1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
|
/*
* This file is part of the ESO UVES Pipeline
* Copyright (C) 2004,2005 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin St, Fifth Floor, Boston, MA 02111-1307 USA
*/
/*
============================================================================
flames_corvel:
Purpose:
to cross correlate in velocity space a wavelength calibrated spectra with a
reference mask to get eventual velocity shift of one with respect to the
other.
This code implements the Geneva alghorithm as for HARPS. Information and
reference alghorithms where provided from Claudio Melo, ESO-Paranal.
============================================================================
*/
/*
----------------------------------------------------------------------------
INCLUDES
----------------------------------------------------------------------------
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
//#include <flames_lfit.h>
#include <flames_midas_def.h> /* MIDAS environment interface functions */
#include <flames_corvel.h> /* FLAMES-UVES functions */
#include <flames_newmatrix.h> /* FLAMES-UVES functions for array manipolation */
#include <uves_utils.h> /* M_PI */
#include <uves_msg.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <irplib_utils.h>
#include <string.h>
/*
----------------------------------------------------------------------------
LOCAL DEFINITIONS
----------------------------------------------------------------------------
*/
#define MAX_LEN 512
#define MAX_DIM 2
#define MAX_ORD 4
#define MAX_PIX 10000
#define MAX_DEG 4
#define FLAMES_SPEED_OF_LIGHT 299792.458 //is defined also in uves_utils.h
/*
static void
fpoly(double x,double p[],int np);
*/
/*
static void
get_mask(char* tpl_name,double in_msk_wgt_min, double in_msk_hole_wid,
char* log_opt, double** msk_hole_width, double** msk_hole_center,
double** msk_hole_wgt);
*/
static void
do_cor_vel(double* wcal_sol,float** sp_flux,
double* rv_ccf,double* msk_hole_siz, double* msk_hole_cen,
double* msk_hole_wgt, double bar_v,double bar_v_max,
int fit_type,int in_ima_nrow,
int in_msk_nrow,int rv_ccf_size, double* ccf,double* ccf_max,
double* pix_passed_ord,int* tot_line,double* ll_range_ord,
int in_ima_id);
static void
fit_ccf(double* rv_ccf,double* ccf_nor,int type,double* ccf_res,
double* ccf_fit);
/* void fgauss(double x,double g[],int ng); */
/*
static double
fgauss(double x,double a[],double y,double dyda[],int na);
*/
static void
gaussian_fit(const double * xfit, const double * yfit,int size,
double * norm, double * xcen, double * sig_x,
double * fwhm_x);
static void
correl_bin(int sp_flux_sz, float** sp_flux,double* sp_ll,double* sp_dll,
int *in_msk_nrow,double* msk_blu,double* msk_red,
double* msk_w, int* i_blue_masques,int* i_red_masques,
double* intensity_s,double* pix,double* ll_range);
static int
hunt(double* xx, int n, double x, int jlo);
static void
do_ccf_f(double* mask_ll,double* mask_d,double* mask_w,double* sp_ll,
float** sp_flux,double* sp_dll,double* rv_ccf,double* ccf_o,
double* pix_passed_ord,double* wcal_range_ord,int in_msk_nrow,
int in_ima_ncol, int rv_ccf_size, int in_ima_id);
/**
@brief find offset to be applied to wavecal solution to be appropriate
to night calibrations
@param IN_A input image (merged spectrum)
@param IN_B input correlation velocity reference table
@param IN_N order number
@param OU_A output corvel table
@param OU_B output total image
@param OU_C output normalized image
@param rv_ccf_min radial velocity cross correlation function min
@param rv_ccf_max radial velocity cross correlation function max
@param rv_ccf_step radial velocity cross correlation function step
@return 0 if successfull
*/
int flames_corvel(const char *IN_A,
const char *IN_B,
const int IN_N,
const char *OU_A,
const char *OU_B,
const char *OU_C,
const double rv_ccf_min,
const double rv_ccf_max,
const double rv_ccf_step)
{
char in_ima[MAX_LEN]; /* char array for input ima */
char ou_ima[MAX_LEN]; /* char array for output ima */
char ou_tab[MAX_LEN]; /* char array for output ima */
char in_msk[MAX_LEN]; /* char array for input mask */
/* MIDAS stuff */
int midas_unit = 0;
int midas_null = 0;
int midas_nval = 0;
int midas_status = 0;
/* tmp variable used in MIDAS env calls */
int in_ima_id =0;
int ou_ima_id =0;
int in_msk_id =0;
int in_ima_naxis =0;
int ou_ima_naxis =1;
int ou_ima_npix[2] ={0,0};
double ou_ima_start[2] ={0.,0.};
double ou_ima_step[2] ={0.,0.};
float cuts[4]={0.,0.,0.,0.};
int tid=0;
int ccf_pos_col=0;
int ccf_nrm_col=0;
int ccf_out_col=0;
int in_ima_npix[MAX_DIM];
int in_msk_ncol=0;
