1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
|
/* *
* This file is part of the ESO UVES Pipeline *
* Copyright (C) 2004,2005 European Southern Observatory *
* *
* This library is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, 51 Franklin St, Fifth Floor, Boston, MA 02111-1307 USA *
* */
/*
* $Author: amodigli $
* $Date: 2010-09-24 09:32:02 $
* $Revision: 1.10 $
* $Name: not supported by cvs2svn $
* $Log: not supported by cvs2svn $
* Revision 1.8 2007/06/06 08:17:33 amodigli
* replace tab with 4 spaces
*
* Revision 1.7 2007/04/24 12:50:29 jmlarsen
* Replaced cpl_propertylist -> uves_propertylist which is much faster
*
* Revision 1.6 2007/03/15 12:33:16 jmlarsen
* Removed redundant explicit array size
*
* Revision 1.5 2006/11/06 15:19:41 jmlarsen
* Removed unused include directives
*
* Revision 1.4 2006/10/05 06:44:58 jmlarsen
* Declared functions static
*
* Revision 1.3 2006/10/04 10:59:04 jmlarsen
* Implemented QC.VRAD parameters
*
* Revision 1.2 2006/10/04 09:55:44 jmlarsen
* Implemented
*
* Revision 1.4 2006/08/17 13:56:52 jmlarsen
* Reduced max line length
*
* Revision 1.3 2005/12/19 16:17:56 jmlarsen
* Replaced bool -> int
*
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
/*----------------------------------------------------------------------------*/
/**
* @defgroup uves_baryvel Velocity correction
*
* Compute barycentric, heliocentric velocity corrections
*
* The code in this source file is a 1-to-1 translation of MIDAS COMPUT/BARYCOR
* as defined in /prim/general/src/compxy.for (only the necessary parts were
* translated). The code is not meant to be particularly readable/maintainable.
* To understand the computation the best starting point is probably
* P. Stumpff, A&A Suppl. Ser. 41, pp. 1-8 (1980)
*
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include <uves_baryvel.h>
#include <uves_pfits.h>
#include <uves_utils.h>
#include <uves_error.h>
#include <uves_msg.h>
#include <cpl.h>
#include <math.h>
/*-----------------------------------------------------------------------------
Local functions
-----------------------------------------------------------------------------*/
static void deg2dms(double in_val,
double *degs,
double *minutes,
double *seconds);
static void deg2hms(double in_val,
double *hour,
double *min,
double *sec);
static void compxy(double inputr[19], char inputc[4],
double outputr[4],
double utr, double mod_juldat);
static void barvel(double DJE, double DEQ,
double DVELH[4], double DVELB[4]);
/*----------------------------------------------------------------------------*/
/**
@brief Compute velocity correction
@param raw_header input FITS header
@param bary_corr (output) baryocentric correction
@param helio_corr (output) heliocentric correction
*/
/*----------------------------------------------------------------------------*/
void
uves_baryvel(const uves_propertylist *raw_header,
double *bary_corr,
double *helio_corr)
{
double outputr[4];
//inputc(1:3) = "+++"
char inputc[] = "X+++"; /* 0th index not used */
//define/local rneg/r/1/1 1.0
double rneg = 1.0;
// write/keyw inputr/r/1/18 0.0 all
double inputr[19]; /* Do not use the zeroth element */
/*
qc_ra = m$value({p1},O_POS(1))
qc_dec = m$value({p1},O_POS(2))
qc_geolat = m$value({p1},{h_geolat})
qc_geolon = m$value({p1},{h_geolon})
qc_obs_time = m$value({p1},O_TIME(7)) !using an image as input it take the
!date from the descriptor O_TIME(1,2,3)
!and the UT from O_TIME(5)
*/
double qc_ra;
double qc_dec;
double qc_geolat;
double qc_geolon;
double utr;
double mod_juldat;
double ra_hour, ra_min, ra_sec;
double dec_deg, dec_min, dec_sec;
double lat_deg, lat_min, lat_sec;
double lon_deg, lon_min, lon_sec;
check( qc_ra = uves_pfits_get_ra(raw_header), /* in degrees */
"Error getting object right ascension");
check( qc_dec = uves_pfits_get_dec(raw_header),
"Error getting object declination");
check( qc_geolat = uves_pfits_get_geolat(raw_header),
"Error getting telescope latitude");
check( qc_geolon = uves_pfits_get_geolon(raw_header),
"Error getting telescope longitude");
/* double qc_obs_time = uves_pfits_get_exptime(raw_header); Not used! */
check( utr = uves_pfits_get_utc(raw_header),
"Error reading UTC");
check( mod_juldat = uves_pfits_get_mjdobs(raw_header),
"Error julian date");
deg2hms(qc_ra, &ra_hour, &ra_min, &ra_sec);
deg2dms(qc_dec, &dec_deg, &dec_min, &dec_sec);
deg2dms(qc_geolat, &lat_deg, &lat_min, &lat_sec);
deg2dms(qc_geolon, &lon_deg, &lon_min, &lon_sec);
// inputr(1) = m$value({p1},o_time(1))
// inputr(2) = m$value({p1},o_time(2))
// inputr(3) = m$value({p1},o_time(3))
// inputr(4) = m$value({p1},o_time(5)) !UT in real hours
// inputr[1] = year; not needed, pass mjd instead
// inputr[2] = month;
// inputr[3] = day;
// inputr[4] = ut_hour; not needed, pass ut instead
// inputr[5] = ut_min;
// inputr[6] = ut_sec;
// write/keyw inputr/r/7/3 {p4}
inputr[7] = lon_deg;
inputr[8] = lon_min;
inputr[9] = lon_sec;
//rneg = (inputr(7)*3600.)+(inputr(8)*60.)+inputr(9)
rneg = (inputr[7]*3600.)+(inputr[8]*60.)+inputr[9];
//inputc(1:1) = p4(1:1)
inputc[1] = (lon_deg >= 0) ? '+' : '-';
//if rneg .lt. 0.0 inputc(1:1) = "-"
if (rneg < 0) inputc[1] = '-';
// write/keyw inputr/r/10/3 {p5},0,0
inputr[10] = lat_deg;
inputr[11] = lat_min;
inputr[12] = lat_sec;
// rneg = (inputr(10)*3600.)+(inputr(11)*60.)+inputr(12)
rneg = (inputr[10]*3600.)+(inputr[11]*60.)+inputr[12];
// inputc(2:2) = p5(1:1)
inputc[2] = (lat_deg >= 0) ? '+' : '-';
// if rneg .lt. 0.0 inputc(2:2) = "-"
if (rneg < 0) inputc[2] = '-';
// write/keyw inputr/r/13/3 {p2},0,0
inputr[13] = ra_hour;
inputr[14] = ra_min;
inputr[15] = ra_sec;
// write/keyw inputr/r/16/3 {p3},0,0
inputr[16] = dec_deg;
inputr[17] = dec_min;
inputr[18] = dec_sec;
// inputc(3:3) = p3(1:1)
inputc[3] = (dec_deg >= 0) ? '+' : '-';
// rneg = (inputr(16)*3600.)+(inputr(17)*60.)+inputr(18)
