
* This file is part of the irplib package
* Copyright (C) 2002,2003 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02111-1307 USA
*/
/*
* $Author: llundin $
* $Date: 2007-08-07 12:15:41 $
* $Revision: 1.15 $
* $Name: not supported by cvs2svn $
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include <math.h>
#include <cpl.h>
#include "irplib_flat.h"
/*-----------------------------------------------------------------------------
Functions prototypes
-----------------------------------------------------------------------------*/
static double * irplib_flat_fit_proportional(double *, double *, int) ;
/*----------------------------------------------------------------------------*/
/**
* @defgroup irplib_flat Functions for flatfielding
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*----------------------------------------------------------------------------*/
/**
@brief Compute a flat-field out of a set of exposures.
@param raw Input image set
@param mode 0 for proportional, 1 for robust fit
@return 1 newly allocated set of 2 or 3 images
The input is assumed to be a cube containing planes of different intensities
(usually increasing or decreasing). Typical inputs are: twilight data sets,
halogen lamp, or skies of different airmasses in the thermal regime.
The input image list must be of type float.
In robust mode, the output is a set of 3 images.
The first image contains a regression map, i.e. for each pixel position on
the detector, a curve is plotted of the pixel intensity in each plane
against the median intensity of the plane. A slope is fit, and the gain
factor is stored into this first image.
The second image contains the y-intercepts of the slope fit. It is usually
good to check it out in case of failures.
The third image contains the sum of squared errors for each fit.
The fit is using a robust least-squares criterion rejecting outliers. This
is the algorithm to use with big telescopes like the VLT, which collect so
much light that objects are actually seen in the twilight sky.
In proportional mode, the output is a set of 2 images.
The first image contains a regression map.
The second image contains the sum of squared errors for each fit.
*/
/*----------------------------------------------------------------------------*/
cpl_imagelist * irplib_flat_fit_set(
cpl_imagelist * raw,
int mode)
{
double * plane_med = NULL ;
double * slope = NULL ;
cpl_image * gain = NULL ;
double * pgain = NULL ;
cpl_image * intercept = NULL ;
double * pintercept = NULL ;
cpl_image * sq_err = NULL ;
double * psq_err = NULL ;
double * timeline = NULL ;
float * raw_im_data = NULL ;
cpl_imagelist * result = NULL ;
const int nx = cpl_image_get_size_x(cpl_imagelist_get(raw, 0));
const int ny = cpl_image_get_size_y(cpl_imagelist_get(raw, 0));
const int ni = cpl_imagelist_get_size(raw);
int i, j ;
/* Check entries */
if (raw==NULL) return NULL ;
if ((mode != 0) && (mode != 1)) return NULL ;
if (cpl_image_get_type(cpl_imagelist_get(raw, 0)) != CPL_TYPE_FLOAT)
return NULL ;
if (cpl_imagelist_get_size(raw) <= 1) return NULL ;
/* Compute median for all planes */
plane_med = cpl_malloc(ni * sizeof(double)) ;
for (i=0 ; i<ni ; i++)
plane_med[i] = cpl_image_get_median(cpl_imagelist_get(raw, i));
/* Create result images */
gain = cpl_image_new(nx, ny, CPL_TYPE_DOUBLE) ;
pgain = cpl_image_get_data_double(gain) ;
if (mode == 1) {
intercept = cpl_image_new(nx, ny, CPL_TYPE_DOUBLE) ;
pintercept = cpl_image_get_data_double(intercept) ;
}
sq_err = cpl_image_new(nx, ny, CPL_TYPE_DOUBLE) ;
psq_err = cpl_image_get_data_double(sq_err) ;
timeline = cpl_malloc(ni * sizeof(double)) ;
/* Loop on all pixel positions */
cpl_msg_info(cpl_func, "Computing gains for all positions (long)...") ;
for (i=0 ; i<nx * ny ; i++) {
/* extract time line */
for (j=0 ; j<ni ; j++) {
raw_im_data = cpl_image_get_data_float(cpl_imagelist_get(raw, j)) ;
timeline[j] = (double)raw_im_data[i] ;
}
/* Fit slope to this time line */
if (mode == 1) {
slope = irplib_flat_fit_slope_robust(plane_med, timeline, ni) ;
pintercept[i] = slope[0] ;
pgain[i] = slope[1] ;
psq_err[i] = slope[2] ;
/* Set results in output images */
} else {
slope = irplib_flat_fit_proportional(plane_med, timeline, ni) ;
/* Set results in output images */
pgain[i] = slope[0] ;
psq_err[i] = slope[1] ;
}
cpl_free(slope);
}
cpl_free(plane_med) ;
cpl_free(timeline) ;
/* Return */
result = cpl_imagelist_new() ;
if (mode == 1) {
cpl_imagelist_set(result, gain, 0) ;
cpl_imagelist_set(result, intercept, 1) ;
cpl_imagelist_set(result, sq_err, 2) ;
} else {
cpl_imagelist_set(result, gain, 0) ;
cpl_imagelist_set(result, sq_err, 1) ;
}
return result ;
}
/* @cond */
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define MAX_ITERATE 30
/* @endcond */
/*----------------------------------------------------------------------------*/
/**
@brief Fit a slope to a list of points (robust fit).