int in_msk_nrow=0;
char ident[73];
char cunit[3][16];
/* Other useful variables */
int in_ima_nx = 0; /* No of columns */
int in_ima_ny = 0; /* No of rows */
int in_ima_ord=0; /* order number of input image */
float ** m_in_ima=NULL; /* input image array */
double* in_ima_wcal_sol=NULL;
double* msk_hole_sta=NULL;
double* msk_hole_end=NULL;
double* msk_hole_cen=NULL;
double* msk_hole_siz=NULL;
double* msk_hole_wgt=NULL;
double* msk_hole_cen_selw=NULL;
double* msk_hole_siz_selw=NULL;
double* msk_hole_wgt_selw=NULL;
double in_msk_wgt_min=0.9; /*1 */
double in_msk_hole_wid=0.; /*0 */
double tmp_double=0;
double in_ima_wstart =0.;
double in_ima_wstep =0.;
double* rv_ccf=NULL;
int rv_ccf_size=0;
//double rv_ccf_par[3] ={0.,0.,0.};
int wstart_id=0;
int wend_id=0;
int weight_id=0;
int i=0;
double tmp_dbl=0;
double ccf_max=0;
double ccf_avg=0;
double* ccf_nrm=NULL;
double pix_passed_ord=0;
int tot_line=0;
double ll_range_ord=0;
double* ccf_res=NULL;
double* ccf_fit=NULL;
double* ccf_o=NULL;
char wstart_key[80];
/* Program's Id */
SCSPRO("flames_corvel");
memset(ident, '\0', 73);
memset(cunit[0], '\0', 48);
strncpy(cunit[1], "PIXEL ", 16);
strncpy(cunit[2], "PIXEL ", 16);
/* ================================================================ */
/* GET INPUT DATA */
/* ================================================================ */
/* get input ima name */
in_ima_ord=IN_N;
if((midas_status = SCKGETC(IN_A,1,MAX_LEN,&midas_nval,in_ima)) !=0) {
uves_msg_warning("Error reading char keyword %s",IN_A);
return flames_midas_error(MAREMMA);
}
//sprintf(in_ima,IN_A);
/* get input ima order number */
//midas_status = SCKRDI(IN_N,1,1,&midas_nval,&in_ima_ord,
// &midas_unit, &midas_null);
/* ================================================================ */
/* Read 2D extracted input spectra */
/* ================================================================ */
/* get input ima frame */
if( (midas_status = SCFOPN(in_ima,D_R4_FORMAT,0,F_IMA_TYPE,&in_ima_id))!=0) {
uves_msg_warning("Error opening input image %s",IN_A);
return flames_midas_error(MAREMMA);
}
/* get input ima dimension */
if((midas_status = SCDRDI(in_ima_id,"NAXIS",1,1,&midas_nval,
&in_ima_naxis,&midas_unit,&midas_null)) !=0)
{
uves_msg_warning("Error reading NAXIS from image %s",IN_A);
return flames_midas_error(MAREMMA);
}
/* get input ima no of columns and rows */
if((midas_status = SCDRDI(in_ima_id,"NPIX",1,in_ima_naxis,&midas_nval,
in_ima_npix,&midas_unit,&midas_null))!=0) {
uves_msg_warning("Error reading NPIX from image %s",IN_A);
return flames_midas_error(MAREMMA);
}
if (in_ima_naxis > 1) {
in_ima_nx = in_ima_npix[0];
in_ima_ny = in_ima_npix[1];
}
else {
in_ima_nx = in_ima_npix[0];
in_ima_ny = 1; /* input image is one extracted order */
}
/* Prepare memory area to hold input image */
m_in_ima = matrix(0, in_ima_ny-1, 0, in_ima_nx-1);
memset(&m_in_ima[0][0], '\0', in_ima_nx*in_ima_ny*sizeof(float));
/* get input ima in prepared area */
if((midas_status = SCFGET(in_ima_id,1,in_ima_nx*in_ima_ny,&midas_nval,
(char *)&m_in_ima[0][0])) != 0) {
uves_msg_warning("Error mapping image %s",IN_A);
return flames_midas_error(MAREMMA);
}
/* ================================================================ */
/* PREPARE WCAL SOLUTION */
/* ================================================================ */
/* get WSTART and WSTEP values to calculate array of wcal pix values
in_ima_wcal_sol stores the wavelength calibration solution */
sprintf(wstart_key,"%s%d","WSTART",in_ima_ord);
if((midas_status = SCDRDD(in_ima_id,wstart_key,1,1,
&midas_nval,&tmp_double,
&midas_unit,&midas_null)) != 0) {
uves_msg_warning("Error reading %s from input image %s",wstart_key,IN_A);
return flames_midas_error(MAREMMA);
}
in_ima_wstart=(float)tmp_double;
if((midas_status = SCDRDD(in_ima_id,"CDELT1",1,1,&midas_nval,&tmp_double,
&midas_unit,&midas_null))!=0) {
uves_msg_warning("Error reading CDELT1 from input image %s",IN_A);
return flames_midas_error(MAREMMA);
}
in_ima_wstep=(float)tmp_double;
in_ima_wcal_sol=dvector(0,in_ima_nx);
for (i=0; i< in_ima_nx; i++){
in_ima_wcal_sol[i]=(double)(in_ima_wstart+in_ima_wstep*i);
}
/* get input mask table name */
if((midas_status = SCKGETC(IN_B,1,MAX_LEN,&midas_nval,in_msk))!=0) {
uves_msg_warning("Error reading input table %s",IN_B);
return flames_midas_error(MAREMMA);
}
/* ================================================================ */
/* GET INPUT MASK */
/* ================================================================ */
/* ================================================================ */
/*
The input mask is as follows.