rneg = (inputr[16]*3600.)+(inputr[17]*60.)+inputr[18];
// if rneg .lt. 0.0 inputc(3:3) = "-"
if (rneg < 0) inputc[3] = '-';
//C INPUTR/R/1/3 date: year,month,day
//C INPUTR/R/4/3 universal time: hour,min,sec
//C INPUTR/R/7/3 EAST longitude of observatory: degree,min,sec !! NOTE
//C INPUTR/R/10/3 latitude of observatory: degree,min,sec
//C INPUTR/R/13/3 right ascension: hour,min,sec
//C INPUTR/R/16/3 declination: degree,min,sec
//write/keyw action BA !indicate barycorr stuff
//run MID_EXE:COMPXY !compute the corrections
compxy(inputr, inputc, outputr, utr, mod_juldat);
// set/format f14.6,g24.12
// uves_msg_debug(" Barycentric correction time: {outputd(1)} day");
// uves_msg_debug(" Heliocentric correction time: {outputd(2)} day");
// uves_msg_debug(" ");
uves_msg_debug(" Total barycentric RV correction: %f km/s", outputr[1]);
uves_msg_debug(" Total heliocentric RV correction: %f km/s", outputr[2]);
uves_msg_debug(" (incl. diurnal RV correction of %f km/s)", outputr[3]);
// uves_msg_debug(" ");
// uves_msg_debug("Descriptor O_TIME of image {p1} used for date and UT.");
*bary_corr = outputr[1];
*helio_corr = outputr[2];
cleanup:
return;
}
/*----------------------------------------------------------------------------*/
/**
@brief Compute velocity correction
@param inputr input parameters
@param inputc input parameters
@param outputr output parameters
@param utr observation time (seconds)
@param mod_juldat observation modified julian date
INPUTR/R/1/3 date: year,month,day
INPUTR/R/4/3 universal time: hour,min,sec
INPUTR/R/7/3 EAST longitude of observatory: degree,min,sec !! NOTE
INPUTR/R/10/3 latitude of observatory: degree,min,sec
INPUTR/R/13/3 right ascension: hour,min,sec
INPUTR/R/16/3 declination: degree,min,sec
OUTPUTD/D/1/1 barycentric correction to time (days)
OUTPUTD/D/2/1 heliocentric correction to time (days)
OUTPUTR/R/1/1 barycentric correction to radial velocity (km/s)
OUTPUTR/R/2/1 heliocentric correction to radial velocity (km/s)
OUTPUTR/R/3/1 diurnal rotation of the earth
*/
/*----------------------------------------------------------------------------*/
static void
compxy(double inputr[19], char inputc[4],
double outputr[4],
double utr, double mod_juldat)
{
// INTEGER IAV,STAT,KUN(1),KNUL,N
// INTEGER MADRID
//
// DOUBLE PRECISION UTR,STR,T0,DL,THETA0,PE,ST0HG,STG,GAST,R1
double STR;
// double utr Not used. Use FITS header value instead
double t0, dl, theta0, pe, st0hg, stg;
// DOUBLE PRECISION JD,JD0H,JD00,ZERO
double jd, jd0h;
// DOUBLE PRECISION DCORB(3),DCORH(3),DVELB(3),DVELH(3)
double dvelb[4], dvelh[4];
// DOUBLE PRECISION ALP,BCT,BEOV,BERV,DEL,EDV
double alp, del, beov, berv, EDV;
// DOUBLE PRECISION HAR,HCT,HEOV,HERV,PHI,PI
double HAR, phi, heov, herv;
// DOUBLE PRECISION EQX0,EQX1
// DOUBLE PRECISION A0R,A1R,D0R,D1R
// DOUBLE PRECISION DSMALL,DTEMP(3)
//
// REAL DATE0(3),DATE1(3),DATE00(3),A0(3),A1(3),D0(3),D1(3)
// REAL DATE(3),UT(3),OLONG(3),ST(3)
// double ut[4];
// REAL OLAT(3),ALPHA(3),DELTA(3)
// REAL RBUF(20)
double *rbuf;
//
// CHARACTER ACTIO*2,SIGNS*3,INPSGN*3
char inpsgn[4];
//
// COMMON /VMR/MADRID(1)
//
// DATA PI /3.1415926535897928D0/
// DATA DSMALL /1.D-38/
double *olong, *olat, *alpha, *delta;
//1000 SIGNS = '+++'
char signs[] = "+++";
// CALL STKRDR('INPUTR',1,20,IAV,RBUF,KUN,KNUL,STAT)
rbuf = inputr;
// CALL STKRDC('INPUTC',1,1,3,IAV,INPSGN,KUN,KNUL,STAT)
inpsgn[1] = inputc[1];
inpsgn[2] = inputc[2];
inpsgn[3] = inputc[3];
// EQUIVALENCE (RBUF(1),DATE(1)),(RBUF(7),OLONG(1))
// double *date = rbuf + 1 - 1; Not used, use the explicitly passed MJD instead
olong = rbuf + 7 - 1;
// EQUIVALENCE (RBUF(10),OLAT(1)),(RBUF(13),ALPHA(1))
olat = rbuf + 10 - 1;
alpha = rbuf + 13 - 1;
// EQUIVALENCE (RBUF(16),DELTA(1))
delta = rbuf + 16 - 1;
// DO 1100 N=1,3
// UT(N) = RBUF(N+3)
//1100 CONTINUE
// for (n = 1; n <= 3; n++)
// {
// ut[n] = rbuf[n+3];
// }
// ... convert UT to real hours, calculate Julian date
// UTR = UT(1)+UT(2)/60.D0+UT(3)/3600.D0
// utr = ut[1]+ut[2]/60. +ut[3]/3600.;
/* We know this one already but convert seconds -> hours */
utr /= 3600;
// CALL JULDAT(DATE,UTR,JD)
jd = mod_juldat + 2400000.5;
// ... likewise convert longitude and latitude of observatory to real hours
// ... and degrees, respectively; take care of signs
// ... NOTE: east longitude is assumed for input !!
// IF ((OLONG(1).LT.0.0) .OR. (OLONG(2).LT.0.0) .OR.
// + (OLONG(3).LT.0.0) .OR. (INPSGN(1:1).EQ.'-')) THEN
if (olong[1] < 0 || olong[2] < 0 ||
olong[3] < 0 || inpsgn[1] == '-') {
// SIGNS(1:1) = '-'
signs[1] = '-';
// OLONG(1) = ABS(OLONG(1))
// OLONG(2) = ABS(OLONG(2))
// OLONG(3) = ABS(OLONG(3))
olong[1] = fabs(olong[1]);
olong[2] = fabs(olong[2]);
olong[3] = fabs(olong[3]);
// ENDIF
}
// DL = OLONG(1)+OLONG(2)/60.D0+OLONG(3)/3600.D0
dl = olong[1]+olong[2]/60. +olong[3]/3600.;
// IF (SIGNS(1:1).EQ.'-') DL = -DL ! negative longitude
if (signs[1] == '-') dl = -dl;
// DL = -DL*24.D0/360.D0 ! convert back to west longitude
dl = -dl*24. /360.;
// IF ((OLAT(1).LT.0.0) .OR. (OLAT(2).LT.0.0) .OR.
// + (OLAT(3).LT.0.0) .OR. (INPSGN(2:2).EQ.'-')) THEN
if (olat[1] < 0 || olat[2] < 0 ||
olat[3] < 0 || inpsgn[2] == '-') {
// SIGNS(2:2) = '-'
signs[2] = '-';
// OLAT(1) = ABS(OLAT(1))
// OLAT(2) = ABS(OLAT(2))
// OLAT(3) = ABS(OLAT(3))
olat[1] = fabs(olat[1]);
olat[2] = fabs(olat[2]);
olat[3] = fabs(olat[3]);
// ENDIF
}
// PHI = OLAT(1)+OLAT(2)/60.D0+OLAT(3)/3600.D0
phi = olat[1]+olat[2]/60. +olat[3]/3600.;
// IF (SIGNS(2:2).EQ.'-') PHI = -PHI ! negative latitude
if (signs[2] == '-') phi = -phi;
// PHI = PHI*PI/180.D0
phi = phi*M_PI/180. ;
// ... convert right ascension and declination to real radians
// ALP = (ALPHA(1)*3600D0+ALPHA(2)*60D0+ALPHA(3))*PI /(12.D0*3600.D0)
alp = (alpha[1]*3600. +alpha[2]*60. +alpha[3])*M_PI/(12. *3600. );
// IF ((DELTA(1).LT.0.0) .OR. (DELTA(2).LT.0.0) .OR.
