1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
/* @(#)flames_fitting */
/*===========================================================================
Copyright (C) 2001 European Southern Observatory (ESO)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Massachusetss Ave, Cambridge,
MA 02139, USA.
Corresponding concerning ESO-MIDAS should be addressed as follows:
Internet e-mail: midas@eso.org
Postal address: European Southern Observatory
Data Management Division
Karl-Schwarzschild-Strasse 2
D 85748 Garching bei Muenchen
GERMANY
===========================================================================*/
/*-------------------------------------------------------------------------*/
/**
* @defgroup flames_fitting Follow orders. Fit the x,y pairs as obtained from flames_tracing
*
*/
/*-------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------
Includes
--------------------------------------------------------------------------*/
/**@{*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <flames_fitting.h>
#include <flames_striptblext.h>
#include <flames_getordpos.h>
#include <flames_midas_tblsys.h>
#include <flames_midas_tblerr.h>
#include <flames_midas_tbldef.h>
#include <flames_midas_macrogen.h>
#include <flames_midas_atype.h>
#include <flames_midas_def.h>
#include <flames_uves.h>
#include <flames_newmatrix.h>
#include <flames_mvfit.h>
#include <uves_msg.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
static int
Derivatives(fit_info *loc_fitpar)
{
int32_t mvalue, xvalue, fvalue, count_row, count_col;
double mpower=0;
double xpower=0;
/* Loop over m-values of the polynomial */
/* The "zero" degree parts (interfibre distance) are managed as a
separate variable */
for (count_row = 1; count_row <= loc_fitpar->n_xy; count_row++) {
count_col = 0;
/* treat separately the case xvalue = 0: here mvalue runs on values >0 */
double prevmpower = 1;
for(mvalue = 1; mvalue <= loc_fitpar->mdegree; mvalue++) {
count_col++;
(loc_fitpar->deriv)[count_row][count_col] = mpower =
prevmpower*(double) loc_fitpar->seq_order[count_row][1];
prevmpower = mpower;
}
/* now run the loop for xvalue>0 */
double prevxpower = 1;
for (xvalue=1 ; xvalue <= loc_fitpar->xdegree; xvalue++) {
/* treat separately mvalue=0 */
count_col++;
(loc_fitpar->deriv)[count_row][count_col] = xpower =
prevxpower*(loc_fitpar->f_xvalue)[count_row];
prevxpower = xpower;
for (mvalue=1 ; mvalue <= loc_fitpar->mdegree; mvalue++) {
count_col++;
(loc_fitpar->deriv)[count_row][count_col] =
(loc_fitpar->deriv)[count_row][mvalue]*xpower;
}
}
for (fvalue=1; fvalue<=loc_fitpar->nfibres; fvalue++) {
count_col++;
(loc_fitpar->deriv)[count_row][count_col] =
(fvalue == loc_fitpar->seq_order[count_row][2]) ? 1 : 0;
}
}
return(0);
}
static int dcompare(const double *pos1, const double *pos2)
{
if (*pos1 < *pos2) {
return(-1);
}
else if (*pos1 > *pos2) {
return(1);
}
else {
return(0);
}
}
static int
dcompare_qsort(const void *pos1, const void *pos2)
{
return dcompare((const double *)pos1, (const double *)pos2);
}
/*---------------------------------------------------------------------------
Implementation
---------------------------------------------------------------------------*/
/**
@name flames_checksize()
@short check input frame size descriptors
@author I. Porceddu - ITAL_FLAMES Consortium. Ported to CPL by A. Modigliani
@param HALFIBREWIDTH
@param MAXFIBRES
@param LIMIT
@param NUMBER
@param FIBRENUMBERS
@param FIBRESHIFTS
@param OTAB
@param DEFPOL Degrees of the x,m parameters
@param IN_B
@param REFSTART
@param REFSTEP
@param REFNPIX
@param CHIPCHOICE
@return success or failure code (and the table with fitted order traces)
DRS Functions called:
none
Pseudocode:
check several MIDAS descriptors
@note
*/
int
flames_fitting(
const double *HALFIBREWIDTH,
const int *MAXFIBRES,
const int *LIMIT,
const int *NUMBER,
const int *FIBRENUMBERS,
const double *FIBRESHIFTS,
const char *OTAB,
const int *DEFPOL,
const char *IN_B,
const double *REFSTART,
const double *REFSTEP,
const int *REFNPIX,
const char *CHIPCHOICE)
{
double dbuf=0;
int status=0, selstatus=0;
char dummytab[CATREC_LEN+4];
char inptab[CATREC_LEN+1];
char outptab[CATREC_LEN+1];
