1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
|
/* *
* This file is part of the ESO UVES Pipeline *
* Copyright (C) 2004,2005 European Southern Observatory *
* *
* This library is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, 51 Franklin St, Fifth Floor, Boston, MA 02111-1307 USA *
* */
/*
* $Author: amodigli $
* $Date: 2012-05-02 06:11:40 $
* $Revision: 1.38 $
* $Name: not supported by cvs2svn $
* $Log: not supported by cvs2svn $
* Revision 1.37 2012/03/02 16:40:40 amodigli
* fixed warning related to upgrade to CPL6
*
* Revision 1.36 2011/12/08 14:00:02 amodigli
* Fox warnings with CPL6
*
* Revision 1.35 2011/04/14 11:25:40 amodigli
* fixed typo QC key in comments
*
* Revision 1.34 2011/04/11 09:07:41 amodigli
* implemented QC comments corrections from DFO
*
* Revision 1.33 2011/04/11 07:53:12 amodigli
* uniformed QC param key name
*
* Revision 1.32 2011/03/23 12:27:31 amodigli
* changed QC key as user likes
*
* Revision 1.31 2011/03/23 10:08:47 amodigli
* added QC to better characterize wave accuracy
*
* Revision 1.30 2010/09/24 09:32:09 amodigli
* put back QFITS dependency to fix problem spot by NRI on FIBER mode (with MIDAS calibs) data
*
* Revision 1.28 2007/07/23 14:57:30 jmlarsen
* Make workaround work
*
* Revision 1.27 2007/07/23 12:40:37 jmlarsen
* Update to CPL4
*
* Revision 1.26 2007/06/06 08:17:33 amodigli
* replace tab with 4 spaces
*
* Revision 1.25 2007/05/22 11:46:15 jmlarsen
* Removed 1d wavecal mode which was not supported
*
* Revision 1.24 2007/05/16 16:33:42 amodigli
* fixed leak
*
* Revision 1.23 2007/05/10 08:32:48 jmlarsen
* Minor output message change
*
* Revision 1.22 2007/05/07 14:26:44 jmlarsen
* Added QC.NLINSOL parameter
*
* Revision 1.21 2007/05/07 07:13:59 jmlarsen
* Made resolution computation robust against negative dl/dx
*
* Revision 1.20 2007/04/27 07:22:57 jmlarsen
* Implemented possibility to use automatic polynomial degree
*
* Revision 1.19 2007/04/13 07:34:54 jmlarsen
* Removed dead code
*
* Revision 1.18 2007/04/10 07:12:09 jmlarsen
* Changed interface of polynomial_regression_2d()
*
* Revision 1.17 2007/03/15 12:36:44 jmlarsen
* Added experimental ppm code
*
* Revision 1.16 2007/03/05 10:24:14 jmlarsen
* Do kappa-sigma rejection only in second loop
*
* Revision 1.15 2007/02/22 15:37:35 jmlarsen
* Use kappa-sigma clipping when fitting dispersion
*
* Revision 1.14 2007/01/15 08:58:51 jmlarsen
* Added text output
*
* Revision 1.13 2006/11/06 15:19:42 jmlarsen
* Removed unused include directives
*
* Revision 1.12 2006/10/12 11:36:48 jmlarsen
* Reduced max line length
*
* Revision 1.11 2006/10/10 11:20:11 jmlarsen
* Renamed line table columns to match MIDAS
*
* Revision 1.10 2006/08/17 14:11:25 jmlarsen
* Use assure_mem macro to check for memory allocation failure
*
* Revision 1.9 2006/08/17 13:56:53 jmlarsen
* Reduced max line length
*
* Revision 1.8 2006/08/11 14:36:37 jmlarsen
* Added profiling info
*
* Revision 1.7 2006/08/07 11:35:08 jmlarsen
* Removed hardcoded constant
*
* Revision 1.6 2006/07/14 12:52:57 jmlarsen
* Exported/renamed function find_nearest
*
* Revision 1.5 2006/07/14 12:44:26 jmlarsen
* Use less significant digits
*
* Revision 1.4 2006/04/24 09:33:48 jmlarsen
* Shortened max line length
*
* Revision 1.3 2006/03/03 13:54:11 jmlarsen
* Changed syntax of check macro
*