// + (DELTA(3).LT.0.0) .OR. (INPSGN(3:3).EQ.'-')) THEN
if (delta[1] < 0 || delta[2] < 0 ||
delta[3] < 0 || inpsgn[3] == '-') {
// SIGNS(3:3) = '-'
signs[3] = '-';
// DELTA(1) = ABS(DELTA(1))
// DELTA(2) = ABS(DELTA(2))
// DELTA(3) = ABS(DELTA(3))
delta[1] = fabs(delta[1]);
delta[2] = fabs(delta[2]);
delta[3] = fabs(delta[3]);
// ENDIF
}
// DEL = (DELTA(1)*3600.D0 + DELTA(2)*60.D0 + DELTA(3))
// + * PI/(3600.D0*180.D0)
del = (delta[1]*3600.0 + delta[2]*60. + delta[3])
* M_PI/(3600. *180. );
// IF (SIGNS(3:3).EQ.'-') DEL = -DEL ! negative declination
if (signs[3] == '-') del = - del;
// ... calculate earth's orbital velocity in rectangular coordinates X,Y,Z
// ... for both heliocentric and barycentric frames (DVELH, DVELB)
// ... Note that setting the second argument of BARVEL to zero as done below
// ... means that the input coordinates will not be corrected for precession.
// CALL BARVEL(JD,0.0D0,DVELH,DVELB)
barvel(jd, 0.0, dvelh, dvelb);
// ... with the rectangular velocity components known, the respective projections
// ... HEOV and BEOV on a given line of sight (ALP,DEL) can be determined:
// ... REFERENCE: THE ASTRONOMICAL ALMANAC 1982 PAGE:B17
// BEOV=DVELB(1)*DCOS(ALP)*DCOS(DEL)+
// 1 DVELB(2)*DSIN(ALP)*DCOS(DEL)+
// 2 DVELB(3)*DSIN(DEL)
beov =
dvelb[1]*cos(alp)*cos(del)+
dvelb[2]*sin(alp)*cos(del)+
dvelb[3]*sin(del);
// HEOV=DVELH(1)*DCOS(ALP)*DCOS(DEL)+
// 1 DVELH(2)*DSIN(ALP)*DCOS(DEL)+
// 2 DVELH(3)*DSIN(DEL)
heov =
dvelh[1]*cos(alp)*cos(del)+
dvelh[2]*sin(alp)*cos(del)+
dvelh[3]*sin(del);
// ... For determination also of the contribution due to the diurnal rotation of
// ... the earth (EDV), the hour angle (HAR) is needed at which the observation
// ... was made which requires conversion of UT to sidereal time (ST).
// ... Therefore, first compute ST at 0 hours UT (ST0HG)
// ... REFERENCE : MEEUS J.,1980,ASTRONOMICAL FORMULAE FOR CALCULATORS
// CALL JULDAT(DATE,ZERO,JD0H)
jd0h = jd - (utr/24.0);
// T0=(JD0H-2415020.D0)/36525.D0
t0 = (jd0h-2415020. )/36525. ;
// THETA0=0.276919398D0+100.0021359D0*T0+0.000001075D0*T0*T0
theta0 = 0.276919398 +100.0021359 *t0+0.000001075 *t0*t0 ;
// PE=DINT(THETA0)
pe = (int) theta0;
// THETA0=THETA0-PE
theta0 = theta0 - pe;
// ST0HG=THETA0*24.D0
st0hg = theta0*24. ;
// ... now do the conversion UT -> ST (MEAN SIDEREAL TIME)
// ... REFERENCE : THE ASTRONOMICAL ALMANAC 1983, P B7
// ... IN 1983: 1 MEAN SOLAR DAY = 1.00273790931 MEAN SIDEREAL DAYS
// ... ST WITHOUT EQUATION OF EQUINOXES CORRECTION => ACCURACY +/- 1 SEC
//
// STG=ST0HG+UTR*1.00273790931D0
stg = st0hg+utr*1.00273790931 ;
// IF (STG.LT.DL) STG=STG+24.D0
if (stg < dl) stg = stg +24. ;
// STR=STG-DL
STR = stg-dl;
// IF (STR.GE.24.D0) STR=STR-24.D0
if (STR >= 24. ) STR = STR-24. ;
// STR = STR*PI/12.D0 ! ST in radians
STR = STR*M_PI/12. ;
// HAR=STR-ALP ! hour angle of observation
HAR = STR-alp;
// EDV=-0.4654D0*DSIN(HAR)*DCOS(DEL)*DCOS(PHI)
EDV = -0.4654 * sin(HAR)* cos(del)* cos(phi);
// ... the total correction (in km/s) is the sum of orbital and diurnal components
// HERV=HEOV+EDV
herv=heov+EDV;
// BERV=BEOV+EDV
berv=beov+EDV;
/* The following is not needed. Do not translate */
#if 0
// ... Calculation of the barycentric and heliocentric correction times
// ... (BCT and HCT) requires knowledge of the earth's position in its
// ... orbit. Subroutine BARCOR returns the rectangular barycentric (DCORB)
// ... and heliocentric (DCORH) coordinates.
// CALL BARCOR(DCORH,DCORB)
// ... from this, the correction times (in days) can be determined:
// ... (REFERENCE: THE ASTRONOMICAL ALMANAC 1982 PAGE:B16)
// BCT=+0.0057756D0*(DCORB(1)*DCOS(ALP)*DCOS(DEL)+
// 1 DCORB(2)*DSIN(ALP)*DCOS(DEL)+
// 2 DCORB(3)* DSIN(DEL))
// HCT=+0.0057756D0*(DCORH(1)*DCOS(ALP)*DCOS(DEL)+
// 1 DCORH(2)*DSIN(ALP)*DCOS(DEL)+
// 2 DCORH(3)* DSIN(DEL))
//... write results to keywords
// CALL STKWRD('OUTPUTD',BCT,1,1,KUN,STAT) ! barycentric correction time
// CALL STKWRD('OUTPUTD',HCT,2,1,KUN,STAT) ! heliocentric correction time
#endif
// RBUF(1) = BERV ! barocentric RV correction
// RBUF(2) = HERV ! heliocentric RV correction
// ... (note that EDV is already contained in both BERV and HERV)
// RBUF(3) = EDV ! diurnal RV correction
rbuf[1] = berv;
rbuf[2] = herv;
rbuf[3] = EDV;
// CALL STKWRR('OUTPUTR',RBUF,1,3,KUN,STAT)
outputr[1] = rbuf[1];
outputr[2] = rbuf[2];
outputr[3] = rbuf[3];
// GOTO 9000
return;
}
/* @cond Convert FORTRAN indexing -> C indexing */
#define DCFEL(x,y) dcfel[y][x]
#define DCFEPS(x,y) dcfeps[y][x]
#define CCSEL(x,y) ccsel[y][x]
#define DCARGS(x,y) dcargs[y][x]
#define CCAMPS(x,y) ccamps[y][x]
#define CCSEC(x,y) ccsec[y][x]
#define DCARGM(x,y) dcargm[y][x]
#define CCAMPM(x,y) ccampm[y][x]
#define DCEPS(x) dceps[x]
#define FORBEL(x) forbel[x]
#define SORBEL(x) sorbel[x]
#define SN(x) sn[x]
#define SINLP(x) sinlp[x]
#define COSLP(x) coslp[x]
#define CCPAMV(x) ccpamv[x]
/* @endcond */
/*----------------------------------------------------------------------------*/
/**
@brief compute rectangular heliocentric and barycentric components of
the earth's orbital velocity
@param DJE Julian date
@param DEQ ???