First column tells you where the hole begins,
The second one where the hole ends and the third is the weight of each hole
(this last value is important for the stellar case where one may want to
give more importance to stellar lines of a given type)
We get from the input mask the following parameters:
1) the minimum weight of the holes of the mask used in the CCF
2) the width of the holes
3) the weight of the holes
After this operation the parameters which counts are:
msk_hole_siz_selw[i]
msk_hole_cen_selw[i]
msk_hole_wgt_selw[i]
in_msk_wgt_min=1;
in_msk_hole_wid=1.;
strcpy(log_opt," ");
get_mask(in_msk,in_msk_wgt_min,in_msk_hole_wid,log_opt,
&msk_hole_width,&msk_hole_center,&msk_hole_wgt);
*/
/* ================================================================ */
/* get input mask table frame */
if((midas_status = TCTOPN(in_msk,F_I_MODE,&in_msk_id))!=0) {
uves_msg_warning("Error reading input mask %s",in_msk);
return flames_midas_error(MAREMMA);
}
TCIGET (in_msk_id, &in_msk_ncol, &in_msk_nrow);
/* get input mask table column id */
if((midas_status = TCCSER(in_msk_id,"WSTART",&wstart_id))!=0) {
uves_msg_warning("Error reading WSTART from input mask %s",in_msk);
return flames_midas_error(MAREMMA);
}
/* get input mask table column id */
if((midas_status = TCCSER(in_msk_id,"WEND",&wend_id))!=0) {
uves_msg_warning("Error reading WEND from input mask %s",in_msk);
return flames_midas_error(MAREMMA);
}
/* get input mask table column id */
if((midas_status = TCCSER(in_msk_id,"WEIGHT",&weight_id))!=0) {
uves_msg_warning("Error reading WEIGHT from input mask %s",in_msk);
return flames_midas_error(MAREMMA);
}
/* Defines and initializes all necessary vectors */
msk_hole_sta=dvector(0,in_msk_nrow);
msk_hole_end=dvector(0,in_msk_nrow);
msk_hole_siz=dvector(0,in_msk_nrow);
msk_hole_wgt=dvector(0,in_msk_nrow);
msk_hole_cen=dvector(0,in_msk_nrow);
/* selected values...*/
msk_hole_siz_selw=dvector(0,in_msk_nrow);
msk_hole_wgt_selw=dvector(0,in_msk_nrow);
msk_hole_cen_selw=dvector(0,in_msk_nrow);
for(i=1;i<in_msk_nrow;i++) {
TCERDD(in_msk_id,i,wstart_id,&tmp_dbl,&midas_null);
msk_hole_sta[i-1]=tmp_dbl;
TCERDD(in_msk_id,i,wend_id,&tmp_dbl,&midas_null);
msk_hole_end[i-1]=tmp_dbl;
TCERDD(in_msk_id,i,weight_id,&tmp_dbl,&midas_null);
msk_hole_wgt[i-1]=tmp_dbl;
msk_hole_siz[i-1]=msk_hole_end[i-1]-msk_hole_sta[i-1];
msk_hole_cen[i-1]=msk_hole_sta[i-1]+msk_hole_siz[i-1]*0.5;
/*
uves_msg_debug("sta=%f end=%f wgt=%f siz=%f cen=%f",
msk_hole_sta[i-1],
msk_hole_end[i-1],
msk_hole_wgt[i-1],
msk_hole_siz[i-1],
msk_hole_cen[i-1]);
*/
}
TCTCLO(in_msk_id);
/*ADAPTED*****/
/*
If a fixed width is given as input parameter in_msk_hole_wid then
is calculated msk_hole_siz
in_msk_hole_wid is the fixed width given in km/s
In our case in_msk_hole_wid=0 and the following if is not entered
*/
if (in_msk_hole_wid > 0) {
for(i=1;i<in_msk_nrow;i++) {
msk_hole_siz[i-1]=
in_msk_hole_wid*msk_hole_siz[i-1]/FLAMES_SPEED_OF_LIGHT;
}
}
/* selects mask on in_msk_wgt_min of force weight=1
in our case in_msk_wgt_min =1 and the following if is not entered
is executed instead the else part
*/
if (in_msk_wgt_min < 1) {
/* If a lower limit of the weight of the holes is specified as input
parameter in_msk_wgt_min, then selects values of
wsize,wcenter,weight
If no condition is given keep the vectors intact
*/
int counter=0;
for(i=1;i<in_msk_nrow;i++) {
if (msk_hole_wgt[counter] > in_msk_wgt_min) {
msk_hole_siz_selw[counter] = msk_hole_siz[i];
msk_hole_cen_selw[counter] = msk_hole_cen[i];
msk_hole_wgt_selw[counter] = msk_hole_wgt[i];
counter++;
}
}
}
else {
for(i=1;i<in_msk_nrow;i++) {
if (msk_hole_wgt[i] > in_msk_wgt_min) {
msk_hole_siz_selw[i] = msk_hole_siz[i];
msk_hole_cen_selw[i] = msk_hole_cen[i];
msk_hole_wgt_selw[i] = msk_hole_wgt[i];
}
}
}
/* ================================================================ */
/* END GET INPUT MASK */
/* ================================================================ */
/* ================================================================ */
/* COMPUTE CCF */
/* ================================================================ */
/* we allocate memory and define the vector to be used to evaluate CCF */
/* this vector defines the points at which the CCF is computed */
//midas_status = SCKRDD(IN_C,1,3,&midas_nval,rv_ccf_par,
// &midas_unit, &midas_null);
rv_ccf_size=(int)((rv_ccf_max-rv_ccf_min)/rv_ccf_step+1);
rv_ccf=dvector(0,rv_ccf_size);
ccf_o=dvector(0,rv_ccf_size);
rv_ccf[0]=rv_ccf_min;
for(i=1;i<rv_ccf_size;i++){
rv_ccf[i]=rv_ccf[i-1]+rv_ccf_step;
}
/*
=======================================================================
Do correlation. Values calculated by this subriutine are:
ccf: ccf matrix containing the ccf for each order (ccf_i)
ccf_max: vector containing the highest value of each ccf_i,
pix_passed_all: number of pixels of the input spectrum used for the
computation of each ccf_i,
pix_passed_ord is the currespondent order value
tot_line: number of holes used in the computation of each ccf_i,
ll_range_all: wavelength interval of each order the input spectrum
used in the computation of each ccf_i
ll_range_ord is the correspondent order value
=======================================================================
*/
do_cor_vel(in_ima_wcal_sol, /* wave calibration solution */
m_in_ima, /* extracted spectrum */
rv_ccf, /* points at which the CCF is computed */
msk_hole_siz_selw, /* hole size selected on weight criteria */
msk_hole_cen_selw, /* hole center selected on weight criteria */
msk_hole_wgt_selw, /* hole weight selected on weight criteria */
0, /* barv :Baricentric Velocity Corr */
0, /* barv_max :Its maximum */
0, /* fit_type (Gaussian): 0/1 emis/absorb */
in_ima_nx, /* X sise of input spectra */
in_msk_nrow, /* size of input mask */
rv_ccf_size, /* size of CCF */
ccf_o, /* out: ccf for each order (ccf_i) */
&ccf_max, /* out: max(ccf) for each order (ccf_i) */
&pix_passed_ord, /* out: each order in sp's no of pix to
get ccf_i */
&tot_line, /* out: no of holes used to get ccf_i */
&ll_range_ord, /* out: each order's wav interval to get ccf_i */
in_ima_id); /* input ima id (to write descriptors) */
/* Sum the individual ccf_i for each bin and normalize the final ccf */
SCFCLO(in_ima_id); //not needed anymore
ccf_nrm=dvector(0,rv_ccf_size);
for(i=0;i<rv_ccf_size;i++){
ccf_avg +=ccf_o[i];
if(!irplib_isinf(ccf_o[i])) {
if(ccf_o[i] > ccf_max) {
ccf_max=ccf_o[i];
}
}
}
/* Creating a new table for offline plotting of peaks */
SCKGETC(OU_A,1,MAX_LEN,&midas_nval,ou_tab);
/* jmlarsen: use F_O_MODE for new table
old code: TCTINI(ou_tab,F_IO_MODE,rv_ccf_size,&tid);*/
TCTINI(ou_tab,F_O_MODE,rv_ccf_size,&tid);
/* Creating a new column */
TCCINI(tid, D_R8_FORMAT, 1, "F8.4", " ", "ccf_pos", &ccf_pos_col);
TCCINI(tid, D_R8_FORMAT, 1, "F8.4", " ", "ccf_nrm", &ccf_nrm_col);
TCCINI(tid, D_R8_FORMAT, 1, "F8.4", " ", "ccf_out", &ccf_out_col);
/* Writing table values */
/*
if (abs(ccf_max) >= FEPSILON) {
for(i=0;i<rv_ccf_size;i++){
ccf_nrm[i]=ccf_o[i]/ccf_max;
TCEWRD(tid, i+1, ccf_pos_col, &rv_ccf[i]);
TCEWRD(tid, i+1, ccf_nrm_col, &ccf_nrm[i]);
TCEWRD(tid, i+1, ccf_out_col, &ccf_o[i]);
}
} else {
for(i=0;i<rv_ccf_size;i++){
ccf_nrm[i]=0.;
TCEWRD(tid, i+1, ccf_pos_col, &rv_ccf[i]);
TCEWRD(tid, i+1, ccf_nrm_col, &ccf_nrm[i]);
TCEWRD(tid, i+1, ccf_out_col, &ccf_o[i]);
}
}
*/
for(i=0;i<rv_ccf_size;i++){
ccf_nrm[i]=ccf_o[i]/ccf_max;
TCEWRD(tid, i+1, ccf_pos_col, &rv_ccf[i]);
TCEWRD(tid, i+1, ccf_nrm_col, &ccf_nrm[i]);
TCEWRD(tid, i+1, ccf_out_col, &ccf_o[i]);
}
SCDWRD(tid,"CCF_MAX",&ccf_max,1,1,&midas_unit);
SCDWRD(tid,"WAV_RNG",&ll_range_ord,1,1,&midas_unit);
SCDWRD(tid,"PIX_TOT",&pix_passed_ord,1,1,&midas_unit);
SCDWRI(tid,"LIN_TOT",&tot_line,1,1,&midas_unit);
TCTCLO(tid);
/* TO BE IMPLEMENTED */
/* Gaussian Fit of the normalized CCF */
/*
one fit normalized_ccf as a function of rv_ccf using as fit type an
emission Gaussian. Output of the fit are the Gaussian fit coefficients
ccf_res and ccf_fit is the fitted Gaussian computed on the rv_ccf
velocity bins
*/
/* ccf_res[0]=ccf_res[0]/(1.-ccf_res[3]); */
fit_ccf(rv_ccf,ccf_nrm,1,ccf_res,ccf_fit);
/* dump results in ouput image*/
ou_ima_npix[0]=rv_ccf_size;
ou_ima_npix[1]=1;
ou_ima_start[0]=rv_ccf[0];
ou_ima_start[1]=ccf_nrm[0];
ou_ima_step[0]=ccf_max;
ou_ima_step[1]=1;
cuts[0] = 0;
cuts[1] = 0;
cuts[2] = 0;
cuts[3] = 1;
SCKGETC(OU_B,1,MAX_LEN,&midas_nval,ou_ima);
SCFCRE(ou_ima,D_R8_FORMAT,F_O_MODE,F_IMA_TYPE,rv_ccf_size,&ou_ima_id);
SCDWRC(ou_ima_id,"IDENT", 1, ident, 1, 72, &midas_unit);
SCDWRI(ou_ima_id,"NAXIS",&ou_ima_naxis,1,1,&midas_unit);
SCDWRI(ou_ima_id,"NPIX",ou_ima_npix,1,2,&midas_unit);
SCDWRD(ou_ima_id,"START",ou_ima_start, 1, 2, &midas_unit);
SCDWRD(ou_ima_id,"STEP", ou_ima_step, 1, 2, &midas_unit);
SCDWRC(ou_ima_id,"CUNIT", 1, cunit[0], 1, 48, &midas_unit);
SCDWRR(ou_ima_id,"LHCUTS", cuts, 1, 4, &midas_unit);
SCFPUT(ou_ima_id,1,rv_ccf_size,(char *)ccf_o);
SCDWRD(ou_ima_id,"CCF_MAX",&ccf_max,1,1,&midas_unit);
SCDWRD(ou_ima_id,"WAV_RNG",&ll_range_ord,1,1,&midas_unit);
SCDWRD(ou_ima_id,"PIX_TOT",&pix_passed_ord,1,1,&midas_unit);
SCDWRI(ou_ima_id,"LIN_TOT",&tot_line,1,1,&midas_unit);
SCFCLO(ou_ima_id);
cuts[3] = ccf_max;
SCKGETC(OU_C,1,MAX_LEN,&midas_nval,ou_ima);
SCFCRE(ou_ima,D_R8_FORMAT,F_O_MODE,F_IMA_TYPE,rv_ccf_size,&ou_ima_id);
SCDWRC(ou_ima_id,"IDENT", 1, ident, 1, 72, &midas_unit);
SCDWRI(ou_ima_id,"NAXIS",&ou_ima_naxis,1,1,&midas_unit);