* Revision 1.2 2006/02/15 13:19:15 jmlarsen
* Reduced source code max. line length
*
* Revision 1.1 2006/02/03 07:46:30 jmlarsen
* Moved recipe implementations to ./uves directory
*
* Revision 1.31 2005/12/20 08:11:44 jmlarsen
* Added CVS entry
*
*/
/*----------------------------------------------------------------------------*/
/**
* @addtogroup uves_wavecal
*/
/*----------------------------------------------------------------------------*/
/**@{*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <uves_wavecal_identify.h>
#include <uves_wavecal_utils.h>
#include <uves_utils.h>
#include <uves_utils_wrappers.h>
#include <uves_error.h>
#include <uves_msg.h>
#include <cpl_ppm.h> /* missing from cpl.h */
#include <uves_qclog.h>
#include <cpl.h>
#include <math.h>
#include <float.h>
#define USE_PPM 0
static cpl_error_code verify_calibration(const cpl_table *selected,
const cpl_table *linetable,
double TOLERANCE,
double red_chisq,cpl_table* qclog);
static cpl_error_code compute_lambda(cpl_table *linetable,
const polynomial *dispersion_relation,
const polynomial *dispersion_variance,
bool verbose);
static int identify_lines(cpl_table *linetable,
const cpl_table *line_refer,
double ALPHA);
static polynomial *calibrate_global(const cpl_table *linetable,
cpl_table **selected,
int degree, bool verbose,
bool reject,
double TOLERANCE,
double kappa,
double *red_chisq,
polynomial **dispersion_variance,
double *pixelsize,
double *rms_wlu,
double *rms_pixels);
/*----------------------------------------------------------------------------*/
/**
@brief Obtain final dispersion relation
@param linetable The line table containing the already detected
emission lines
@param line_refer The wavelength catalogue
@param guess_dispersion The initial dispersion relation in the form
@em lambda * @em m = @em f(@em x, @em m)
@param DEGREE Degree of both independent variables of the
dispersion polynomial.
@param TOLERANCE When making the final fit, lines with residuals
worse than @em TOLERANCE are excluded.
If positive, this tolerance is considered in pixel units,
otherwise in w.l.u.
@param ALPHA Parameter that controls the next-neighbour distance
during line identification. See @c identify_lines()
for details.
@param MAXERROR If the RMS of the fit is larger than this number
(in pixels), the calibration loop terminates with
an error. This is to ensure a graceful exit
(when incorrect identifications are made)
@param kappa used in outlier rejectiong
@return The obtained initial dispersion solution of the form
@em lambda * @em m = @em f(@em x, @em m),
or NULL on error
This function performs a wavelength calibration of the detected lines
listed in the provided @em linetable, starting from the @em guess_dispersion
solution. Results of the calibration are written to the @em linetable.
The function will iteratively identify as many of the detected lines as
possible (using the specified wavelength catalogue, see also
@c identify_lines() ), then update the fit polynomial
(see also @c calibrate_global() ). This loop continues until no new line
identifications can be made. After this first convergence all
identifications are reset (to remove possible false identifications), and
the loop repeats, but this time ignoring lines with residuals worse than
@em TOLERANCE . The final solution is returned.