char message[CATREC_LEN+15];
char coeffc[21];
int refitted=0;
int cliploop=0;
int maxiters=10;
int i=0;
int j=0;
double kthreshold=2;
double accepted=.9;
int defpol[2]={0,0};
int upointer=0;
int null=0;
int null2=0;
int order_col=0;
int fibre_col=0;
int ordfib_col=0;
char orderfibre[20];
int order=0;
int minorder=0;
int fibre=0;
int xcol=0;
// int ycol=0;
double ycol=0;
int actvals=0;
int x_col=0;
int y_col=0;
int nbcol=0;
int nbrow=0;
/* Table ids' of data table */
int tid=0;
int yfit_col;
int delta_col;
int seq=0;
int dim_pcoeffd=0;
int row=0;
int col=0;
int start_median=0;
int fibreson=0;
double *fibrepos=0;
double mean_par=0;
double topx=0;
double lowx=0;
double xrange=0;
double xrangepower=0;
double xmax=0;
double xmin=0;
double **pcoeffd=0;
double yvalue=0;
double *compu_y=0;
double *delta_y=0;
double start[2]={0,0};
double step[2]={0,0};
char form[CATREC_LEN+1];
int unit=0;
int maxfibres=0;
int nflats=0;
double halfibrewidth=0;
int npix[2]={0,0};
int orderlim[2]={0,0};
int coeffi[7]={0,0,0,0,0,0,0};
float coeffr[5]={0,0,0,0,0};
char chipchoice=0;
int *fibremask=0;
int *fibrenumbers=0;
char trouble=0;
int ifibre=0;
char output[200];
double *realfibrepos=0;
int firstfibre=0;
int lastfibre=0;
double previousfibrepos=0;
int previousfibre=0;
double *fibreshifts=0;
double *ordershifts=0;
int medshiftindex=0;
double medshift=0;
fit_info *fitpar=0, *fitparsel1=0, *fitparsel2=0, *fitparsel3=0;
orderpos *orderstruct=0;
orderstruct = cpl_calloc(1, sizeof(orderpos));
fitpar = cpl_calloc(1, sizeof(fit_info));
fitparsel1 = cpl_calloc(1, sizeof(fit_info));
fitparsel2 = cpl_calloc(1, sizeof(fit_info));
memset(dummytab, 0, CATREC_LEN+4);
memset(inptab, 0, CATREC_LEN+1);
memset(outptab, 0, CATREC_LEN+1);
memset(message, 0, CATREC_LEN+15);
memset(form, 0, CATREC_LEN+1);
memset(output, 0, 200);
/* === interface to MIDAS =============================================== */
/*Let's initialize the MIDAS environment */
SCSPRO("flames_fitting");
/* keyword HALFIBREWIDTH stores the half fibre width */
SCKRDD(HALFIBREWIDTH, 1, 1, &actvals, &halfibrewidth, &upointer, &null);
if (halfibrewidth <= 0) {
SCTPUT("Error: HALFIBREWIDTH must be > 0!");
return flames_midas_fail();
}
/* keyword MAXFIBRES stores the maximum number of fibres */
SCKRDI(MAXFIBRES, 1, 1, &actvals, &maxfibres, &upointer, &null);
if (maxfibres <= 0) {
SCTPUT("Error: MAXFIBRES must be > 0!");
return flames_midas_fail();
}
/* keyword limit stores the number of frames + 2 */
/* jmlarsen: Changed limit to uppercase */
SCKRDI(LIMIT, 1, 1, &actvals, &nflats, &upointer, &null);
nflats -= 2;
/* Reading NUMBER keyword (no. of detected fibers) */
SCKRDI(NUMBER, 1, 1,&actvals, &fibreson, &upointer,&null);
fibrenumbers = ivector(0, (nflats*maxfibres)-1);
/* keyword FIBRENUMBERS contains the assignments between traces and fibres */
SCKRDI(FIBRENUMBERS, 1, nflats*maxfibres, &actvals,
fibrenumbers, &upointer, &null);
fibreshifts = dvector(0, (nflats*maxfibres)-1);
/* keyword FIBRESHIFTS contains the y shifts measured between the orders
in the primeval guess order table used to get here and the positions
of fibres as measured here */
SCKRDD(FIBRESHIFTS, 1, nflats*maxfibres, &actvals,
fibreshifts, &upointer, &null);
/* initialise the fibremask, first clear it... */
fibremask = ivector(0,(int32_t)maxfibres-1);
for (i=0; i<=maxfibres-1; i++) {
fibremask[i] = FALSE;
}
/* ... then match fibres which were found with the appropriate numbers,
making sure that no fibre is repeated in more than one frame */
trouble = FALSE;
for (i=0; i<=fibreson-1; i++) {
ifibre = fibrenumbers[i]-1;
if (fibremask[ifibre] == TRUE) {
/* trouble here: this fibre was assigned already! */
sprintf(output, "Error: fibre %d is marked lit in more than one frame!",
ifibre+1);
trouble = TRUE;
}
else fibremask[ifibre] = TRUE;
}
if (trouble==TRUE) {
/* complain, clean up and exit with an error */
SCTPUT(output);
SCTPUT("Each fibre to be found and subsequently processed");
SCTPUT("must be present in one and one only fibre/order");
SCTPUT("positioning frame. Either (some of) the FIBREMASK(s)");
SCTPUT("was set incorrectly or a fibre is indeed present in more");
SCTPUT("than one frame. Please correct this problem and try again");