SCDWRI(ou_ima_id,"NPIX",ou_ima_npix,1,2,&midas_unit);
SCDWRD(ou_ima_id,"START",ou_ima_start, 1, 2, &midas_unit);
SCDWRD(ou_ima_id,"STEP", ou_ima_step, 1, 2, &midas_unit);
SCDWRC(ou_ima_id,"CUNIT", 1, cunit[0], 1, 48, &midas_unit);
SCDWRR(ou_ima_id,"LHCUTS", cuts, 1, 4, &midas_unit);
SCFPUT(ou_ima_id,1,rv_ccf_size,(char *)ccf_nrm);
SCDWRD(ou_ima_id,"CCF_MAX",&ccf_max,1,1,&midas_unit);
SCDWRD(ou_ima_id,"WAV_RNG",&ll_range_ord,1,1,&midas_unit);
SCDWRD(ou_ima_id,"PIX_TOT",&pix_passed_ord,1,1,&midas_unit);
SCDWRI(ou_ima_id,"LIN_TOT",&tot_line,1,1,&midas_unit);
SCFCLO(ou_ima_id);
/* free allocated memory */
/* free_matrix(m_in_ima,0,in_ima_ny-1,0,in_ima_nx-1); */
free_dvector(msk_hole_sta,0,in_msk_nrow);
free_dvector(msk_hole_end,0,in_msk_nrow);
free_dvector(msk_hole_siz,0,in_msk_nrow);
free_dvector(msk_hole_wgt,0,in_msk_nrow);
free_dvector(msk_hole_cen,0,in_msk_nrow);
free_dvector(msk_hole_siz_selw,0,in_msk_nrow);
free_dvector(msk_hole_wgt_selw,0,in_msk_nrow);
free_dvector(msk_hole_cen_selw,0,in_msk_nrow);
free_dvector(rv_ccf,0,rv_ccf_size);
free_dvector(ccf_nrm,0,rv_ccf_size);
free_dvector(in_ima_wcal_sol,0,in_ima_nx);
free_dvector(ccf_o,0,rv_ccf_size);
SCSEPI();
return 0;
}
void
do_cor_vel(double* wcal_sol,float** sp_flux,double* rv_ccf,
double* msk_hole_siz,double* msk_hole_cen,
double* msk_hole_wgt,double bar_v,double bar_v_max,
int fit_type,int in_ima_ncol,int in_msk_nrow,
int rv_ccf_size,
double* ccf_o, /* matrix with ccf_i */
double* ccf_max, /* vector with max(ccf_i) */
double* pix_passed_ord, /* no of in spct pixels used to get ccf_i */
int* tot_line, /* no of holes used to get ccf_i */
double* wcal_range_ord, /* wave range of each order in spct used to get ccf_i */
int in_ima_id)
{
/* Local variables */
double* dw_map=NULL;
double* ccf_all=NULL;
double* ccf_all_fit=NULL;
double* msk_hole_cen_selr=NULL;
double* msk_hole_siz_selr=NULL;
double* msk_hole_wgt_selr=NULL;
double* ccf_o_results=NULL;
/* double* ccf_o_fit=NULL; */
/* ccf_o_fit is commented out as not really used */
double* rv_ccf_cor=NULL;
double wcal_min=0;
double wcal_max=0;
double d_secular_red=0;
double d_secular_blu=0;
int i=0;
int sel_no=0;
/* Local Functions */
/*
==========================================================================
Subroutine body
==========================================================================
*/
/* The following 2 lines has de facto no effect as bar_v and bar__max are 0 */
d_secular_red=bar_v_max-bar_v;
d_secular_blu=bar_v_max-bar_v;
dw_map=dvector(0,in_ima_ncol);
ccf_all=dvector(0,rv_ccf_size);
ccf_all_fit=dvector(0,rv_ccf_size);
rv_ccf_cor=dvector(0,rv_ccf_size);
/* ccf_o_fit=dvector(0,in_ima_ncol); */
/* ccf_o_fit is commented out as not really used*/
ccf_o_results=dvector(0,4);
msk_hole_cen_selr=dvector(0,in_msk_nrow);
msk_hole_siz_selr=dvector(0,in_msk_nrow);
msk_hole_wgt_selr=dvector(0,in_msk_nrow);
/* defines delta_lambda vector as delta_lambda=lambda(i+1)-lambda(i) */
for(i=0;i<in_ima_ncol-1;i++){
dw_map[i]=wcal_sol[i+1]-wcal_sol[i];
}
/* Not relevant for the ThAr correlation.
This computes the minimum and the maximum wavelengths given the velocity
point extremes in which the CCF is going to be computed
(rv_ccf[0] is the first velocity bin and rv_ccf[-1] is the last) and the
max BAR_V velocity (baricentric velocity) possible
*/
/* Here should start a loop over orders: we do not do it as we assume
to have in input the spectra relative to each order */
/* The following two lines are not relevant in case of ThAr spectra */
/* They are to compute the min and max wavelength being given the velocity
point extremes in which the CCF is going to be computed and the max
baricentric velocity possible */
wcal_min=wcal_sol[0]-(rv_ccf[0]-bar_v-d_secular_blu)*
wcal_sol[0]/FLAMES_SPEED_OF_LIGHT;
wcal_max=wcal_sol[in_ima_ncol-1]-(rv_ccf[rv_ccf_size-1]-bar_v+d_secular_red)*
wcal_sol[in_ima_ncol-1]/FLAMES_SPEED_OF_LIGHT;
/*
>From the python version:
ll_max=ll_map[order,-1]-(RV_CCF[-1]-berv+D_secular_red)*ll_map[order,-1]/speed_of_light
*/
/* Filter wcenter,wsize,weight to include holes whose center is within the
limits wcal_min and wcal_max
*/
for(i=0;i<in_msk_nrow;i++){
if((msk_hole_cen[i]>wcal_min) && (msk_hole_cen[i]<wcal_max)) {
msk_hole_cen_selr[sel_no]=msk_hole_cen[i];
msk_hole_siz_selr[sel_no]=msk_hole_siz[i];
msk_hole_wgt_selr[sel_no]=msk_hole_wgt[i];
sel_no++;
}
}
*tot_line=sel_no;
if(sel_no) {
/* If at least one is left after filtering the mask */
*wcal_range_ord=0.;
/* we get the velocity bins were the CCF is going to be computed
corrected for bar_v */
for(i=0;i<rv_ccf_size;i++){
rv_ccf_cor[i]=rv_ccf[i]-bar_v;
}
/* computes the ccf on the order order.