**/
/*----------------------------------------------------------------------------*/
polynomial *
uves_wavecal_identify(cpl_table *linetable,
const cpl_table *line_refer,
const polynomial *guess_dispersion,
int DEGREE, double TOLERANCE,
double ALPHA, double MAXERROR,
double kappa,
const int trace,const int window,cpl_table* qclog)
{
polynomial *dispersion_relation = NULL; /* Result */
polynomial *dispersion_variance = NULL; /* Variance of result,
written to line table */
int current_id; /* Current and previous number of line identifications */
int previous_id;
int idloop; /* Number of iterations of grand loop */
int n; /* Number of iterations in ID loop */
double pixelsize; /* Average conversion factor between pixels and wlu */
double red_chisq; /* Reduced chi^2 of fit */
cpl_table *selected = NULL; /* Lines used in final fit */
char qc_key[40];
passure( linetable != NULL, " ");
passure( line_refer != NULL, " ");
passure( guess_dispersion != NULL, " ");
assure( 0 < ALPHA && ALPHA <= 1, CPL_ERROR_ILLEGAL_INPUT,
"Illegal alpha = %e", ALPHA);
/* Calculate LambdaC from the initial dispersion relation */
{
cpl_table_new_column(linetable, LINETAB_LAMBDAC , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "dLambdaC" , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, LINETAB_PIXELSIZE , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, LINETAB_RESIDUAL , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "Residual_pix" , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "Lambda_candidate" , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "dLambda_candidate", CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "dLambda_cat_sq" , CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "dLambda_nn_sq" , CPL_TYPE_DOUBLE);
/* Create columns 'Ident' and 'dIdent' (uncertainty) and fill with
invalid (no identification made) */
cpl_table_new_column(linetable, "Ident", CPL_TYPE_DOUBLE);
cpl_table_new_column(linetable, "dIdent",CPL_TYPE_DOUBLE);
cpl_table_set_column_invalid(linetable, "Ident", 0, cpl_table_get_nrow(linetable));
cpl_table_set_column_invalid(linetable, "dIdent",0, cpl_table_get_nrow(linetable));
cpl_table_set_column_unit(linetable,LINETAB_LAMBDAC,"Angstrom" );
cpl_table_set_column_unit(linetable,"dLambdaC","Angstrom" );
cpl_table_set_column_unit(linetable,LINETAB_PIXELSIZE,"Angstrom" );
cpl_table_set_column_unit(linetable,LINETAB_RESIDUAL,"Angstrom" );
cpl_table_set_column_unit(linetable,"Residual_pix","Angstrom" );
cpl_table_set_column_unit(linetable,"Lambda_candidate","Angstrom" );
cpl_table_set_column_unit(linetable,"dLambda_candidate","Angstrom" );
cpl_table_set_column_unit(linetable,"dLambda_cat_sq","Angstrom" );
cpl_table_set_column_unit(linetable,"dLambda_nn_sq","Angstrom" );
cpl_table_set_column_unit(linetable,"Ident","Angstrom" );
cpl_table_set_column_unit(linetable,"dIdent","Angstrom" );
/* Residuals are not calculated because 'Ident' is invalid */
check( compute_lambda(linetable, guess_dispersion, NULL, false),
"Error applying dispersion relation");
}
#if USE_PPM
for (idloop = 2; idloop <= 2; idloop += 1)
#else
for (idloop = 1; idloop <= 2; idloop += 1)
#endif
{
current_id = 0;
n = 0;
/* Iterate until no more identifications can be made */
do {
double rms_wlu;
double rms_pixels;
bool reject = (idloop == 2);
#if USE_PPM
int nident_ppm;
#endif
previous_id = current_id;
n++;
/* Identify lines */
check( current_id = identify_lines(linetable, line_refer, ALPHA),
"Error identifying lines");
#if USE_PPM
/* Try PPM */
check( nident_ppm = uves_wavecal_identify_lines_ppm(linetable, line_refer),
"Error during point pattern matching");
cpl_table_erase_column(linetable, "Ident");
cpl_table_duplicate_column(linetable, "Ident", linetable, "Ident_ppm");
current_id = nident_ppm;
/* FIXME: This only works if 'dIdent' is constant.
We should propagate error bars during ppm matching */
cpl_table_fill_column_window(linetable, "dIdent",
0, cpl_table_get_nrow(linetable),
cpl_table_get_column_mean(linetable, "dIdent"));
#endif
/* Calibrate with
* 1st loop: tolerance=infinity (i.e. all identified lines are considered good).