free_ivector(fibremask, 0, maxfibres-1);
free_ivector(fibrenumbers, 0, (nflats*maxfibres)-1);
free_dvector(fibreshifts, 0, (nflats*maxfibres)-1);
free(orderstruct);
free(fitpar);
free(fitparsel1);
free(fitparsel2);
return MAREMMA;
}
/* The OTAB keyword refers to the table containing the ORDER, FIBRE
X and Y values as computed from flames_tracing module */
// SCKGETC(OTAB,1,60,&actvals,dummytab);
// if (striptblext(dummytab, inptab) != NOERR) {
// SCTPUT("Error stripping extension from input order table file name");
// return flames_midas_fail();
// }
//jmlarsen: just do like this, we should use full filenames
SCKGETC(OTAB,1,60,&actvals,inptab);
/* Let's open the order table file (output table) */
TCTOPN(inptab,F_IO_MODE,&tid);
uves_msg_debug("input table:%s dummy tab: %s",inptab,dummytab);
/* We read the parameters fully describing the inptab table */
TCIGET (tid, &nbcol, &nbrow);
/* We allocate the memory for the array which will host the order sequence */
fitpar->seq_order = imatrix(1,(int32_t)nbrow,1,3);
fitparsel1->seq_order = imatrix(1,(int32_t)nbrow,1,3);
fitparsel2->seq_order = imatrix(1,(int32_t)nbrow,1,3);
/* The DEFPOL descriptor does contain the actual value for the x and
m degree values */
SCKRDI(DEFPOL,1,2,&actvals,defpol,&upointer,&null);
/* Filling up the x- and m-degree variables with the actual values */
fitpar->xdegree = defpol[0];
fitpar->mdegree = defpol[1];
fitparsel1->xdegree = defpol[0];
fitparsel1->mdegree = defpol[1];
fitparsel2->xdegree = defpol[0];
fitparsel2->mdegree = defpol[1];
orderstruct->mdegree = defpol[1];
orderstruct->xdegree = defpol[0];
/* The IN_B keyword refers to the table middummr, which contains
ORDER, FIBRE, X and Y values as computed from flames_tracing module */
SCKGETC(IN_B,1,60,&actvals,dummytab);
if (striptblext(dummytab, outptab) != NOERR) {
SCTPUT("Error stripping extension from input order table file name");
return flames_midas_fail();
}
fitpar->nfibres = fibreson;
fitparsel1->nfibres = fibreson;
fitparsel2->nfibres = fibreson;
/* We allocate the memory for the array which will host the derivatives */
fitpar->deriv = dmatrix(1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1)+fibreson-1));
fitparsel1->deriv = dmatrix(1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1)+
fibreson-1));
fitparsel2->deriv = dmatrix(1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1)+
fibreson-1));
/* We allocate the memory for the array which will host coeffd data */
pcoeffd = dmatrix(0,fitpar->mdegree,0,fitpar->xdegree);
for (i=0; i<=(fitpar->mdegree+1)*(fitpar->xdegree+1)-1; i++)
*(pcoeffd[0]+i) = 0;
/* We allocate the memory for the array which will host fibers'
shifts data */
fibrepos = dvector(0,(int32_t)maxfibres-1);
for (i=0; i<=fibreson-1; i++) fibrepos[i] = 0;
/* We allocate the memory for the vector which will host the y data to
be fitted */
fitpar->f_yvalue = dvector(1,(int32_t)nbrow);
fitparsel1->f_yvalue = dvector(1,(int32_t)nbrow);
fitparsel2->f_yvalue = dvector(1,(int32_t)nbrow);
/* We allocate the memory for the vector which will host the x data to
be fitted */
fitpar->f_xvalue = dvector(1,(int32_t)nbrow);
fitparsel1->f_xvalue = dvector(1,(int32_t)nbrow);
fitparsel2->f_xvalue = dvector(1,(int32_t)nbrow);
/* We allocate the memory for the vector which will host the variance
for y data */
fitpar->f_sigma = dvector(1,(int32_t)nbrow);
fitparsel1->f_sigma = dvector(1,(int32_t)nbrow);
fitparsel2->f_sigma = dvector(1,(int32_t)nbrow);
/* Further filling the structure fitpar with number of parameters to be
fitted ....*/
fitpar->n_par = ((defpol[1]+1)*(defpol[0]+1)+fibreson - 1);
fitparsel1->n_par = ((defpol[1]+1)*(defpol[0]+1)+fibreson - 1);
fitparsel2->n_par = ((defpol[1]+1)*(defpol[0]+1)+fibreson - 1);
/* We allocate the memory for the vector which will host the fitted
parameters */
fitpar->par = dvector(1,fitpar->n_par);
fitparsel1->par = dvector(1,fitpar->n_par);
fitparsel2->par = dvector(1,fitpar->n_par);
/* ..... and number of points (equations) to be used */
fitpar->n_xy = (int32_t) nbrow;
fitparsel1->n_xy = 0;
fitparsel2->n_xy = 0;
for (i=1; i<=nbrow; i++) {
for (j=1; j<=3; j++) {
fitpar->seq_order[i][j] = 0;