@param DVELH (output) heliocentric velocity
@param DVELB (output) barycentric velocity
REFERENCE : STUMPFF P. ASTRON. ASTOPHYS. SUPPL. 41,1,1980
MODIFICATION : D. GILLET 1983-9-15
*/
/*----------------------------------------------------------------------------*/
// SUBROUTINE BARVEL(DJE,DEQ,DVELH,DVELB)
static
void barvel(double DJE, double DEQ,
double DVELH[4], double DVELB[4])
{
// DOUBLE PRECISION DJE,DEQ,DVELH(3),DVELB(3),SN(4)
double sn[5];
// DOUBLE PRECISION DT,DTL,DCT0,DCJUL,DTSQ,DLOCAL,DC2PI,CC2PI
double DT,DTL,DTSQ,DLOCAL;
// DOUBLE PRECISION DRD,DRLD,DCSLD,DC1
double DRD,DRLD;
// DOUBLE PRECISION DXBD,DYBD,DZBD,DZHD,DXHD,DYHD
double DXBD,DYBD,DZBD,DZHD,DXHD,DYHD;
// DOUBLE PRECISION DYAHD,DZAHD,DYABD,DZABD
double DYAHD,DZAHD,DYABD,DZABD;
// DOUBLE PRECISION DML,DEPS,PHI,PHID,PSID,DPARAM,PARAM
double DML,DEPS,PHI,PHID,PSID,DPARAM,PARAM;
// DOUBLE PRECISION CCFDI,CCKM,CCMLD,PLON,POMG,PECC
double PLON,POMG,PECC;
// DOUBLE PRECISION PERTL,PERTLD,PERTRD,PERTP,PERTR,PERTPD
double PERTL,PERTLD,PERTRD,PERTP,PERTR,PERTPD;
// DOUBLE PRECISION SINA,CCSGD,DC1MME,TL
double SINA,TL;
// DOUBLE PRECISION CCSEC3,COSA,ESQ
double COSA,ESQ;
// DOUBLE PRECISION DCFEL(3,8),DCEPS(3),CCSEL(3,17),DCARGS(2,15)
// DOUBLE PRECISION CCAMPS(5,15),CCSEC(3,4),DCARGM(2,3)
// DOUBLE PRECISION CCAMPM(4,3),CCPAMV(4)
// DOUBLE PRECISION A,B,E,F,G,SINF,COSF,T,TSQ,TWOE,TWOG
double A,B,F,SINF,COSF,T,TSQ,TWOE,TWOG;
//C
// DOUBLE PRECISION DPREMA(3,3),DPSI,D1PDRO,DSINLS
double DPSI,D1PDRO,DSINLS;
// DOUBLE PRECISION DCOSLS,DSINEP,DCOSEP
double DCOSLS,DSINEP,DCOSEP;
// DOUBLE PRECISION FORBEL(7),SORBEL(17),SINLP(4),COSLP(4)
double forbel[8], sorbel[18], sinlp[5], coslp[5];
// DOUBLE PRECISION SINLM,COSLM,SIGMA
double SINLM,COSLM,SIGMA;
//C
// INTEGER IDEQ,K,N
int IDEQ,K,N;
//C
// COMMON /BARXYZ/ DPREMA,DPSI,D1PDRO,DSINLS,DCOSLS,
// + DSINEP,DCOSEP,FORBEL,SORBEL,SINLP,
// + COSLP,SINLM,COSLM,SIGMA,IDEQ
// EQUIVALENCE (SORBEL(1),E),(FORBEL(1),G)
double *E = sorbel + 1 - 1;
double *G = forbel + 1 - 1;
//C
// DATA DC2PI/6.2831853071796D0/,CC2PI/6.283185/,
double DC2PI = 6.2831853071796E0;
double CC2PI = 6.283185; /* ??? */
// *DC1/1.0D0/,DCT0/2415020.0D0/,DCJUL/36525.0D0/
double DC1 = 1.0;
double DCT0 = 2415020.0E0;
double DCJUL = 36525.0E0;
//C
// DATA DCFEL/ 1.7400353D+00, 6.2833195099091D+02, 5.2796D-06,
// * 6.2565836D+00, 6.2830194572674D+02,-2.6180D-06,
// * 4.7199666D+00, 8.3997091449254D+03,-1.9780D-05,
// * 1.9636505D-01, 8.4334662911720D+03,-5.6044D-05,
// * 4.1547339D+00, 5.2993466764997D+01, 5.8845D-06,
// * 4.6524223D+00, 2.1354275911213D+01, 5.6797D-06,
// * 4.2620486D+00, 7.5025342197656D+00, 5.5317D-06,
// * 1.4740694D+00, 3.8377331909193D+00, 5.6093D-06/
double dcfel[][4] = { {0, 0, 0, 0},
{0, 1.7400353E+00, 6.2833195099091E+02, 5.2796E-06},
{0, 6.2565836E+00, 6.2830194572674E+02,-2.6180E-06},
{0, 4.7199666E+00, 8.3997091449254E+03,-1.9780E-05},
{0, 1.9636505E-01, 8.4334662911720E+03,-5.6044E-05},
{0, 4.1547339E+00, 5.2993466764997E+01, 5.8845E-06},
{0, 4.6524223E+00, 2.1354275911213E+01, 5.6797E-06},
{0, 4.2620486E+00, 7.5025342197656E+00, 5.5317E-06},
{0, 1.4740694E+00, 3.8377331909193E+00, 5.6093E-06} };
//C
// DATA DCEPS/ 4.093198D-01,-2.271110D-04,-2.860401D-08/
double dceps[4] = {0, 4.093198E-01,-2.271110E-04,-2.860401E-08};
//C
// DATA CCSEL/ 1.675104D-02,-4.179579D-05,-1.260516D-07,
// * 2.220221D-01, 2.809917D-02, 1.852532D-05,
// * 1.589963D+00, 3.418075D-02, 1.430200D-05,
// * 2.994089D+00, 2.590824D-02, 4.155840D-06,
// * 8.155457D-01, 2.486352D-02, 6.836840D-06,
// * 1.735614D+00, 1.763719D-02, 6.370440D-06,
// * 1.968564D+00, 1.524020D-02,-2.517152D-06,
// * 1.282417D+00, 8.703393D-03, 2.289292D-05,
// * 2.280820D+00, 1.918010D-02, 4.484520D-06,
// * 4.833473D-02, 1.641773D-04,-4.654200D-07,
// * 5.589232D-02,-3.455092D-04,-7.388560D-07,
// * 4.634443D-02,-2.658234D-05, 7.757000D-08,
// * 8.997041D-03, 6.329728D-06,-1.939256D-09,
// * 2.284178D-02,-9.941590D-05, 6.787400D-08,
// * 4.350267D-02,-6.839749D-05,-2.714956D-07,
// * 1.348204D-02, 1.091504D-05, 6.903760D-07,
// * 3.106570D-02,-1.665665D-04,-1.590188D-07/
double ccsel[][4] = { {0, 0, 0, 0},
{0, 1.675104E-02, -4.179579E-05, -1.260516E-07},
{0, 2.220221E-01, 2.809917E-02, 1.852532E-05},
{0, 1.589963E+00, 3.418075E-02, 1.430200E-05},
{0, 2.994089E+00, 2.590824E-02, 4.155840E-06},
{0, 8.155457E-01, 2.486352E-02, 6.836840E-06},
{0, 1.735614E+00, 1.763719E-02, 6.370440E-06},
{0, 1.968564E+00, 1.524020E-02, -2.517152E-06},
{0, 1.282417E+00, 8.703393E-03, 2.289292E-05},
{0, 2.280820E+00, 1.918010E-02, 4.484520E-06},
