1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/*===========================================================================
Copyright (C) 2001 European Southern Observatory (ESO)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Massachusetss Ave, Cambridge,
MA 02139, USA.
Corresponding concerning ESO-MIDAS should be addressed as follows:
Internet e-mail: midas@eso.org
Postal address: European Southern Observatory
Data Management Division
Karl-Schwarzschild-Strasse 2
D 85748 Garching bei Muenchen
GERMANY
===========================================================================*/
/* Program : prepextract.c */
/* Author : G. Mulas - ITAL_FLAMES Consortium */
/* Date : */
/* */
/* Purpose : Missing */
/* */
/* */
/* Input: see interface */
/* */
/* Output: */
/* */
/* DRS Functions called: */
/* none */
/* */
/* Pseudocode: */
/* Missing */
/* */
/* Version : */
/* Last modification date: 2002/08/05 */
/* Who When Why Where */
/* AMo 02-08-05 Add header header */
/*-------------------------------------------------------------------------*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
/* C functions include files */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* MIDAS include files */
#include <flames_midas_def.h>
#include <flames_allocspectrum.h>
/* FLAMES-UVES include files */
#include <flames_prepextract.h>
#include <flames_quickprepextract.h>
#include <flames_uves.h>
#include <flames_newmatrix.h>
#include <uves_msg.h>
/**
@name prepextract()
@author G. Mulas - ITAL_FLAMES Consortium. Ported to CPL by A. Modigliani
@param ScienceFrame input science frame to be extracted
@param SingleFF input all flat field frame base structure
@param Order input order traces structure
@param normcover array to hold fibre normalization factors
@param orderoffset order offset
@param realfirstorder input first order to be extracted
@param reallastorder input last order to be extracted
@param mask output mask
@ doc
-find the lowest and highest lit fibres in this frame;
-initialises the overall mask to be used for the extraction and,
checks for adequate coverage of each fibre slice, to avoid ill-posed
problems altogether
-clean up the mask first
-we want to use only the pixels which are somewhat covered by some
at least partially good fibre slice; hence initially mark all pixels
to be bad in the overall mask, then clean up the ones for which the
following conditions hold:
1) that pixel is good both in the fibre FF frame(s) and in the Science
frame
2) that pixel belongs at least to one extractible slice with good
enough coverage
-the "out of boundaries" value in the mask is 3, it means that the
pixel is not included in any slice to be extracted
-Then search for good slices:
foreach fibre
if the fibre is illuminated and the slit flat is illuminated
foreach x
if the slice is good
measure the fibre coverage
and check it is more than a minimum threshold
if yes set the pixel as good
if not set it as bad:
either as bad from the fibre FF (2)
or as bad from the science frame (1)
endif
else
set the slice as bad
endif
endfor
endif
endfor
run a second loop over fibres, to make sure to exclude pixels which
are not good in all the slices to be extracted
*/
flames_err prepextract(flames_frame *ScienceFrame, allflats *Shifted_FF,
orderpos *Order, frame_data **normcover,