@param x x coordinates
@param y y coordinates
@param np number of points
@return Pointer to newly allocated array of 3 doubles.
The slope to fit has the following kind of equation:
y = c[0] + c[1] * x
The returned coefficients are defined as:
c[0] is the y-intercept.
c[1] is the slope.
c[2] is the median squared error of the fit.
This is a very robust slope fit. It tolerates up to 50% of outliers in input.
*/
/*----------------------------------------------------------------------------*/
double * irplib_flat_fit_slope_robust(
double * x,
double * y,
int np)
{
double * c ;
double aa, bb, bcomp, b1, b2, del, abdevt, f, f1, f2, sigb, temp,
d, sum ;
double sx, sy, sxy, sxx, chisq ;
cpl_vector * arr ;
double * parr ;
double aa_ls, bb_ls ;
int iter ;
int i ;
/* Check entries */
if (x==NULL || y==NULL) return NULL ;
c = cpl_malloc(3 * sizeof(double)) ;
sx = sy = sxx = sxy = 0.00 ;
for (i=0 ; i<np ; i++) {
sx += x[i];
sy += y[i];
sxy += x[i] * y[i];
sxx += x[i] * x[i];
}
del = np * sxx - sx * sx;
aa_ls = aa = (sxx * sy - sx * sxy) / del;
bb_ls = bb = (np * sxy - sx * sy) / del;
chisq = 0.00 ;
for (i=0;i<np;i++) {
temp = y[i] - (aa+bb*x[i]) ;
temp *= temp ;
chisq += temp ;
}
arr = cpl_vector_new(np) ;
parr = cpl_vector_get_data(arr) ;
sigb = sqrt(chisq/del);
b1 = bb ;
bcomp = b1 ;
sum = 0.00 ;
for (i=0 ; i<np ; i++) {
parr[i] = y[i] - bcomp * x[i];
}
aa = cpl_vector_get_median(arr); /* arr permuted */
abdevt = 0.0;
for (i=0 ; i<np ; i++) {
d = y[i] - (bcomp * x[i] + aa);
abdevt += fabs(d);
if (fabs(y[i]) > 1e-7) d /= fabs(y[i]);
if (fabs(d) > 1e-7) sum += (d >= 0.0 ? x[i] : -x[i]);
}
f1 = sum ;
b2 = bb + SIGN(3.0 * sigb, f1);
bcomp = b2 ;
sum = 0.00 ;
for (i=0 ; i<np ; i++) parr[i] = y[i] - bcomp * x[i];
aa = cpl_vector_get_median(arr); /* arr permuted */
abdevt = 0.0;
for (i=0 ; i<np ; i++) {
d = y[i] - (bcomp * x[i] + aa);
abdevt += fabs(d);
if (fabs(y[i]) > 1e-7) d /= fabs(y[i]);
if (fabs(d) > 1e-7) sum += (d >= 0.0 ? x[i] : -x[i]);
}
f2 = sum ;
if (fabs(b2-b1)<1e-7) {
c[0] = aa ;
c[1] = bb ;
c[2] = abdevt / (double)np;
cpl_vector_delete(arr);
return c ;
}
iter = 0 ;
while (f1*f2 > 0.0) {
bb = 2.0*b2-b1;
b1 = b2;
f1 = f2;
b2 = bb;
bcomp = b2 ;
sum = 0.00 ;
for (i=0 ; i<np ; i++) parr[i] = y[i] - bcomp * x[i];
aa = cpl_vector_get_median(arr); /* arr permuted */
abdevt = 0.0;
for (i=0 ; i<np ; i++) {
d = y[i] - (bcomp * x[i] + aa);
abdevt += fabs(d);
if (fabs(y[i]) > 1e-7) d /= fabs(y[i]);
if (fabs(d) > 1e-7) sum += (d >= 0.0 ? x[i] : -x[i]);
}