{0, 4.833473E-02, 1.641773E-04, -4.654200E-07},
{0, 5.589232E-02, -3.455092E-04, -7.388560E-07},
{0, 4.634443E-02, -2.658234E-05, 7.757000E-08},
{0, 8.997041E-03, 6.329728E-06, -1.939256E-09},
{0, 2.284178E-02, -9.941590E-05, 6.787400E-08},
{0, 4.350267E-02, -6.839749E-05, -2.714956E-07},
{0, 1.348204E-02, 1.091504E-05, 6.903760E-07},
{0, 3.106570E-02, -1.665665E-04, -1.590188E-07} };
// DATA DCARGS/ 5.0974222D+00,-7.8604195454652D+02,
// * 3.9584962D+00,-5.7533848094674D+02,
// * 1.6338070D+00,-1.1506769618935D+03,
// * 2.5487111D+00,-3.9302097727326D+02,
// * 4.9255514D+00,-5.8849265665348D+02,
// * 1.3363463D+00,-5.5076098609303D+02,
// * 1.6072053D+00,-5.2237501616674D+02,
// * 1.3629480D+00,-1.1790629318198D+03,
// * 5.5657014D+00,-1.0977134971135D+03,
// * 5.0708205D+00,-1.5774000881978D+02,
// * 3.9318944D+00, 5.2963464780000D+01,
// * 4.8989497D+00, 3.9809289073258D+01,
// * 1.3097446D+00, 7.7540959633708D+01,
// * 3.5147141D+00, 7.9618578146517D+01,
// * 3.5413158D+00,-5.4868336758022D+02/
double dcargs[][3] = { {0, 0, 0},
{0, 5.0974222E+00, -7.8604195454652E+02},
{0, 3.9584962E+00, -5.7533848094674E+02},
{0, 1.6338070E+00, -1.1506769618935E+03},
{0, 2.5487111E+00, -3.9302097727326E+02},
{0, 4.9255514E+00, -5.8849265665348E+02},
{0, 1.3363463E+00, -5.5076098609303E+02},
{0, 1.6072053E+00, -5.2237501616674E+02},
{0, 1.3629480E+00, -1.1790629318198E+03},
{0, 5.5657014E+00, -1.0977134971135E+03},
{0, 5.0708205E+00, -1.5774000881978E+02},
{0, 3.9318944E+00, 5.2963464780000E+01},
{0, 4.8989497E+00, 3.9809289073258E+01},
{0, 1.3097446E+00, 7.7540959633708E+01},
{0, 3.5147141E+00, 7.9618578146517E+01},
{0, 3.5413158E+00, -5.4868336758022E+02} };
// DATA CCAMPS/
// *-2.279594D-5, 1.407414D-5, 8.273188D-6, 1.340565D-5,-2.490817D-7,
// *-3.494537D-5, 2.860401D-7, 1.289448D-7, 1.627237D-5,-1.823138D-7,
// * 6.593466D-7, 1.322572D-5, 9.258695D-6,-4.674248D-7,-3.646275D-7,
// * 1.140767D-5,-2.049792D-5,-4.747930D-6,-2.638763D-6,-1.245408D-7,
// * 9.516893D-6,-2.748894D-6,-1.319381D-6,-4.549908D-6,-1.864821D-7,
// * 7.310990D-6,-1.924710D-6,-8.772849D-7,-3.334143D-6,-1.745256D-7,
// *-2.603449D-6, 7.359472D-6, 3.168357D-6, 1.119056D-6,-1.655307D-7,
// *-3.228859D-6, 1.308997D-7, 1.013137D-7, 2.403899D-6,-3.736225D-7,
// * 3.442177D-7, 2.671323D-6, 1.832858D-6,-2.394688D-7,-3.478444D-7,
// * 8.702406D-6,-8.421214D-6,-1.372341D-6,-1.455234D-6,-4.998479D-8,
// *-1.488378D-6,-1.251789D-5, 5.226868D-7,-2.049301D-7, 0.0D0,
// *-8.043059D-6,-2.991300D-6, 1.473654D-7,-3.154542D-7, 0.0D0,
// * 3.699128D-6,-3.316126D-6, 2.901257D-7, 3.407826D-7, 0.0D0,
// * 2.550120D-6,-1.241123D-6, 9.901116D-8, 2.210482D-7, 0.0D0,
// *-6.351059D-7, 2.341650D-6, 1.061492D-6, 2.878231D-7, 0.0D0/
double ccamps[][6] =
{{0, 0, 0, 0, 0, 0},
{0, -2.279594E-5, 1.407414E-5, 8.273188E-6, 1.340565E-5, -2.490817E-7},
{0, -3.494537E-5, 2.860401E-7, 1.289448E-7, 1.627237E-5, -1.823138E-7},
{0, 6.593466E-7, 1.322572E-5, 9.258695E-6, -4.674248E-7, -3.646275E-7},
{0, 1.140767E-5, -2.049792E-5, -4.747930E-6, -2.638763E-6, -1.245408E-7},
{0, 9.516893E-6, -2.748894E-6, -1.319381E-6, -4.549908E-6, -1.864821E-7},
{0, 7.310990E-6, -1.924710E-6, -8.772849E-7, -3.334143E-6, -1.745256E-7},
{0, -2.603449E-6, 7.359472E-6, 3.168357E-6, 1.119056E-6, -1.655307E-7},
{0, -3.228859E-6, 1.308997E-7, 1.013137E-7, 2.403899E-6, -3.736225E-7},
{0, 3.442177E-7, 2.671323E-6, 1.832858E-6, -2.394688E-7, -3.478444E-7},
{0, 8.702406E-6, -8.421214E-6, -1.372341E-6, -1.455234E-6, -4.998479E-8},
{0, -1.488378E-6, -1.251789E-5, 5.226868E-7, -2.049301E-7, 0.0E0},
{0, -8.043059E-6, -2.991300E-6, 1.473654E-7, -3.154542E-7, 0.0E0},
{0, 3.699128E-6, -3.316126E-6, 2.901257E-7, 3.407826E-7, 0.0E0},
{0, 2.550120E-6, -1.241123E-6, 9.901116E-8, 2.210482E-7, 0.0E0},
{0, -6.351059E-7, 2.341650E-6, 1.061492E-6, 2.878231E-7, 0.0E0}};
// DATA CCSEC3/-7.757020D-08/
double CCSEC3 = -7.757020E-08;
//C
// DATA CCSEC/ 1.289600D-06, 5.550147D-01, 2.076942D+00,
// * 3.102810D-05, 4.035027D+00, 3.525565D-01,
// * 9.124190D-06, 9.990265D-01, 2.622706D+00,
// * 9.793240D-07, 5.508259D+00, 1.559103D+01/
double ccsec[][4] = { {0, 0, 0, 0},
{0, 1.289600E-06, 5.550147E-01, 2.076942E+00},
{0, 3.102810E-05, 4.035027E+00, 3.525565E-01},
{0, 9.124190E-06, 9.990265E-01, 2.622706E+00},
{0, 9.793240E-07, 5.508259E+00, 1.559103E+01}};
//C
// DATA DCSLD/ 1.990987D-07/, CCSGD/ 1.990969D-07/
double DCSLD = 1.990987E-07, CCSGD = 1.990969E-07;
//C
// DATA CCKM/3.122140D-05/, CCMLD/2.661699D-06/, CCFDI/2.399485D-07/
double CCKM = 3.122140E-05, CCMLD = 2.661699E-06, CCFDI = 2.399485E-07;