fitparsel1->seq_order[i][j] = 0;
fitparsel2->seq_order[i][j] = 0;
}
for (j=1; j<=((defpol[1]+1)*(defpol[0]+1) + fibreson-1); j++){
fitpar->deriv[i][j] = 0;
fitparsel1->deriv[i][j] = 0;
fitparsel2->deriv[i][j] = 0;
}
fitpar->f_yvalue[i] = 0;
fitparsel1->f_yvalue[i] = 0;
fitparsel2->f_yvalue[i] = 0;
fitpar->f_xvalue[i] = 0;
fitparsel1->f_xvalue[i] = 0;
fitparsel2->f_xvalue[i] = 0;
fitpar->f_sigma[i] = 0;
fitparsel1->f_sigma[i] = 0;
fitparsel2->f_sigma[i] = 0;
}
for (i=0; i<=fitpar->n_par; i++){
fitpar->par[i] = 0;
fitparsel1->par[i] = 0;
fitparsel2->par[i] = 0;
}
/* We allocate the memory for the vector which will host the y data to
be fitted */
compu_y = dvector(0,(int32_t)nbrow-1);
delta_y = dvector(0,(int32_t)nbrow-1);
for (i=0; i<=nbrow-1; i++) {
compu_y[i] = 0;
delta_y[i] = 0;
}
/* Matching the name of the column with its number */
TCCSER (tid, "ORDER", &order_col);
TCCSER (tid, "X", &x_col);
TCCSER (tid, "Y", &y_col);
TCCSER (tid, "YFIT", &yfit_col);
TCCSER (tid, "RESIDUAL", &delta_col);
TCCSER (tid, "FIBRE", &fibre_col);
TCCSER (tid, "ORDERFIB", ªib_col);
null=1;
for (row=1; (row<=nbrow) && (null==1); row++)
TCERDI (tid, row, order_col, &order, &null);
if (null==0) {
minorder=order;
uves_msg_debug("order=%d min=%d\n",order,minorder);
for (row++; row<=nbrow; row++) {
TCERDI (tid, row, order_col, &order, &null);
if (minorder>order) minorder=order;
}
minorder--;
uves_msg_debug("order=%d min=%d\n",order,minorder);
}
else minorder=0;
SCDWRI(tid, "TAB_IN_OUT_OSHIFT", &minorder, 1, 1, &null);
for (row=1; row<=nbrow; row++) {
/* read all values in fitpar, only selected ones in fitparsel1 */
TCSGET (tid, row, &selstatus);
TCERDI (tid, row, fibre_col, &fibre, &null);
TCERDI (tid, row, order_col, &order, &null2);
if ((null==0) && (null2==0)) {
order -= minorder;
TCEWRI(tid, row, order_col, &order);
memset(orderfibre, 0, 20);
sprintf(orderfibre, "%d,%d",order,fibrenumbers[fibre-1]);
TCEWRC (tid, row, ordfib_col, orderfibre);
}
//jmlarsen: Hard to understand how this could ever work in the MIDAS pipeline
// 'Y' contains floating point values, therefore should not be truncated.
// To avoid this read as floating point value, not integer.
TCERDI (tid, row, x_col, &xcol, &null);
// TCERDI (tid, row, y_col, &ycol, &null);
TCERDD (tid, row, y_col, &ycol, &null);
fitpar->f_xvalue[row] = (double)xcol; /* x value */
// fitpar->f_yvalue[row] = (double)ycol; /* y value */
fitpar->f_yvalue[row] = ycol;
fitpar->seq_order[row][1] = order; /* associated order to x and y values */
fitpar->seq_order[row][2] = fibre; /* associated fibre to x and y values */
fitpar->seq_order[row][3] = row; /* associated row to x and y values */
fitpar->f_sigma[row] = 1.;
if (selstatus == TRUE) {
fitparsel1->n_xy++;
fitparsel1->f_xvalue[fitparsel1->n_xy] = fitpar->f_xvalue[row];
/* x value */
fitparsel1->f_yvalue[fitparsel1->n_xy] = fitpar->f_yvalue[row];
/* y value */
fitparsel1->seq_order[fitparsel1->n_xy][1] = order;
/* associated order
to x and y values */
fitparsel1->seq_order[fitparsel1->n_xy][2] = fibre;
/* associated fibre
to x and y values */
fitparsel1->seq_order[fitparsel1->n_xy][3] = row;
/* associated row to x
and y values */
fitparsel1->f_sigma[fitparsel1->n_xy] = 1.;
}
}
/* make sure we found some selected rows */
if (fitparsel1->n_xy == 0) {
sprintf(message, "Error: no selected entries in the %s table", inptab);
SCTPUT(message);
/* deallocate allocated memory here (TODO), then return an error*/
return(MAREMMA);
}
/* Normalize the x-s vector BEGIN */
xmax = xmin = fitparsel1->f_xvalue[1];
for(seq=2; seq <= fitparsel1->n_xy; seq++) {
if(fitparsel1->f_xvalue[seq] > xmax) xmax = fitparsel1->f_xvalue[seq];
if(fitparsel1->f_xvalue[seq] < xmin) xmin = fitparsel1->f_xvalue[seq];
}
for (seq = 1; seq <= fitparsel1->n_xy; seq++) {
(fitparsel1->f_xvalue)[seq] = (fitparsel1->f_xvalue)[seq]/ (xmax-xmin);
}
topx = xmax;
lowx = xmin;
/* Normalize the x-s vector END */
/* Derivatives are computed here */
if ((status=Derivatives(fitparsel1)) != NOERR) return(status);
/* Actual fitting is done here */
if ((status=mvfit(fitparsel1)) != NOERR) return(status);
/* */
/* Parameters are now written into FLAMESTABLE table's descriptors.