The input arguments are:
msk_hole_cen_selr, centers of each hole selected on wave range criteria
msk_hole_siz_selr, widths of each hole selected on wave range criteria
msk_hole_wgt_selr, weights of each hole selected on wave range criteria
wcal_sol, the vector containing the correspondence pixel to
lambda for the order order
sp_flux[order] is the vector containing the intensity of each pixel
for the order order
dw_map is the delta lambda between consecutive pixels
rv_ccf-bar_v is the velocity bin where the CCF is going to be
computed corrected for the BAR_V.
OUTPUT arguments are:
ccf_o, the ccf of the order order,
pix_passed tells you how many pixels have participated in the ccf,
wcal_range is the length (in Angstroms) of the region covered by the
holes which participated in the CCF
(i.e., the sum of the vector wcal_msk_size_selr);
*/
do_ccf_f(msk_hole_cen_selr, msk_hole_siz_selr, msk_hole_wgt_selr,
wcal_sol, sp_flux, dw_map, rv_ccf_cor, ccf_o, pix_passed_ord,
wcal_range_ord, sel_no, in_ima_ncol, rv_ccf_size, in_ima_id);
}
else {
/* there is no mas holes in the wavelength interval wcal_min, wcal_max
then everything is set to zero */
printf("No hole between wcal_min=%f and wcal_max=%f all set to 0. \n",
wcal_min,wcal_max);
for(i=0;i<rv_ccf_size;i++){
/* rv_ccf[i]=0.; */
ccf_o[i]=rv_ccf[i]*0.;
/* ccf_o_fit[i]=ccf_o[i]; */
/* ccf_o_fit is commented out as not really used */
}
*pix_passed_ord=0.;
*wcal_range_ord=0.;
ccf_o_results[0]=0.;
ccf_o_results[1]=0.;
ccf_o_results[2]=0.;
ccf_o_results[3]=0.;
}
/* write results on output table */
/* Free memory */
free_dvector(rv_ccf_cor,0,rv_ccf_size);
free_dvector(dw_map,0,in_ima_ncol);
/* free_dvector(ccf_o_fit,0,in_ima_ncol); */
/* ccf_o_fit is commented out as not really used */
free_dvector(ccf_o_results,0,4);
free_dvector(ccf_all,0,rv_ccf_size);
free_dvector(ccf_all_fit,0,rv_ccf_size);
free_dvector(msk_hole_cen_selr,0,in_msk_nrow);
free_dvector(msk_hole_siz_selr,0,in_msk_nrow);
free_dvector(msk_hole_wgt_selr,0,in_msk_nrow);
return;
} /* end function do_corvel */
void
do_ccf_f(double* mask_ll,double* mask_d,double* mask_w,double* sp_ll,
float** sp_flux,double* sp_dll,double* rv_ccf,double* ccf_o,
double* pix_tot,double* ll_range_tot,int in_msk_nrow,
int in_ima_ncol, int rv_ccf_size, int in_ima_id)
{
/* This routine should evaluate and return:
ccf_o[rv_ccf_size]-the resulting CCF for a given order (not normalized)
pix_passed-a double scalar
ll_range-a double scalar
*/
/* iter for v */
/* at rest the mask holes are centered on the vector mask_ll.
at a velocity rv, they will be centered on
mask_ll+rv*mask_ll/FLAMES_SPEED_OF_LIGHT
The blue edge of the holes (Mask_blue) is then this new center minus
half of the size of the hole. The same is valid for the red edge of
the hole.
*/
/* local variable definition-initializzation */
double** covar;
double** alpha;
double* msk_blu=NULL;
double* msk_red=NULL;
double* sp_ll_prime=NULL;
double* sfit=NULL;
double* xfit=NULL;
double* yfit=NULL;
double* aa=NULL;
double* erraa=NULL;
int* i_blu_masques=NULL;
int* i_red_masques=NULL;
int* ia=NULL;
double intensity_s=0;
double pix=0;
double ll_range=0;
double norm=0;
double cen=0;
double sig=0;
double fwhm=0;
double rv=0;
int i=0;
int j=0;
int midas_unit = 0;
int sp_ll_sz = in_ima_ncol;
int ndeg=6;
/* Function prototype */
xfit=dvector(1,rv_ccf_size);
yfit=dvector(1,rv_ccf_size);
sfit=dvector(1,rv_ccf_size);
covar = dmatrix(1,ndeg,1,ndeg);
alpha = dmatrix(1,ndeg,1,ndeg);
aa=dvector(1,ndeg);
erraa=dvector(1,ndeg);
ia=ivector(1,ndeg);
sp_ll_prime=dvector(0,in_ima_ncol);
msk_blu = dvector(0,in_msk_nrow);
msk_red = dvector(0,in_msk_nrow);
i_blu_masques = ivector(0,in_msk_nrow);
i_red_masques = ivector(0,in_msk_nrow);
for(i=0;i<rv_ccf_size;i++) {
rv=rv_ccf[i];
sfit[i]=1.0;
}
for(i=0;i<rv_ccf_size;i++) {
rv=rv_ccf[i];
/*
we define the 1st derivative: sp_ll_prime[j]=sp_ll[j]+sp_dll[j]*0.5;
j is a counter variable of values up to sp_ll_sz equal to the No of
extracted spectra definition points
*/
for(j=0; j<sp_ll_sz; j++) {
sp_ll_prime[j]=sp_ll[j]+sp_dll[j]*0.5;
}
for(j=0;j<in_msk_nrow;j++) {
/* shift the mask holes for a velocity RV[i] */
msk_blu[j]=mask_ll[j]+rv*mask_ll[j]/FLAMES_SPEED_OF_LIGHT-0.5*mask_d[j];
msk_red[j]=mask_ll[j]+rv*mask_ll[j]/FLAMES_SPEED_OF_LIGHT+0.5*mask_d[j];
/*
The idea is to know where (i.e. in which pixel) a given hole will start
because we won't want to scan through the vector wave to find the pixel
i where lambda(i-1) < mask_start <lambda(i). The command search_sorted
does it (see below).