//C
// DATA DCARGM/ 5.1679830D+00, 8.3286911095275D+03,
// * 5.4913150D+00,-7.2140632838100D+03,
// * 5.9598530D+00, 1.5542754389685D+04/
double dcargm[][3] = {{0, 0, 0},
{0, 5.1679830E+00, 8.3286911095275E+03},
{0, 5.4913150E+00, -7.2140632838100E+03},
{0, 5.9598530E+00, 1.5542754389685E+04}};
//C
// DATA CCAMPM/
// * 1.097594D-01, 2.896773D-07, 5.450474D-02, 1.438491D-07,
// * -2.223581D-02, 5.083103D-08, 1.002548D-02,-2.291823D-08,
// * 1.148966D-02, 5.658888D-08, 8.249439D-03, 4.063015D-08/
double ccampm[][5] = {{0, 0, 0, 0, 0},
{0, 1.097594E-01, 2.896773E-07, 5.450474E-02, 1.438491E-07},
{0, -2.223581E-02, 5.083103E-08, 1.002548E-02, -2.291823E-08},
{0, 1.148966E-02, 5.658888E-08, 8.249439E-03, 4.063015E-08} };
//C
// DATA CCPAMV/8.326827D-11,1.843484D-11,1.988712D-12,1.881276D-12/,
double ccpamv[] = {0, 8.326827E-11, 1.843484E-11, 1.988712E-12, 1.881276E-12};
// * DC1MME/0.99999696D0/
double DC1MME = 0.99999696E0;
//C
// IDEQ=DEQ
IDEQ=DEQ;
// DT=(DJE-DCT0)/DCJUL
DT=(DJE-DCT0)/DCJUL;
// T=DT
T=DT;
// DTSQ=DT*DT
DTSQ=DT*DT;
// TSQ=DTSQ
TSQ=DTSQ;
DML = 0; /* Suppress warning */
// DO 100, K=1,8
for (K = 1; K <= 8; K++) {
// DLOCAL=DMOD(DCFEL(1,K)+DT*DCFEL(2,K)+DTSQ*DCFEL(3,K),DC2PI)
DLOCAL=fmod(DCFEL(1,K)+DT*DCFEL(2,K)+DTSQ*DCFEL(3,K),DC2PI);
// IF (K.EQ.1) DML=DLOCAL
if (K == 1) DML=DLOCAL;
// IF (K.NE.1) FORBEL(K-1)=DLOCAL
if (K != 1) FORBEL(K-1)=DLOCAL;
// 100 CONTINUE
}
// DEPS=DMOD(DCEPS(1)+DT*DCEPS(2)+DTSQ*DCEPS(3), DC2PI)
DEPS=fmod(DCEPS(1)+DT*DCEPS(2)+DTSQ*DCEPS(3), DC2PI);
// DO 200, K=1,17
for (K = 1; K <= 17; K++) {
// SORBEL(K)=DMOD(CCSEL(1,K)+T*CCSEL(2,K)+TSQ*CCSEL(3,K),CC2PI)
SORBEL(K)=fmod(CCSEL(1,K)+T*CCSEL(2,K)+TSQ*CCSEL(3,K),CC2PI);
// 200 CONTINUE
}
// DO 300, K=1,4
for (K = 1; K <= 4; K++) {
// A=DMOD(CCSEC(2,K)+T*CCSEC(3,K),CC2PI)
A=fmod(CCSEC(2,K)+T*CCSEC(3,K),CC2PI);
// SN(K)=DSIN(A)
SN(K)=sin(A);
// 300 CONTINUE
}
// PERTL = CCSEC(1,1) *SN(1) +CCSEC(1,2)*SN(2)
// * +(CCSEC(1,3)+T*CCSEC3)*SN(3) +CCSEC(1,4)*SN(4)
PERTL = CCSEC(1,1) *SN(1) +CCSEC(1,2)*SN(2)
+(CCSEC(1,3)+T*CCSEC3)*SN(3) +CCSEC(1,4)*SN(4);
// PERTLD=0.0
// PERTR =0.0
// PERTRD=0.0
PERTLD=0.0;
PERTR =0.0;
PERTRD=0.0;
// DO 400, K=1,15
for (K = 1; K <= 15; K++) {
// A=DMOD(DCARGS(1,K)+DT*DCARGS(2,K), DC2PI)
A=fmod(DCARGS(1,K)+DT*DCARGS(2,K), DC2PI);
// COSA=DCOS(A)
COSA=cos(A);
// SINA=DSIN(A)
SINA=sin(A);
// PERTL =PERTL+CCAMPS(1,K)*COSA+CCAMPS(2,K)*SINA
PERTL =PERTL+CCAMPS(1,K)*COSA+CCAMPS(2,K)*SINA;
// PERTR =PERTR+CCAMPS(3,K)*COSA+CCAMPS(4,K)*SINA;
PERTR =PERTR+CCAMPS(3,K)*COSA+CCAMPS(4,K)*SINA;
// IF (K.GE.11) GO TO 400
if (K >= 11) break;
// PERTLD=PERTLD+(CCAMPS(2,K)*COSA-CCAMPS(1,K)*SINA)*CCAMPS(5,K)
PERTLD=PERTLD+(CCAMPS(2,K)*COSA-CCAMPS(1,K)*SINA)*CCAMPS(5,K);
// PERTRD=PERTRD+(CCAMPS(4,K)*COSA-CCAMPS(3,K)*SINA)*CCAMPS(5,K)
PERTRD=PERTRD+(CCAMPS(4,K)*COSA-CCAMPS(3,K)*SINA)*CCAMPS(5,K);
// 400 CONTINUE
}
// ESQ=E*E
ESQ=E[1]*E[1];
// DPARAM=DC1-ESQ
DPARAM=DC1-ESQ;
// PARAM=DPARAM
PARAM=DPARAM;
// TWOE=E+E
TWOE=E[1]+E[1];
// TWOG=G+G
TWOG=G[1]+G[1];
// PHI=TWOE*((1.0-ESQ*0.125D0)*DSIN(G)+E*0.625D0*DSIN(TWOG)
// * +ESQ*0.5416667D0*DSIN(G+TWOG) )
PHI=TWOE*((1.0-ESQ*0.125 )*sin(G[1])+E[1]*0.625 *sin(TWOG)
+ESQ*0.5416667 *sin(G[1]+TWOG) ) ;
//F=G+PHI
F=G[1]+PHI;
//SINF=DSIN(F)
SINF=sin(F);
//COSF=DCOS(F)
COSF=cos(F);
//DPSI=DPARAM/(DC1+E*COSF)
DPSI=DPARAM/(DC1+E[1]*COSF);
// PHID=TWOE*CCSGD*((1.0+ESQ*1.5D0)*COSF+E[1]*(1.25D0-SINF*SINF*0.5D0))
PHID=TWOE*CCSGD*((1.0+ESQ*1.5 )*COSF+E[1]*(1.25 -SINF*SINF*0.5 ));
// PSID=CCSGD*E*SINF/SQRT(PARAM)
PSID=CCSGD*E[1]*SINF/sqrt(PARAM);
// D1PDRO=(DC1+PERTR)
D1PDRO=(DC1+PERTR);
// DRD=D1PDRO*(PSID+DPSI*PERTRD)
DRD=D1PDRO*(PSID+DPSI*PERTRD);
// DRLD=D1PDRO*DPSI*(DCSLD+PHID+PERTLD)
DRLD=D1PDRO*DPSI*(DCSLD+PHID+PERTLD);
// DTL=DMOD(DML+PHI+PERTL, DC2PI)
DTL=fmod(DML+PHI+PERTL, DC2PI);
// DSINLS=DSIN(DTL)
DSINLS=sin(DTL);
// DCOSLS=DCOS(DTL)
DCOSLS=cos(DTL);
// DXHD = DRD*DCOSLS-DRLD*DSINLS
DXHD = DRD*DCOSLS-DRLD*DSINLS;
// DYHD = DRD*DSINLS+DRLD*DCOSLS
DYHD = DRD*DSINLS+DRLD*DCOSLS;
// PERTL =0.0
PERTL =0.0;
// PERTLD=0.0
PERTLD=0.0;
// PERTP =0.0
PERTP =0.0;
// PERTPD=0.0
PERTPD=0.0;
//DO 500 K=1,3
for (K = 1; K <= 3; K++) {
//A=DMOD(DCARGM(1,K)+DT*DCARGM(2,K), DC2PI)
A=fmod(DCARGM(1,K)+DT*DCARGM(2,K), DC2PI);
//SINA =DSIN(A)
SINA =sin(A);
//COSA =DCOS(A)
COSA =cos(A);
//PERTL =PERTL +CCAMPM(1,K)*SINA
PERTL =PERTL +CCAMPM(1,K)*SINA;
//PERTLD=PERTLD+CCAMPM(2,K)*COSA
PERTLD=PERTLD+CCAMPM(2,K)*COSA;
//PERTP =PERTP +CCAMPM(3,K)*COSA
PERTP =PERTP +CCAMPM(3,K)*COSA;
//PERTPD=PERTPD-CCAMPM(4,K)*SINA
PERTPD=PERTPD-CCAMPM(4,K)*SINA;