We have been also back scaling the x values by using xmax */
/* Computing the median value from the fibres constant values */
start_median = (defpol[1]+1)*(defpol[0]+1) ;
xmax = xmin = fitparsel1->par[start_median];
for (row = start_median; row <= start_median + fibreson-1; row++) {
if(fitparsel1->par[row] > xmax) xmax=fitparsel1->par[row];
if(fitparsel1->par[row] < xmin) xmin=fitparsel1->par[row];
}
mean_par = (xmax + xmin)/2;
/* Filling the pcoeffd array */
pcoeffd[0][0] = mean_par;
seq=0;
for (col=1; col <= fitparsel1->mdegree; col++) {
seq++;
pcoeffd[col][0] = fitparsel1->par[seq];
}
xrange = topx-lowx;
xrangepower = 1;
for (row=1; row <= fitparsel1->xdegree; row++) {
xrangepower *= xrange;
for (col=0; col <= fitparsel1->mdegree; col++) {
seq++;
/*pcoeffd[col][row] = fitpar->par[seq];*/
pcoeffd[col][row] = fitparsel1->par[seq]/xrangepower;
}
}
for(row = 0; row <= fibreson-1; row++) {
seq++;
fibrepos[row] = fitparsel1->par[seq] - pcoeffd[0][0];
uves_msg_debug("Fibre %d position: %f",
row, fibrepos[row]);
}
orderstruct->orderpol = pcoeffd;
/* compute interpolated positions for all x's (selected and unselected) */
for ( row=1; row <= nbrow; row++) {
get_ordpos(orderstruct,
(double)fitpar->seq_order[row][1],
(double)fitpar->f_xvalue[row],&yvalue);
compu_y[row-1] = yvalue+fibrepos[fitpar->seq_order[row][2]-1];
delta_y[row-1] = fitpar->f_yvalue[row]-compu_y[row-1];
}
/* Here starts the sigma-clipping loop */
refitted = TRUE;
for (cliploop=1; (cliploop<=maxiters)&&(refitted==TRUE); cliploop++) {
int oldorder = fitparsel1->seq_order[1][1];
int oldfibre = fitparsel1->seq_order[1][2];
int oldfibreend2 = fitparsel2->n_xy = 0;
int oldfibrestart1 = 1;
selstatus = FALSE;
/* run over the previously selected values */
for (row=1; row<=fitparsel1->n_xy; row++) {
if (fitparsel1->seq_order[row][1] != oldorder ||
fitparsel1->seq_order[row][2] != oldfibre) {
/* the fibre/order changed, check if the old one is to be wholly
discarded */
/* are there enough pixels left to save the fibre/order? */
if (fitparsel2->n_xy - oldfibreend2 <
(int) (ceil (accepted*(double) (row-oldfibrestart1)))) {
/* no, not enough, discard the fibre/order */
for (i=oldfibrestart1; i<=row-1; i++) {
/* deselect the whole fibre/order in the table */
TCSPUT(tid, fitparsel1->seq_order[i][3], &selstatus);
}
/* take away the fibre/order from the new selection */
fitparsel2->n_xy = oldfibreend2;
}
else {
oldfibreend2 = fitparsel2->n_xy;
}
oldfibrestart1 = row;
oldorder = fitparsel1->seq_order[row][1];
oldfibre = fitparsel1->seq_order[row][2];
}
/* is this pixel good? */
if (fabs(delta_y[fitparsel1->seq_order[row][3]]) < kthreshold) {
/* copy this pixel and all associated data to fitparsel2 */
fitparsel2->n_xy++;
fitparsel2->f_yvalue[fitparsel2->n_xy] = fitparsel1->f_yvalue[row];
fitparsel2->f_xvalue[fitparsel2->n_xy] = fitparsel1->f_xvalue[row];
fitparsel2->f_sigma[fitparsel2->n_xy] = fitparsel1->f_sigma[row];
for (i=1; i<=fitparsel1->n_par; i++) {
fitparsel2->deriv[fitparsel2->n_xy][i] = fitparsel1->deriv[row][i];
}
for (i=1; i<=3; i++) {
fitparsel2->seq_order[fitparsel2->n_xy][i] =
fitparsel1->seq_order[row][i];
}
}
}
/* check if I have to discard last fibre/order */
if (fitparsel2->n_xy - oldfibreend2 <
(int) (ceil (0.8 * (double) (fitparsel1->n_xy+1-oldfibrestart1)))) {
/* no, not enough, discard the fibre/order */
for (i=oldfibrestart1; i<=fitparsel1->n_xy; i++) {