It returns the position where the element mask_blue will fit in the
vector lamda+delta_lambda/2.
This is done for the blue edge of the mask and for the red edge.
The +1 in the end is because phython vectors starts at 0 and F77 at 1.
*/
}
/*
Look for the first and the last holes available for the crooss-correlation
assuming the spectrum has a dimension nspec and sp_ll(nspec) and
flux(nspec) are the wavelength and spectral flux vectors
Then finds the first hole such as
wave[0]<=mask_blu[first_hole] && mask_red[first_hole-1]<wave[0]
find last_hole such as
wave[nspec]>=mask_red[first_hole] && mask_red[first_hole+1]>wave[nspec]
This search is done using
find_pos_d(vector,len(vector),x,i,j,guess)
which returns the index of the element in the vector such as
vector[i]<=x<vector[i+1]
The search is carried out between the elements:
vector[i] and vector[j]
and using "guess" and first "guess" for the position of "x" within "vector"
(see NR F77 chapter 3.4)
*/
int first_hole=hunt(msk_blu-1, in_msk_nrow, sp_ll[0],0);
int guess=first_hole;
for(j=0;j<in_msk_nrow;j++) {
//for(j=0;j<3;j++) {
i_blu_masques[j]=hunt(sp_ll_prime-1,sp_ll_sz,msk_blu[j],0)+1;
guess=i_blu_masques[j];
i_red_masques[j]=hunt(sp_ll_prime-1,sp_ll_sz,msk_red[j],guess)+1;
guess=i_red_masques[j];
//uves_msg_debug("masques: %d %d",i_blu_masques[j],i_red_masques[j]);
}
correl_bin(sp_ll_sz,sp_flux,sp_ll,sp_dll,
&in_msk_nrow,msk_blu,msk_red,mask_w,i_blu_masques,
i_red_masques,&intensity_s,&pix,&ll_range);
ccf_o[i]=intensity_s;
}
*pix_tot+=pix;
*ll_range_tot+=ll_range;
for(i=0;i<rv_ccf_size;i++) {
j=i+1;
xfit[j]=rv_ccf[i];
yfit[j]=ccf_o[i];
sfit[j]=1;
}
aa[1]=300;
aa[2]=0;
aa[3]=1;
aa[4]=1.;
ia[1]=1;
ia[2]=1;
ia[3]=1;
ia[4]=0;
gaussian_fit(rv_ccf,ccf_o,rv_ccf_size,&norm,&cen,&sig,&fwhm);
/* write output in descriptor */
uves_msg_debug("Position max corvel=%f",cen);
SCDWRD(in_ima_id,"CORVEL_MAX",&cen,1,1,&midas_unit);
/* Free allocated memory */
free_dmatrix(covar,1,ndeg,1,ndeg);
free_dmatrix(alpha,1,ndeg,1,ndeg);
free_dvector(aa,1,ndeg);
free_dvector(erraa,1,ndeg);
free_ivector(ia,1,ndeg);
free_dvector(xfit,1,rv_ccf_size);
free_dvector(yfit,1,rv_ccf_size);
free_dvector(sfit,1,rv_ccf_size);
free_dvector(msk_blu,0,in_msk_nrow);
free_dvector(msk_red,0,in_msk_nrow);
free_ivector(i_blu_masques,0,in_msk_nrow);
free_ivector(i_red_masques,0,in_msk_nrow);
free_dvector(sp_ll_prime,0,in_ima_ncol);
} /* end function do_ccf_f */
void
correl_bin(int nx, /* in: dimension of flux (is it necessary?) */
float** flux, /* in: Spectral flux (dim nx) */
double *ll, /* in: wavelength (dim nx) */
double *dll, /* in: Delta(lambda) D_ll (dim nx) */
int *nbr_trou, /* in: Number of holes read from the mask file */
double *ll_s, /* in: Mask hole start wavelength (dim nbr_trou) */
double *ll_e, /* in: Mask hole end wavelength (dim nbr_trou) */
double *ll_wei, /* in: Mask hole weight wavelength (dim nbr_trou) */
int *i_start, /* in: see python code (page 9 line 76-77) */
int *i_end, /* in: see python code (page 9 line 76-77) */
double *out_ccf, /* out: Value of the CCF for a given velocity
point */
double *pix, /* out: number of pixelx used in the
computation of the CCF */
double *llrange) /* out: wavelenght interval covered by the
pixels used in computation of the CCF */
{
/* pointers */
float *pflux=NULL;
double *pll=NULL;
double *pdll=NULL;
double *pll_s=NULL;
double *pll_e=NULL;
double *pll_wei=NULL;
int *pi_start=NULL;
int *pi_end=NULL;
int trou=0;
int i=0;
pflux = *flux;
pll = ll;
pdll = dll;
pll_s = ll_s;
pll_e = ll_e;
pll_wei = ll_wei;
pi_start = i_start;
pi_end = i_end;
/*local param */
*out_ccf=0.0;
*pix=0.0;
*llrange=0.0;
for (trou=0;trou < *nbr_trou;trou++) {
if (pi_start[trou] == pi_end[trou]) {
*out_ccf=*out_ccf+(pll_e[trou]-pll_s[trou])/pdll[pi_start[trou]]*
pflux[pi_start[trou]]*(pll_wei[trou]);
*pix=*pix+(pll_e[trou]-pll_s[trou])*pll_wei[trou]/
pdll[pi_start[trou]];
*llrange=*llrange+(pll_e[trou]-pll_s[trou])*pll_wei[trou];