// 500 CONTINUE
}
//TL=FORBEL(2)+PERTL
TL=FORBEL(2)+PERTL;
// SINLM=DSIN(TL)
SINLM=sin(TL);
// COSLM=DCOS(TL)
COSLM=cos(TL);
// SIGMA=CCKM/(1.0+PERTP)
SIGMA=CCKM/(1.0+PERTP);
// A=SIGMA*(CCMLD+PERTLD)
A=SIGMA*(CCMLD+PERTLD);
// B=SIGMA*PERTPD
B=SIGMA*PERTPD;
// DXHD=DXHD+A*SINLM+B*COSLM
DXHD=DXHD+A*SINLM+B*COSLM;
// DYHD=DYHD-A*COSLM+B*SINLM
DYHD=DYHD-A*COSLM+B*SINLM;
// DZHD= -SIGMA*CCFDI*DCOS(FORBEL(3))
DZHD= -SIGMA*CCFDI* cos(FORBEL(3));
// DXBD=DXHD*DC1MME
DXBD=DXHD*DC1MME;
// DYBD=DYHD*DC1MME
DYBD=DYHD*DC1MME;
// DZBD=DZHD*DC1MME
DZBD=DZHD*DC1MME;
// DO 600 K=1,4
for (K = 1; K <= 4; K++) {
//PLON=FORBEL(K+3)
PLON=FORBEL(K+3);
//POMG=SORBEL(K+1)
POMG=SORBEL(K+1);
//PECC=SORBEL(K+9)
PECC=SORBEL(K+9);
//TL=DMOD(PLON+2.0*PECC*DSIN(PLON-POMG), CC2PI)
TL=fmod(PLON+2.0*PECC* sin(PLON-POMG), CC2PI);
//SINLP(K)=DSIN(TL)
SINLP(K)= sin(TL);
//COSLP(K)=DCOS(TL)
COSLP(K)= cos(TL);
//DXBD=DXBD+CCPAMV(K)*(SINLP(K)+PECC*DSIN(POMG))
DXBD=DXBD+CCPAMV(K)*(SINLP(K)+PECC*sin(POMG));
//DYBD=DYBD-CCPAMV(K)*(COSLP(K)+PECC*DCOS(POMG))
DYBD=DYBD-CCPAMV(K)*(COSLP(K)+PECC*cos(POMG));
//DZBD=DZBD-CCPAMV(K)*SORBEL(K+13)*DCOS(PLON-SORBEL(K+5))
DZBD=DZBD-CCPAMV(K)*SORBEL(K+13)*cos(PLON-SORBEL(K+5));
// 600 CONTINUE
}
//DCOSEP=DCOS(DEPS)
DCOSEP=cos(DEPS);
//DSINEP=DSIN(DEPS)
DSINEP=sin(DEPS);
//DYAHD=DCOSEP*DYHD-DSINEP*DZHD
DYAHD=DCOSEP*DYHD-DSINEP*DZHD;
//DZAHD=DSINEP*DYHD+DCOSEP*DZHD
DZAHD=DSINEP*DYHD+DCOSEP*DZHD;
//DYABD=DCOSEP*DYBD-DSINEP*DZBD
DYABD=DCOSEP*DYBD-DSINEP*DZBD;
//DZABD=DSINEP*DYBD+DCOSEP*DZBD
DZABD=DSINEP*DYBD+DCOSEP*DZBD;
//DVELH(1)=DXHD
DVELH[1]=DXHD;
//DVELH(2)=DYAHD
DVELH[2]=DYAHD;
//DVELH(3)=DZAHD
DVELH[3]=DZAHD;
//DVELB(1)=DXBD
DVELB[1]=DXBD;
//DVELB(2)=DYABD
DVELB[2]=DYABD;
//DVELB(3)=DZABD
DVELB[3]=DZABD;
//DO 800 N=1,3
for (N = 1; N <= 3; N++) {
//DVELH(N)=DVELH(N)*1.4959787D8
DVELH[N]=DVELH[N]*1.4959787E8;
//DVELB(N)=DVELB(N)*1.4959787D8
DVELB[N]=DVELB[N]*1.4959787E8;
// 800 CONTINUE
}
// RETURN
return;
}
/*----------------------------------------------------------------------------*/
/**
@brief convert degrees -> degrees, minutes, seconds
@param in_val the value to convert
@param degs (output) degrees (integer)
@param minutes (output) minutes (integer)
@param seconds (output) seconds (fractional)
*/
/*----------------------------------------------------------------------------*/
static void
deg2dms(double in_val,
double *degs,
double *minutes,
double *seconds)
{
deg2hms(in_val*15, degs, minutes, seconds);
}
/** To get the exact same behaviour as MIDAS this should
be define'd to 1. (Fixing it does not seem to make a
difference in the resulting numbers but do it anyway) */
#define MIDAS_BUG 0
/*----------------------------------------------------------------------------*/
/**
@brief convert hours -> degrees, minutes, seconds
@param in_val the value to convert
@param hours (output) hours (integer). 360 degrees correspond to 24 h
@param minutes (output) minutes (integer)
@param seconds (output) seconds (fractional)
*/
/*----------------------------------------------------------------------------*/
static void
deg2hms(double in_val,
double *hours,
double *minutes,
double *seconds)
{
// define/parameter p1 ? num "Enter value in deg units"
// define/local in_val/d/1/1 {p1}
//define/local out_val/c/1/80 " " all
//define/local hours/i/1/1 0
//define/local minutes/i/1/1 0
//define/local seconds/d/1/1 0
//define/local tmp/d/1/1 0
double tmp;
//define/local hold/c/1/80 " " all
//define/local sign/c/1/1 " "
char sign;
//hold = "{in_val}"
//if m$index(hold,"-") .gt. 0 then
// in_val = m$abs(in_val)
// sign = "-"
//else
// sign = "+"
//endif
if (in_val < 0) {
in_val = fabs(in_val);
sign = '-';
}
else {
sign = '+';
}
//set/format i1
//!360 deg corresponds to 24 h=> 15 deg corresponds to 1 h
// tmp = in_val / 15
tmp = in_val / 15;
// hours = tmp !takes the integer part = hours
#if MIDAS_BUG
*hours= uves_round_double(tmp);
#else
*hours= (int) tmp;
#endif
// tmp = tmp - hours !takes the mantissa
tmp = tmp - *hours;
// tmp = tmp * 60 !converts the mantissa in minutes
tmp = tmp * 60;
// minutes = tmp !takes the integer part = minutes
#if MIDAS_BUG
*minutes= uves_round_double(tmp);
#else
*minutes= (int) tmp;
#endif
// tmp = tmp - minutes !takes the mantissa
tmp = tmp - *minutes;
// seconds = tmp * 60 !converts the mantissa in seconds = seconds (with decimal)
*seconds= tmp * 60;
//out_val = "{sign}{hours},{minutes},{seconds}"
/* Rather than returning it explicitly, just attach sign to hours */
if (sign == '-') *hours = -(*hours);
return;
}
/**@}*/
#if 0 /* Not used / needed.