* 2nd loop: use specified tolerance (ignore outliers)
*/
uves_polynomial_delete(&dispersion_relation);
uves_polynomial_delete(&dispersion_variance);
check( dispersion_relation = calibrate_global(
linetable, NULL,
DEGREE, false,
reject,
TOLERANCE,
kappa,
&red_chisq,
&dispersion_variance,
&pixelsize,
&rms_wlu,
&rms_pixels),
"Could not perform global calibration");
uves_msg_debug("Average pixelsize = %f wlu", pixelsize);
if (idloop == 1)
{
uves_msg("%d identifications made. RMS = %.5f wlu = %.3f "
"pixels (no rejection)",
current_id, rms_wlu, rms_pixels);
}
else
{
uves_msg("%d identifications made. RMS = %.5f wlu = %.3f "
"pixels (%f %s rejection, kappa = %.1f)",
current_id, rms_wlu, rms_pixels,
fabs(TOLERANCE), (TOLERANCE > 0) ? "pixels" : "wlu",
kappa);
}
sprintf(qc_key,"QC TRACE%d WIN%d NLINID%d",trace,window,idloop);
ck0_nomsg(uves_qclog_add_int(qclog,qc_key,current_id,
"ThAr lamp identified lines",
"%d"));
#if USE_PPM
uves_msg("%d identifications from point pattern matching",
nident_ppm);
#endif
assure( rms_pixels < MAXERROR, CPL_ERROR_CONTINUE,
"Wavelength calibration did not converge. "
"After %d iterations the RMS was %f pixels. "
"Try to improve on the initial solution", n, rms_pixels);
/* Apply calibration result */
check( compute_lambda(linetable, dispersion_relation, dispersion_variance,
false),
"Error applying dispersion relation");
}
while (current_id > previous_id) ;
sprintf(qc_key,"QC TRACE%d WIN%d NLINID NITERS",trace,window);
ck0_nomsg(uves_qclog_add_int(qclog,qc_key,idloop+1,
"Number of iterations",
"%d"));
if (idloop == 1)
{
/*
* Remove all identifications and repeat
*/
uves_msg("Identification loop converged. Resetting identifications");
cpl_table_set_column_invalid(linetable, "Ident", 0,
cpl_table_get_nrow(linetable));
}
}
/* Calibrate again with a global polynomial, but this time don't
use lines with residuals worse than TOLERANCE */
uves_polynomial_delete(&dispersion_relation);
uves_polynomial_delete(&dispersion_variance);
uves_free_table(&selected);
check( dispersion_relation = calibrate_global(linetable,
&selected,
DEGREE, true,
true, /* do rejection? */
TOLERANCE,
kappa,
&red_chisq,
&dispersion_variance,
NULL, NULL, NULL),
"Could not perform global calibration");
/* Update the computed wavelengths */
check( compute_lambda(linetable, dispersion_relation, dispersion_variance,
true),
"Error applying dispersion relation");
/* Add columns 'Select' and 'NLinSol' to linetable.
The columns defines which lines were identified,
and which lines were used in the final fit */
{
int i, j;
/* Tables are sorted by Order, X */
cpl_table_new_column(linetable, "NLinSol", CPL_TYPE_INT);
cpl_table_new_column(linetable, "Select", CPL_TYPE_INT);
cpl_table_fill_column_window_int(linetable, "NLinSol",
0, cpl_table_get_nrow(linetable),
0);
cpl_table_fill_column_window_int(linetable, "Select",
0, cpl_table_get_nrow(linetable),
0);
j = 0;
for (i = 0; i < cpl_table_get_nrow(selected); i++) {
int order = cpl_table_get_int(selected, "Order", i, NULL);
double x = cpl_table_get_double(selected, "X", i, NULL);
int order2;
double x2;
/* Find this line in the original linetable */
passure( j < cpl_table_get_nrow(linetable), "%d %" CPL_SIZE_FORMAT "",
j, cpl_table_get_nrow(linetable));
do {
order2 = cpl_table_get_int(linetable, "Order", j, NULL);
x2 = cpl_table_get_double(linetable, "X", j, NULL);
if (cpl_table_is_valid(linetable, "Ident", j))
{
cpl_table_set_int(linetable, "Select", j, 1);
}
j++;
} while (order2 < order || x2 < x - 0.1);
passure( order2 == order && fabs(x2 - x) < 0.1,
"%d %d %g %g", order2, order, x2, x);
cpl_table_set_int(linetable, "NLinSol", j-1, 1);
}
}
/* Display results */
check( verify_calibration(selected, linetable, TOLERANCE, red_chisq,qclog),
"Error verifying calibration");
cleanup:
uves_free_table(&selected);
uves_polynomial_delete(&dispersion_variance);
return dispersion_relation;
}
/*----------------------------------------------------------------------------*/
/**
@brief Report quality of calibration
@param linetable The line table
@param TOLERANCE When reporting the RMS of the fit, exclude
lines with residuals worse than @em TOLERANCE from
the computation. If positive, this tolerance is
considered in pixel units, otherwise in w.l.u.