f2 = sum ;
iter++;
if (iter>=MAX_ITERATE) break ;
}
if (iter>=MAX_ITERATE) {
c[0] = aa_ls ;
c[1] = bb_ls ;
c[2] = -1.0 ;
cpl_vector_delete(arr);
return c ;
}
sigb = 0.01 * sigb;
while (fabs(b2-b1) > sigb) {
bb = 0.5 * (b1 + b2) ;
if ((fabs(bb-b1)<1e-7) || (fabs(bb-b2)<1e-7)) break;
bcomp = bb ;
sum = 0.00 ;
for (i=0 ; i<np ; i++) parr[i] = y[i] - bcomp * x[i];
aa = cpl_vector_get_median(arr); /* arr permuted */
abdevt = 0.0;
for (i=0 ; i<np ; i++) {
d = y[i] - (bcomp * x[i] + aa);
abdevt += fabs(d);
if (fabs(y[i]) > 1e-7) d /= fabs(y[i]);
if (fabs(d) > 1e-7) sum += (d >= 0.0 ? x[i] : -x[i]);
}
f = sum ;
if (f*f1 >= 0.0) {
f1=f;
b1=bb;
} else {
f2=f;
b2=bb;
}
}
cpl_vector_delete(arr) ;
c[0]=aa;
c[1]=bb;
c[2]=abdevt/np;
return c ;
}
#undef MAX_ITERATE
#undef SIGN
/**@}*/
/*----------------------------------------------------------------------------*/
/**
@brief Compute a=y/x for all given points
@param x x coordinates
@param y y coordinates
@param np number of points
@return Pointer to newly allocated array of two doubles.
This function takes in input a list of points supposed all aligned
on a slope going through the origin (of equation y=ax). It computes
the slope a = y/x for all points, and returns a pointer to two
doubles:
\begin{itemize}
\item The median slope.
\item The mean squared error.
\end{itemize}
Returning the median of all slopes makes it very robust to outliers.
A more precise method would be to make a histogram of all slopes and
take the maximum (i.e. the mode of the distribution). It can be
shown that the median approximates the mode quite well for a large
number of points.
*/
/*----------------------------------------------------------------------------*/
#define FITPROP_BIG_SLOPE 1e30
static double * irplib_flat_fit_proportional(
double * x,
double * y,
int np)
{
cpl_vector * slopes ;
double * pslopes ;
double * med_slope ;
double val ;
double sq_err ;
int i ;
/* Check entries */
if (x==NULL || y==NULL) return NULL ;
slopes = cpl_vector_new(np) ;
pslopes = cpl_vector_get_data(slopes) ;
for (i=0 ; i<np ; i++) {
if (fabs(x[i])>1e-30) pslopes[i] = y[i] / x[i] ;
else pslopes[i] = FITPROP_BIG_SLOPE ;
}
med_slope = cpl_malloc(2 * sizeof(double));
med_slope[0] = cpl_vector_get_median(slopes); /* slopes permuted */
cpl_vector_delete(slopes);
sq_err = 0.00 ;
for (i=0 ; i<np ; i++) {
val = med_slope[0] * x[i] ;
sq_err += (val-y[i])*(val-y[i]) ;
}
sq_err /= (double)np ;
med_slope[1] = sq_err ;
return med_slope ;
#undef FITPROP_BIG_SLOPE
}
|