We simply get the julian date from the input FITS header */
// SUBROUTINE JULDAT(INDATE,UTR,JD)
//C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//C
//C.IDENTIFICATION
//C FORTRAN subroutine JULDAT version 1.0 870102
//C original coding: D. Gillet ESO - Garching
//C variables renamed and restructured: D. Baade ST-ECF, Garching
//C
//C.KEYWORDS
//C geocentric Julian date
//C
//C.PURPOSE
//C calculate geocentric Julian date for any civil date (time in UT)
//C
//C.ALGORITHM
//C adapted from MEEUS J.,1980, ASTRONOMICAL FORMULAE FOR CALCULATORS
//C
//C.INPUT/OUTPUT
//C the following are passed from and to the calling program:
//C INDATE(3) : civil date as year,month,day OR year.fraction
//C UT : universal time expressed in real hours
//C JD : real geocentric Julian date
//C
//C.REVISIONS
//C made to accept also REAL dates D. Baade 910408
//C
//C-------------------------------------------------------------------------------
//C
static void
juldat(double *INDATE,
double UTR,
double *JD)
{
// DOUBLE PRECISION YP,P,C,A,UT
double UT;
// DOUBLE PRECISION UTR,JD
//C
// INTEGER STAT,IA,IB,IC,ND,DATE(3)
int DATE[4];
//C
// REAL INDATE(3),FRAC
//C
// UT=UTR / 24.0D0
UT=UTR / 24.0;
// CHECK FORMAT OF DATE: may be either year,month,date OR year.fraction,0,0
// (Note that the fraction of the year must NOT include fractions of a day.)
// For all other formats exit and terminate also calling command sequence.
//
// IF ((INDATE(1)-INT(INDATE(1))).GT.1.0E-6) THEN
// IF ((INDATE(2).GT.1.0E-6).OR.(INDATE(3).GT.1.0E-6))
// + CALL STETER(1,'Error: Date was entered in wrong format.')
// copy date input buffer copy to other buffer so that calling program
// does not notice any changes
// FIRST CASE: format was year.fraction
// DATE(1)=INT(INDATE(1))
// FRAC=INDATE(1)-DATE(1)
// DATE(2)=1
// DATE(3)=1
// ELSE
//
// SECOND CASE: format was year,month,day
//
// DATE(1)=NINT(INDATE(1))
DATE[1]=uves_round_double(INDATE[1]);
//FRAC=0
FRAC = 0;
//DATE(2)=NINT(INDATE(2))
DATE[2]=uves_round_double(INDATE[2]);
//DATE(3)=NINT(INDATE(3))
DATE[3]=uves_round_double(INDATE[3]);
//IF ((DATE(2).EQ.0).AND.(DATE(3).EQ.0)) THEN
if ((DATE[2] == 0) && (DATE[3] == 0)) {
//DATE(2)=1
DATE[2]=1;
//DATE(3)=1
DATE[3]=1;
// ENDIF
}
// IF ((DATE(2).LT.1).OR.(DATE(2).GT.12))
// + CALL STETER(1,'Error: such a month does not exist')
// IF ((DATE(3).LT.1).OR.(DATE(3).GT.31))
// + CALL STETER(1,'Error: such a day does not exist')
// ENDIF
// from here on, the normal procedure applies which is based on the
// format year,month,day:
//IF (DATE(2) .GT. 2) THEN
if (DATE[2] > 2) {
//YP=DATE(1)
YP=DATE[1];
//P=DATE[2]
P=DATE[2];
// ELSE
} else {
//YP=DATE(1)-1
YP=DATE[1]-1;
//P=DATE(2)+12.0
P=DATE(2)+12.0;
// ENDIF
}
// C = DATE(1) + DATE(2)*1.D-2 + DATE(3)*1.D-4 + UT*1.D-6
C = DATE[1] + DATE[2]*1.E-2 + DATE[3]*1.E-4 + UT*1.E-6;
// IF (C .GE. 1582.1015D0) THEN
if (C > 1582.1015E0) {
//IA=IDINT(YP/100.D0)
IA=(int) (YP/100.D0);
//A=DBLE(IA)
A=IA;
//IB=2-IA+IDINT(A/4.D0)
IB=2-IA+((int)(A/4.D0));
//ELSE
} else {
//IB=0
IB=0;
//ENDIF
}
// JD = DINT(365.25D0*YP) + DINT(30.6001D0*(P+1.D0)) + DATE(3) + UT
// * + DBLE(IB) + 1720994.5D0
*JD = ((int) (365.25E0*YP)) + ((int)(30.6001D0*(P+1.D0))) + DATE[3] + UT
+ IB + 1720994.5E0;
// finally, take into account fraction of year (if any), respect leap
// year conventions
//
// IF (FRAC.GT.1.0E-6) THEN
if (FRAC > 1.0E-6) {
//ND=365
ND=365;
//IF (C.GE.1582.1015D0) THEN
IF (C >= 1582.1015E0) {
//IC = MOD(DATE(1),4)
IC = DATE[1] % 4;
//IF (IC.EQ.0) THEN
if (IC == 0) {
//ND=366
ND=366;
//IC = MOD(DATE(1),100)
IC = DATE[1] % 100;
//IF (IC.EQ.0) THEN
if (IC == 0) {
//IC = MOD(DATE(1),400)
IC = DATE[1] % 400;
//IF (IC.NE.0) ND=365
if (IC != 0) ND=365;
//ENDIF
}
//ENDIF
}
//ENDIF
}
//IF ( ABS(FRAC*ND-NINT(FRAC*ND)).GT.0.3) THEN
if (fabs(FRAC*ND-uves_round_double(FRAC*ND)) > 0.3) {
// CALL STTPUT
// + ('Warning: Fraction of year MAY not correspond to ',STAT)
// CALL STTPUT(' integer number of days.',STAT)
uves_msg_warning("Fraction of year MAY not correspond to "
"integer number of days");
// ENDIF
}
// JD = JD+NINT(FRAC*ND)
*JD = *JD+uves_round_double(FRAC*ND);
// ENDIF
}
// RETURN
return;
}
#endif
|