/* deselect the whole fibre/order in the table */
TCSPUT(tid, fitparsel1->seq_order[i][3], &selstatus);
}
/* take away the fibre/order from the new selection */
fitparsel2->n_xy = oldfibreend2;
}
/* ok, sigma clipping complete, do I need to redo the fit? */
if (fitparsel2->n_xy < fitparsel1->n_xy) {
/* yes, I do, swap fitparsel2 and fitparsel1 */
fitparsel3 = fitparsel1;
fitparsel1 = fitparsel2;
fitparsel2 = fitparsel3;
/* redo the fit */
if ((status=mvfit(fitparsel1)) != NOERR) return(status);
/* Computing the median value from the fibres constant values */
xmax = xmin = fitparsel1->par[start_median];
for (row = start_median; row <= start_median + fibreson-1; row++) {
if(fitparsel1->par[row] > xmax) xmax=fitparsel1->par[row];
if(fitparsel1->par[row] < xmin) xmin=fitparsel1->par[row];
}
mean_par = (xmax + xmin)/2;
/* Filling the pcoeffd array */
pcoeffd[0][0] = mean_par;
seq=0;
for (col=1; col <= fitparsel1->mdegree; col++) {
seq++;
pcoeffd[col][0] = fitparsel1->par[seq];
}
xrangepower=1;
for ( row=1; row <= fitparsel1->xdegree; row++) {
xrangepower *= xrange;
for (col=0; col <= fitparsel1->mdegree; col++) {
seq++;
pcoeffd[col][row] = fitparsel1->par[seq]/xrangepower;
}
}
for( row = 0; row <= fibreson-1; row++ ) {
seq++;
fibrepos[row] = fitparsel1->par[seq] - pcoeffd[0][0];
uves_msg_debug("Clipping loop %d: Fibre %d position: %f",
cliploop, row, fibrepos[row]);
}
/* compute interpolated positions for all x's
(selected and unselected) */
for ( row=1; row <= nbrow; row++) {
get_ordpos(orderstruct,
(double)fitpar->seq_order[row][1],
(double)fitpar->f_xvalue[row],&yvalue);
compu_y[row-1] = yvalue+fibrepos[fitpar->seq_order[row][2]-1];
delta_y[row-1] = fitpar->f_yvalue[row]-compu_y[row-1];
}
/* mark refitted as TRUE, so that it will retry clipping at next run */
refitted = TRUE;
}
else {
/* mark refitted as FALSE, the fit converged */
refitted = FALSE;
}
} /* for cliploop */
/* find first and last order on the table */
orderlim[0] = orderlim[1] = fitpar->seq_order[1][1];
for (row=1; row <= nbrow; row++) {
if (fitpar->seq_order[row][1] < orderlim[0]) {
orderlim[0] = fitpar->seq_order[row][1];
}
if (fitpar->seq_order[row][1] > orderlim[1]) {
orderlim[1] = fitpar->seq_order[row][1];
}
}
//jmlarsen: not used
//nbord = (int)(orderlim[1]-orderlim[0]+1);
//SCKWRI(ECHORD, &nbord, 1, 1, &null);
/* Writing table values for COEFFI and COEFFD descriptors */
memset(coeffc, 0, 21);
strncpy(coeffc, inptab, 16);
strcat(coeffc,"MULT");
SCDWRC(tid, "COEFFC", 1, coeffc, 1, 20, &null);
coeffi[0] = (int)fitparsel1->n_xy;
coeffi[1] = 2;
coeffi[2] = (int)y_col;
/* coeffi[3] and coeffi[4] are expected by MIDAS to contain the columns
of the two independent variables of the fit; in this case the
independent variables are actually three, therefore we are slightly
cheating here, but it is irrelevant anyway */
coeffi[3] = (int)x_col;
coeffi[4] = (int)order_col;
coeffi[5] = (int)fitpar->xdegree;
coeffi[6] = (int)fitpar->mdegree;
SCDWRI(tid, "COEFFI", coeffi, 1, 7, &null);
coeffr[0] = (float)lowx;
coeffr[1] = (float)topx;
coeffr[2] = (float)orderlim[0];
coeffr[3] = (float)orderlim[1];
coeffr[4] = 0;
SCDWRR(tid, "COEFFR", coeffr, 1, 5, &null);
dim_pcoeffd = (fitpar->mdegree+1)*(fitpar->xdegree+1);
SCDWRD(tid, "COEFFD", pcoeffd[0],1, dim_pcoeffd,&null);
/* compute order shift from fibre shifts */
ordershifts = dvector(0, (nflats*maxfibres)-1);