int32_t orderoffset, int32_t realfirstorder,
int32_t reallastorder, frame_mask **mask)
{
char output[CATREC_LEN+1];
int32_t nm=0, mj=0, k=0, l=0, m=0, n=0;
frame_data ffcoverage=0;
frame_data *fdvecbuf1=0;
frame_mask *fmvecbuf1=0;
frame_mask *fmvecbuf2=0;
frame_mask *fmvecbuf3=0;
frame_mask *fmvecbuf4=0;
int32_t *lvecbuf1=0;
int32_t *lvecbuf2=0;
int32_t kluplimit=0;
int32_t klindex=0;
int32_t iorder=0;
int32_t iframe=0;
int32_t iordernindex=0;
int32_t iordernloffset=0;
int32_t iorder2=0;
int32_t iorder2loffset=0;
int32_t iorder2lindex=0;
int32_t iordernlindex=0;
/* find the lowest and highest lit fibres in this frame; we actually want
fibres to be lit also in the fibre ff frames, or we will be unable to
extract them anyway, but we will check for that later. */
SCTPUT("Searching for lit fibres");
nm=0;
ScienceFrame->num_lit_fibres=0;
for (nm=0;
nm<=(ScienceFrame->maxfibres-1) &&
(ScienceFrame->fibremask[nm]!=TRUE ||
Shifted_FF->fibremask[nm]!=TRUE); nm++);
uves_msg_debug("nm=%d",nm);
if (nm<=(ScienceFrame->maxfibres-1)) {
ScienceFrame->min_lit_fibre = nm;
ScienceFrame->max_lit_fibre = nm;
ScienceFrame->ind_lit_fibres[0] = nm;
ScienceFrame->num_lit_fibres = 1;
for (nm++; nm<=(ScienceFrame->maxfibres-1); nm++) {
uves_msg_debug("Science FibreMask[%d]=%d Sfifted_FF Fibremask[%d]=%d",
nm,ScienceFrame->fibremask[nm],nm,Shifted_FF->fibremask[nm]);
if (ScienceFrame->fibremask[nm] && Shifted_FF->fibremask[nm]) {
ScienceFrame->max_lit_fibre=nm;
ScienceFrame->ind_lit_fibres[ScienceFrame->num_lit_fibres]=nm;
ScienceFrame->num_lit_fibres++;
uves_msg_debug("FibreMask[%d]=%d",nm,ScienceFrame->fibremask[nm]);
}
}
}
else {
/* no fibres lit both in the Science Frame and in the FF frames,
bail out */
SCTPUT("No extractable fibres in this frame");
return flames_midas_fail();
}
sprintf(output,"min = %d ; max = %d ; num = %d",
ScienceFrame->min_lit_fibre,
ScienceFrame->max_lit_fibre,
ScienceFrame->num_lit_fibres);
SCTPUT(output);
memset(output, 0, 70);
/* the following section initialises the overall mask to be used for
the extraction and, in the same loop, it checks for adequate coverage of
each fibre slice, to avoid ill-posed problems altogether */
/* clean up the mask first */
/* I want to use only the pixels which are somewhat covered by some
at least partially good fibre slice; hence initially mark all pixels
to be bad in the overall mask, then clean up the ones for which the
following conditions hold:
1) that pixel is good both in the fibre FF frame(s) and in the Science
frame
2) that pixel belongs at least to one extractible slice with good
enough coverage
*/
/*
sprintf(output,"Initializing the mask");
SCTPUT(output);
*/
/* the "out of boundaries" value in the mask is 3, it means that the
pixel is not included in any slice to be extracted */
kluplimit = (ScienceFrame->subrows*ScienceFrame->subcols)-1;
fmvecbuf1 = mask[0];
fmvecbuf2 = Shifted_FF->goodfibres[0][0];
fmvecbuf3 = ScienceFrame->badpixel[0];
fdvecbuf1 = normcover[0];
lvecbuf1 = Shifted_FF->lowfibrebounds[0][0];
lvecbuf2 = Shifted_FF->highfibrebounds[0][0];
for (klindex=0; klindex<=kluplimit; klindex++) {
fmvecbuf1[klindex] = 3;
}
/* run the first loop over fibres */
for (m=0; m<=(ScienceFrame->num_lit_fibres-1); m++) {
/* run the loop over orders only if appropriate */
n=ScienceFrame->ind_lit_fibres[m];