@param red_chisq Reduced chi^2 of the calibration
@return CPL_ERROR_NONE iff okay
This function reports the RMS of a wavelength calibration, as well as
the percentage of the brightest lines that were identified.
**/
/*----------------------------------------------------------------------------*/
static cpl_error_code
verify_calibration(const cpl_table *selected,
const cpl_table *linetable, double TOLERANCE,
double red_chisq, cpl_table* qclog)
{
cpl_table *brightest = NULL;
double median_intensity;
int ninvalid; /* Number of unidentified lines among the brightest half */
double ratio;
double rms_wlu;
double rms_pixels;
double rms_speed;
char qc_key[40];
{
double mean;
double stdev;
check(( mean = cpl_table_get_column_mean (selected, LINETAB_RESIDUAL),
stdev= cpl_table_get_column_stdev(selected, LINETAB_RESIDUAL),
rms_wlu = sqrt(mean*mean + stdev*stdev),
mean = cpl_table_get_column_mean (selected, "Residual_pix"),
stdev= cpl_table_get_column_stdev(selected, "Residual_pix"),
rms_pixels = sqrt(mean*mean + stdev*stdev)),
"Error reading RMS of fit");
}
rms_speed=rms_wlu * SPEED_OF_LIGHT/
cpl_table_get_column_mean(selected,LINETAB_LAMBDAC);
uves_msg("%" CPL_SIZE_FORMAT " lines accepted", cpl_table_get_nrow(selected));
uves_msg("Average RMS of calibration (tolerance = %.3f %s) = %.5f wlu = %.4f pixels ~ %.1f m/s",
fabs(TOLERANCE),
(TOLERANCE > 0) ? "pixels" : "wlu",
rms_wlu, rms_pixels, rms_speed);
sprintf(qc_key,"QC LINE RESIDRMS WLU");
ck0_nomsg(uves_qclog_add_double(qclog,qc_key,rms_wlu,
"Line ID RMS TRACE0 WIN2 [Angstrom]",
"%f"));
sprintf(qc_key,"QC LINE RESIDRMS PIX");
ck0_nomsg(uves_qclog_add_double(qclog,qc_key,rms_pixels,
"Line ID RMS TRACE0 WIN2 [pix]",
"%f"));
sprintf(qc_key,"QC LINE RESIDRMS SPEED");
ck0_nomsg(uves_qclog_add_double(qclog,qc_key,rms_speed,
"Line ID RMS TRACE0 WIN2 [m/s]",
"%f"));
uves_msg("Reduced chi^2 of calibration = %f", red_chisq);
sprintf(qc_key,"QC LINE IDCHI2");
ck0_nomsg(uves_qclog_add_double(qclog,qc_key,red_chisq,
"Reduced chi^2 of line ID TRACE0 WIN2",
"%f"));
if (red_chisq < .01)
{
uves_msg_warning("Reduced chi^2 of fit is less than 1/100: %f",
red_chisq);
}
if (red_chisq > 100)
{
uves_msg_warning("Reduced chi^2 of fit is greater than 100: %f",
red_chisq);
}
check(( median_intensity = cpl_table_get_column_median(linetable, "Peak"),
brightest = uves_extract_table_rows(linetable, "Peak",
CPL_GREATER_THAN,
median_intensity),
ninvalid = cpl_table_count_invalid(brightest, "Ident")),
"Error counting identifications");
ratio = 1 - ((double) ninvalid)/cpl_table_get_nrow(brightest);
uves_msg("Percentage of identifications among the half brighter lines : %.2f %%",
100*ratio);
sprintf(qc_key,"QC LINE HALFBRIG");
ck0_nomsg(uves_qclog_add_double(qclog,qc_key,100*ratio,
"Half brighter lines frac TRACE0 WIN2",
"%f"));
cleanup:
uves_free_table(&brightest);
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@brief Apply dispersion relation to line table
@param linetable The line table
@param dispersion_relation The dispersion relation
@param dispersion_variance The variance of the dispersion relation
@param verbose print warning if dl/dx is negative?