for (i=0; i<=fibreson-1; i++) ordershifts[i] = fibreshifts[i]-fibrepos[i];
/* now find the median of the order shifts */
qsort(ordershifts, (size_t) fibreson, sizeof(double), dcompare_qsort);
/* now that the pixels are sorted, pick the median */
if (2*(fibreson/2) != fibreson) {
/* fibreson is odd, just pick the right index */
medshiftindex = (fibreson-1)/2;
medshift = ordershifts[medshiftindex];
}
else {
/* fibreson is even, compute the average of the two
median values */
medshiftindex = fibreson/2;
medshift = (ordershifts[medshiftindex-1]+ordershifts[medshiftindex])/2;
}
free_dvector(ordershifts, 0, (nflats*maxfibres)-1);
/* write the value we found to the TAB_IN_OUT_YSHIFT descriptor */
SCDWRD(tid, "TAB_IN_OUT_YSHIFT", &medshift, 1, 1, &null);
/* put fibrepos in proper order, according to provided fibremasks */
realfibrepos = dvector(0,maxfibres-1);
for (i=0; i<=maxfibres-1; i++) realfibrepos[i] = 0;
firstfibre = lastfibre = fibrenumbers[0]-1;
for (i=0; i<=fibreson-1; i++) {
ifibre = fibrenumbers[i]-1;
realfibrepos[ifibre] = fibrepos[i];
if (ifibre<firstfibre) firstfibre=ifibre;
if (ifibre>lastfibre) lastfibre=ifibre;
}
/* now check that they are indeed ordered (they ought to) */
previousfibrepos = realfibrepos[firstfibre];
previousfibre = firstfibre;
for (i=firstfibre+1; i<=lastfibre; i++) {
if (fibremask[i] == TRUE) {
if (realfibrepos[i]>previousfibrepos){
previousfibrepos = realfibrepos[i];
previousfibre = i;
}
else {
sprintf(output, "Error: fibre %d was found at position %g, \n \
while fibre %d was found at position %g", previousfibre, previousfibrepos,
i, realfibrepos[i]);
SCTPUT(output);
SCTPUT("To produce this outcome, either some FIBREMASK was incorrect");
SCTPUT("or some major instrument setup change occurred (earthquake?)");
SCTPUT("or there is a software problem. Check out the first two");
SCTPUT("possibilities first.");
SCTPUT("AMO: 220602 Skipped the MAREMMA section");
/*
free_dvector(fitpar->f_xvalue,1,(int32_t)nbrow);
free_dvector(fitpar->f_yvalue,1,(int32_t)nbrow);
free_dvector(fitpar->f_sigma,1,(int32_t)nbrow);
free_dvector(fitpar->par, 1, fitpar->n_par);
free_imatrix(fitpar->seq_order,1,(int32_t)nbrow,1,3);
free_dmatrix(fitpar->deriv,1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1) + fibreson-1));
free_dvector(fitparsel1->f_xvalue,1,(int32_t)nbrow);
free_dvector(fitparsel1->f_yvalue,1,(int32_t)nbrow);
free_dvector(fitparsel1->f_sigma,1,(int32_t)nbrow);
free_dvector(fitparsel1->par, 1, fitpar->n_par);
free_imatrix(fitparsel1->seq_order,1,(int32_t)nbrow,1,3);
free_dmatrix(fitparsel1->deriv,1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1) + fibreson-1));
free_dvector(fitparsel2->f_xvalue,1,(int32_t)nbrow);
free_dvector(fitparsel2->f_yvalue,1,(int32_t)nbrow);
free_dvector(fitparsel2->f_sigma,1,(int32_t)nbrow);
free_dvector(fitparsel2->par, 1, fitpar->n_par);
free_imatrix(fitparsel2->seq_order,1,(int32_t)nbrow,1,3);
free_dmatrix(fitparsel2->deriv,1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1) + fibreson-1));
free_dvector(fibrepos, 0, maxfibres-1);
free_dvector(realfibrepos, 0, maxfibres-1);
free_ivector(fibrenumbers, 0, (nflats*maxfibres)-1);
free_dvector(fibreshifts, 0, (nflats*maxfibres)-1);
free_dvector(compu_y, 0,(int32_t) nbrow-1);
free_dvector(delta_y, 0,(int32_t) nbrow-1);
free_dmatrix(orderstruct->orderpol, 0, fitpar->mdegree,
0, fitpar->xdegree);
free(orderstruct);
free(fitpar);
free(fitparsel1);
free(fitparsel2);