iframe = Shifted_FF->fibre2frame[n];
fmvecbuf4 = Shifted_FF->flatdata[iframe].badpixel[0];
frame_data* fdvecbuf2 = Shifted_FF->flatdata[iframe].data[0];
if(ScienceFrame->fibremask[n]==TRUE && Shifted_FF->fibremask[n]==TRUE) {
for (mj=realfirstorder; mj<=reallastorder; mj++) {
iorder = mj-Order->firstorder;
iordernindex = (iorder*Shifted_FF->maxfibres)+n;
iordernloffset = iordernindex*ScienceFrame->subcols;
iorder2 = iorder-orderoffset;
iorder2loffset = iorder2*ScienceFrame->subcols;
/* now run the loop over x */
for (l=0; l<=(ScienceFrame->subcols-1); l++) {
iorder2lindex = iorder2loffset+l;
iordernlindex = iordernloffset+l;
/* is this slice any good at all? */
if (fmvecbuf2[iordernlindex]!=BADSLICE) {
/* yes, therefore run the loop over y */
ffcoverage=0;
for (k=lvecbuf1[iordernlindex]; k<=lvecbuf2[iordernlindex]; k++) {
klindex = (k*ScienceFrame->subcols)+l;
/* is this pixel good everywhere? */
if (fmvecbuf3[klindex]==0 && fmvecbuf4[klindex]==0) {
/* add its contribution to the fibre coverage factor */
ffcoverage += fdvecbuf2[klindex];
}
}
/* divide by the normalisation fraction */
ffcoverage /= fdvecbuf1[iorder2lindex];
/* does the fraction of collected light for this fibre exceed the
threshold making it worth extracting? */
if(ffcoverage<Shifted_FF->minfibrefrac) {
/* no, forget it and mark this fact where it belongs */
fmvecbuf2[iordernlindex]=BADSLICE;
}
else {
/* yes, mark good pixels good in the overall mask */
for (k=lvecbuf1[iordernlindex];
k<=lvecbuf2[iordernlindex]; k++) {
klindex = (k*ScienceFrame->subcols)+l;
/* is this pixel good everywhere? */
if (fmvecbuf3[klindex]==0) {
if (fmvecbuf4[klindex]==0) {
/* mark it good */
fmvecbuf1[klindex] = 0;
}
else {
/* mark it bad from the fibre FF */
fmvecbuf1[klindex] = 2;
}
}
else {
/* mark it bad from the ScienceFrame */
fmvecbuf1[klindex] = 1;
}
}
}
}
}
}
}
}
/* run the second loop over fibres, to make sure to exclude pixels which
are not good in all the slices to be extracted */
for (m=0; m<=(ScienceFrame->num_lit_fibres-1); m++) {
/* run the loop over orders only if appropriate */
n=ScienceFrame->ind_lit_fibres[m];
iframe = Shifted_FF->fibre2frame[n];
fmvecbuf4 = Shifted_FF->flatdata[iframe].badpixel[0];
if(ScienceFrame->fibremask[n]==TRUE && Shifted_FF->fibremask[n]==TRUE) {
for (mj=realfirstorder; mj<=reallastorder; mj++) {
iorder = mj-Order->firstorder;
iordernindex = (iorder*Shifted_FF->maxfibres)+n;
iordernloffset = iordernindex*ScienceFrame->subcols;
/* now run the loop over x */
for (l=0; l<=(ScienceFrame->subcols-1); l++) {
iordernlindex = iordernloffset+l;
/* is this slice any good at all? */
if (fmvecbuf2[iordernlindex]!=BADSLICE) {
/* yes, therefore run the loop over y */
for (k=lvecbuf1[iordernlindex]; k<=lvecbuf2[iordernlindex]; k++) {
klindex = (k*ScienceFrame->subcols)+l;
/* is this pixel bad anywhere? */
if (fmvecbuf3[klindex]!=0) {
/* mark it bad from the ScienceFrame */
fmvecbuf1[klindex] = 1;
}
if (fmvecbuf4[klindex]!=0) {
/* mark this pixel as bad in the composite mask */
fmvecbuf1[klindex]=2;
}
}
}
}
}
}
}
alloc_spectrum(ScienceFrame);
sprintf(output,"firstorder (from ScienceFrame) is %d",
ScienceFrame->firstorder);
SCTPUT(output);
memset(output, 0, 70);
sprintf(output,"lastorder (from ScienceFrame) is %d",
ScienceFrame->lastorder);
SCTPUT(output);
memset(output, 0, 70);
return NOERR;
}
|