@return CPL_ERROR_NONE iff okay
This function applies the provided dispersion relation to the line table,
thereby calculating the predicted wavelengths for lines in the spectrum,
the residual of the fit, the local pixelsize in w.l.u., and if
@em dispersion_variance is non-NULL, the uncertainty of the fitted wavelength.
**/
/*----------------------------------------------------------------------------*/
static cpl_error_code
compute_lambda(cpl_table *linetable,
const polynomial *dispersion_relation,
const polynomial *dispersion_variance,
bool verbose)
{
int i;
bool printed_warning = false;
/* Check input */
passure(linetable != NULL, " ");
passure(dispersion_relation != NULL, " ");
/* 'dispersion_variance' may be NULL */
passure( uves_polynomial_get_dimension(dispersion_relation) == 2, "%d",
uves_polynomial_get_dimension(dispersion_relation));
/* Input columns */
passure(cpl_table_has_column(linetable, "X") , " ");
passure(cpl_table_has_column(linetable, "Order") , " ");
passure(cpl_table_has_column(linetable, "Ident") , " ");
/* Output columns */
passure(cpl_table_has_column(linetable, LINETAB_LAMBDAC) , " ");
/* The column 'dLambdaC' is set to invalid if 'dispersion_variance' is NULL */
passure(cpl_table_has_column(linetable, "dLambdaC") , " ");
passure(cpl_table_has_column(linetable, "dIdent") , " ");
passure(cpl_table_has_column(linetable, LINETAB_RESIDUAL), " ");
passure(cpl_table_has_column(linetable, "Residual_pix"), " ");
passure(cpl_table_has_column(linetable, LINETAB_PIXELSIZE) , " ");
/* The linetable is sorted w.r.t. order.
Move to the first order above minorder */
for(i = 0; i < cpl_table_get_nrow(linetable); i++)
{
int order;
double x, dfdx;
double lambdac, dlambdac, pixelsize;
order = cpl_table_get_int(linetable, "Order", i, NULL);
x = cpl_table_get_double(linetable, "X", i, NULL);
/* Evaluate the dispersion relation
m.lambda = f(x,m) (2d global fit) */
lambdac =
uves_polynomial_evaluate_2d(dispersion_relation, x, order) / order;
/* Pixelsize = dl/dx = (df/dx)/m (for fixed m) */
dfdx = uves_polynomial_derivative_2d(dispersion_relation, x, order, 1);
if (dfdx < 0) {
if (!printed_warning && verbose) {
uves_msg_warning("Inferred dispersion (dlambda/dx) is negative at"
"(x, order) = (%f, %d)", x, order);
printed_warning = true; /* To avoid repeating the same warning */
}
else {
uves_msg_debug("Inferred dispersion (dlambda/dx) is negative at "
"(x, order) = (%f, %d)", x, order);
}
}
pixelsize = dfdx / order;
check(( cpl_table_set_double(linetable, LINETAB_LAMBDAC , i, lambdac),
cpl_table_set_double(linetable, LINETAB_PIXELSIZE, i, pixelsize)),
"Error writing table");
if (dispersion_variance != NULL)
{
/* d( lambda (x, order) ) =
d( lambda*m(x, order) ) / m */
dlambdac =
sqrt(uves_polynomial_evaluate_2d(dispersion_variance, x, order))
/ order;
cpl_table_set_double(linetable, "dLambdaC" , i, dlambdac);
}
else
{
/* Only the ratio of a line's "dLambdaC" to other
lines' are used, so set "dLambdaC" to a constant value
when the actual uncertainty is not known
*/
cpl_table_set_double(linetable, "dLambdaC" , i, 1.0);
}
/* If line is identified, calculate residual */
if (cpl_table_is_valid(linetable, "Ident", i))
{
double ident = cpl_table_get_double(linetable, "Ident", i, NULL);
cpl_table_set_double(linetable, LINETAB_RESIDUAL, i,
ident - lambdac);
cpl_table_set_double(linetable, "Residual_pix", i,
(ident - lambdac)/pixelsize);
}
else
{
cpl_table_set_invalid(linetable, LINETAB_RESIDUAL, i);
cpl_table_set_invalid(linetable, "Residual_pix", i);
}
}
/* Sort by 'Order' (ascending), then 'X' (ascending) */
check( uves_sort_table_2(linetable, "Order", "X", false, false),
"Error sorting table");
cleanup:
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@brief Identify lines by comparing to catalogue wavelengths
@param linetable The line table containing the line positions and
predicted wavelengths
@param line_refer The wavelength catalogue
@param ALPHA Parameter < 1 to control distance to nearest neighbour
@return The total number of lines identified (including previous identifications),
or undefined on error.