return MAREMMA;
*/
}
}
}
/* update fibre numbers in the table with their reordered numbers */
for (row=1; row<=nbrow; row++) {
TCERDI (tid, row, fibre_col, &fibre, &null);
if (null==0) {
fibre = fibrenumbers[fibre-1];
TCEWRI(tid, row, fibre_col, &fibre);
}
}
/* Writing table values for FIBREPOS descriptor */
SCDWRD(tid, "FIBREPOS", realfibrepos,1, maxfibres, &null);
/* write the fibremask */
SCDWRI(tid, "FIBREMASK", fibremask, 1, maxfibres, &null);
free_ivector(fibremask, 0, maxfibres-1);
/* some more useful information to be stored as descriptors */
SCDWRI(tid, "MAXFIBRES", &maxfibres, 1, 1, &null);
SCDWRI(tid, "FIBRESON", &fibreson, 1, 1, &null);
SCDWRD(tid, "HALFIBREWIDTH", &halfibrewidth, 1, 1, &null);
SCDWRI(tid, "ORDERLIM", orderlim, 1, 2, &null);
SCDWRC(tid, "CORRECTED", 1, "f", 1, 1, &null);
/* create some descriptors which will be initialised in later steps of
the DRS, right now they get dummy values */
dbuf=0;
SCDWRD(tid, "YCORRECTION", &dbuf, 1, 1, &null);
SCDWRD(tid, "GAUSSFIBRESIGMA", &dbuf, 1, 1, &null);
SCDWRD(tid, "GAUSSHALFWIDTH", &dbuf, 1, 1, &null);
for (i=0; i<=(maxfibres-1); i++) fibrepos[i]=0;
SCDWRD(tid, "GAUSSSELFSHIFT", fibrepos, 1, maxfibres, &null);
SCKRDD(REFSTART, 1, 2, &actvals, start, &unit, &null);
SCDWRD(tid, "REFSTART", start, 1, 2, &null);
SCKRDD(REFSTEP, 1, 2, &actvals, step, &unit, &null);
SCDWRD(tid, "REFSTEP", step, 1, 2, &null);
SCKRDI(REFNPIX, 1, 2, &actvals, npix, &unit, &null);
SCDWRI(tid, "REFNPIX", npix, 1, 2, &null);
SCKRDC(CHIPCHOICE, 1, 1, 1, &actvals, &chipchoice, &unit, &null);
SCDWRC(tid, "CHIPCHOICE", 1, &chipchoice, 1, 1, &null);
npix[0]=0;
SCDWRI(tid, "NAXIS", npix, 1, 1, &null);
/* Writing table values for traced y values */
for (row =1; row <= nbrow; row++) {
TCEWRD(tid, row, yfit_col, &compu_y[row-1]);
TCEWRD(tid, row, delta_col, &delta_y[row-1]);
}
TCTCLO(tid);
free_dvector(fitpar->f_xvalue,1,(int32_t)nbrow);
free_dvector(fitpar->f_yvalue,1,(int32_t)nbrow);
free_dvector(fitpar->f_sigma,1,(int32_t)nbrow);
free_dvector(fitpar->par, 1, fitpar->n_par);
free_imatrix(fitpar->seq_order,1,(int32_t)nbrow,1,3);
free_dmatrix(fitpar->deriv,1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1) + fibreson-1));
free_dvector(fitparsel1->f_xvalue,1,(int32_t)nbrow);
free_dvector(fitparsel1->f_yvalue,1,(int32_t)nbrow);
free_dvector(fitparsel1->f_sigma,1,(int32_t)nbrow);
free_dvector(fitparsel1->par, 1, fitpar->n_par);
free_imatrix(fitparsel1->seq_order,1,(int32_t)nbrow,1,3);
free_dmatrix(fitparsel1->deriv,1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1) + fibreson-1));
free_dvector(fitparsel2->f_xvalue,1,(int32_t)nbrow);
free_dvector(fitparsel2->f_yvalue,1,(int32_t)nbrow);
free_dvector(fitparsel2->f_sigma,1,(int32_t)nbrow);
free_dvector(fitparsel2->par, 1, fitpar->n_par);
free_imatrix(fitparsel2->seq_order,1,(int32_t)nbrow,1,3);
free_dmatrix(fitparsel2->deriv,1,(int32_t)nbrow,1,
(int32_t)((defpol[1]+1)*(defpol[0]+1) + fibreson-1));
free_dvector(fibrepos, 0,(int32_t)fibreson-1);
free_dvector(realfibrepos, 0, maxfibres-1);
free_ivector(fibrenumbers, 0, (nflats*maxfibres)-1);
free_dvector(fibreshifts, 0, (nflats*maxfibres)-1);
free_dvector(compu_y, 0,(int32_t) nbrow-1);
free_dvector(delta_y, 0,(int32_t) nbrow-1);
free_dmatrix(orderstruct->orderpol, 0,fitpar->mdegree,0,fitpar->xdegree);
free(orderstruct);
free(fitpar);
free(fitparsel1);
free(fitparsel2);
return SCSEPI();
}
/**@}*/
|