} else if (pi_start[trou]+1 == pi_end[trou]) {
*out_ccf=*out_ccf+
((pll[pi_start[trou]]+pdll[pi_start[trou]]*.5-pll_s[trou])*
pflux[pi_start[trou]]/pdll[pi_start[trou]]+
(pll_e[trou]-(pll[pi_start[trou]]+pdll[pi_start[trou]]*.5))*
pflux[pi_end[trou]]/pdll[pi_start[trou]])*pll_wei[trou];
*pix=*pix+((pll[pi_start[trou]]+pdll[pi_start[trou]]*.5-
pll_s[trou])/pdll[pi_start[trou]]+
(pll_e[trou]-(pll[pi_start[trou]]+pdll[pi_start[trou]]*.5))/
pdll[pi_end[trou]])*pll_wei[trou];
*llrange=*llrange+((pll[pi_start[trou]]+pdll[pi_start[trou]]*.5-
pll_s[trou])+
(pll_e[trou]-(pll[pi_start[trou]]+pdll[pi_start[trou]]*.5)))*
pll_wei[trou];
} else {
*out_ccf=*out_ccf+((pll[pi_start[trou]]+pdll[pi_start[trou]]*0.5-
pll_s[trou])*pflux[pi_start[trou]]/pdll[pi_start[trou]]+
(pll_e[trou]-(pll[pi_end[trou]]-pdll[pi_end[trou]]*.5))*
pflux[pi_end[trou]]/pdll[pi_end[trou]])*pll_wei[trou];
*pix=*pix+
((pll[pi_start[trou]]+pdll[pi_start[trou]]*0.5-pll_s[trou])/
pdll[pi_start[trou]]+
(pll_e[trou]-(pll[pi_end[trou]]-pdll[pi_end[trou]]*.5))/
pdll[pi_end[trou]])*pll_wei[trou];
*llrange=*llrange+
((pll[pi_start[trou]]+pdll[pi_start[trou]]*0.5-pll_s[trou])+
(pll_e[trou]-(pll[pi_end[trou]]-pdll[pi_end[trou]]*.5)))
*pll_wei[trou];
for (i=pi_start[trou]+1;i<=pi_end[trou]-1;i++) {
*out_ccf=*out_ccf+pflux[i]*pll_wei[trou];
*pix=*pix+pll_wei[trou];
*llrange=*llrange+pdll[i]*pll_wei[trou];
}
}
}
} /* end function correl_bin */
void
fit_ccf(double* rv_ccf,double* ccf_nor,int type,double* ccf_res,
double* ccf_fit)
{
/* Gaussian Fit either in emission or in absorbtion depending on the flag,
emission for the ThAr
It first computes a single fit in order to find the first guess
parameters. Then it does the fit again now putting more weight on the
core of the Gaussian. It returns the fit coefficients and the fitted
function.
*/
} /* end function fit_ccf */
int
hunt(double* xx, int n, double x, int jlo) {
int jhi;
int ascnd=(xx[n] >= xx[1]);
if (jlo <= 0 || jlo >n) {
jlo=0;
jhi=n+1;
} else {
int inc=1;
if ((x>=xx[jlo]) == ascnd) {
if (jlo == n) return jlo-1;
jhi=jlo+1;
while ((x>=xx[jhi]) == ascnd) {
jlo=jhi;
inc +=inc;
jhi=jlo+inc;
if (jhi>n) {
jhi=n+1;
break;
}
}
} else {
if (jlo==1) {
jlo=0;
return jlo-1;
}
jhi=jlo--;
while ((x<xx[jlo])==ascnd) {
jhi=jlo;
inc *=2;
if (inc >= jhi) {
jlo=0;
break;
}
else jlo=jhi-inc;
}
}
}
while ((jhi-jlo) != 1) {
int jm=(jhi+jlo) >> 1;
if ( (x >= xx[jm]) ==ascnd)
jlo=jm;
else
jhi=jm;
}
if (x == xx[n]) jlo=n-1;
if (x == xx[1]) jlo=1;
return jlo-1;
} /* end function hunt */
/*
void fgauss(double x,double g[],int ng)
{
int i=0;
double arg=0.0;
double ex=0.0;
double fac=0.0;
arg=(x-g[2])/g[3];
ex=exp(-arg*arg);
fac=g[4]+g[1]*ex*2.0*arg;
return fac;
}
*/
/*
static double
fgauss(double x,double a[],double y,double dyda[],int na)
{
double arg=0.0;
double ex=0.0;
double fac=0.0;
arg=(x-a[2])/a[3];
ex=exp(-arg*arg);
fac=a[4]+a[1]*ex*2.0*arg;
y = a[4]+fac;
dyda[1]=ex;
dyda[2]=fac/a[2];
dyda[3]=fac*arg/a[2];
dyda[4]=0;
return fac;
}
*/
/*
static void
fpoly(double x,double p[],int np)
{
int j=0;
p[1]=1;
for (j=2; j<=np;j++) p[j]=p[j-1]*x;
}
*/
static void
gaussian_fit(const double * x,
const double * y,
int size,
double * norm,
double * xcen,
double * sig_x,
double * fwhm_x)
{
double u0, ux, uxx;
double max_val ;
int i;
/* Check entries */
/* Extraction zone */
/* Extract the image zone to fit */
/* Check if there are enough good pixels */
/* Convert the image to double */
/* Compute xcen */
u0 = ux = 0.0 ;
for (i=0 ; i<size ; i++) {
u0 += y[i] ;
ux += x[i] * y[i] ;
}
/* Compute sig_x */
uxx = 0.0 ;
for (i=0 ; i<size ; i++) {
uxx += (x[i]-(ux/u0)) * (x[i]-(ux/u0)) * y[i] ;
}
if (sig_x) *sig_x = sqrt(fabs(uxx/u0)) ;
if (fwhm_x) *fwhm_x = 2 * sqrt(2 * log(2.0)) * sqrt(fabs(uxx/u0)) ;
max_val=y[0];
for (i=1 ; i<size ; i++) {
if(y[i] > max_val) max_val=y[i];
}
/* Compute norm */
if (norm) *norm = max_val*2*M_PI*sqrt(fabs(uxx/u0)) ;
/* Shift xcen and ycen to coordinates in the input big image */
if (xcen) *xcen = ux/u0;
}
|