This function identifies lines in the provided @em linetable by comparing
to the reference table (the wavelength catalogue). The identified
wavelengths are written to the "Ident" column of the line table.
An identification is made iff
- The catalogue wavelength is within two linewidths of the computed
(predicted) wavelength:
| @em lambda_cat - @em lambda_com | < 2 * @em sigma,
where @em sigma is the detected line width,
- The nearest neighbour (in the spectrum and in the catalogue) is farther away
than the candidate catalogue wavelength (after multiplying by the
"safety parameter", @em ALPHA):
| @em lambda_cat - @em lambda_nn| * ALPHA > | @em lambda_cat - @em lambda_com |,
- The nearest neighbour (in the spectrum and in the catalogue) is farther away
than the average tolerance distance, which measures the precision of the identifications:
@em tolerance < ALPHA * | @em lambda_cat - @em lambda_nn| . See code for the exact
definition of the @em tolerance .
The purpose of the first criterion is to make the correct identifications.
The purpose of the latter two criterions is to avoid making incorrect identifications.
If a line was previously identified (implied by a valid @em "Ident"
column value) but now fails to meet the ID criterium, it is not deleted.
**/
/*----------------------------------------------------------------------------*/
static int
identify_lines(cpl_table *linetable, const cpl_table *line_refer, double ALPHA)
{
int number_identifications = 0; /* Result */
int linetable_size;
int linerefer_size;
int row;
int *histogram = NULL;
const double minlog = -5.0; /* Histogram (it's sort of ugly
to hardcode these numbers, but
as long as it works, ...) */
const double maxlog = 15.0;
const int nbins = 400;
double error = 0; /* Dimensionless factor
that controls IDs */
double average_dlambda_com = 0; /* Average of uncertainty of
predicted wavelenghts */
/* Check input */
passure( linetable != NULL, " ");
/* Line table input columns */
passure( cpl_table_has_column(linetable, LINETAB_LAMBDAC ), " "); /* Predicted
wavelength */
passure( cpl_table_has_column(linetable, "dLambdaC" ), " "); /* Predicted wavelength
uncertainty */
passure( cpl_table_has_column(linetable, "X" ), " "); /* Line position, used
only for messaging */
passure( cpl_table_has_column(linetable, "Order" ), " "); /* Absolute order number
of line */
passure( cpl_table_has_column(linetable, "Xwidth" ), " "); /* Line width (sigma) */
passure( cpl_table_has_column(linetable, LINETAB_PIXELSIZE), " "); /* Pixelsize */
/* Line table output columns */
passure( cpl_table_has_column(linetable, "Ident" ), " "); /* Identified catalogue
wavelength */
passure( cpl_table_has_column(linetable, "dIdent" ), " "); /* Uncertainty of IDed
catalogue wavelength */
/* Catalogue */
passure( line_refer != NULL, " ");
passure( cpl_table_has_column(line_refer, "Wave" ), " "); /* Catalogue wavelength */
passure( cpl_table_has_column(line_refer, "dWave"), " "); /* Uncertainty of
catalogue wavelength */
linetable_size = cpl_table_get_nrow(linetable);
linerefer_size = cpl_table_get_nrow(line_refer);
assure(linerefer_size >= 1, CPL_ERROR_ILLEGAL_INPUT, "Empty line reference table");
/* Parameter */
passure( 0 < ALPHA && ALPHA <= 1, "%e", ALPHA);
/* Get average uncertainty of predicted wavelength */
average_dlambda_com = cpl_table_get_column_median(linetable, "dLambdaC");
/* Initialize histogram to zero */
histogram = cpl_calloc(nbins, sizeof(int));
assure_mem( histogram );
/* First: Find distance to closest catalogue match,
distance to nearest neighbour,
and calculate histogram (to get average of distances to nearest neighbour) */
for (row = 0; row < linetable_size; row++) {
double lambda_com; /* Computed (predicted) wavelength */
double line_width; /* Line width (sigma) in wlu */
double line_fwhm; /* Line FWHM in wlu */
int order; /* (Absolute) order of detected wavelength */
double lambda_cat; /* Catalogue wavelength */
double lambda_cat_sigma; /* Catalogue wavelength uncertainty */
double distance_cat_sq; /* Distance to catalogue wavelength (squared) */
double nn_distance_sq; /* Distance to nearest neighbour (squared) */
int row_cat; /* Row number of best matching catalogue wavelength */
/* Read line table */
lambda_com = cpl_table_get_double(linetable, LINETAB_LAMBDAC , row, NULL);
order = cpl_table_get_int (linetable, "Order" , row, NULL);
line_width =
cpl_table_get_double(linetable, "Xwidth" , row, NULL) *
fabs(cpl_table_get_double(linetable, LINETAB_PIXELSIZE , row, NULL));
/* Convert pixel->wlu */
line_fwhm = TWOSQRT2LN2 * line_width;
/* Find closest match in catalogue */
row_cat = uves_wavecal_find_nearest(
line_refer, lambda_com, 0, linerefer_size - 1);
lambda_cat = cpl_table_get_double(line_refer, "Wave", row_cat, NULL);
lambda_cat_sigma = cpl_table_get_double(line_refer, "dWave",row_cat, NULL);
/* Distance to closest match */
distance_cat_sq = (lambda_com - lambda_cat)*(lambda_com - lambda_cat);
/* Determine the distance to the next neighbour
* There are (max) 4 candiates: 2 neigbours in spectrum (i.e. line table)
* and 2 neigbours in line catalogue
*/
{
double lambda_cat_prev, lambda_cat_next;
nn_distance_sq = DBL_MAX;
/* Read previous and next rows of line table */
if (row >= 1)
{
int order_prev = cpl_table_get_int (
linetable, "Order" , row - 1, NULL);
double lambda_com_prev = cpl_table_get_double(
linetable, LINETAB_LAMBDAC, row - 1, NULL);
if (order == order_prev)
{
nn_distance_sq = uves_min_double(nn_distance_sq,
(lambda_com_prev - lambda_com)*
(lambda_com_prev - lambda_com)
);
}
}
if (row <= linetable_size - 2)
{
int order_next = cpl_table_get_int (linetable, "Order",
row + 1, NULL);
double lambda_com_next = cpl_table_get_double(linetable, LINETAB_LAMBDAC,
row + 1, NULL);
if (order == order_next)
{
nn_distance_sq = uves_min_double(nn_distance_sq,
(lambda_com_next - lambda_com)*
(lambda_com_next - lambda_com)
);
}
}
/* Read previous and next rows of catalogue */
if (row_cat >= 1)
{
lambda_cat_prev = cpl_table_get_double(
line_refer, "Wave", row_cat - 1, NULL);
nn_distance_sq = uves_min_double(
nn_distance_sq,
(lambda_cat_prev - lambda_cat)*
(lambda_cat_prev - lambda_cat)
);
}
if (row_cat <= linerefer_size - 2)
{
lambda_cat_next = cpl_table_get_double(
line_refer, "Wave", row_cat + 1, NULL);
nn_distance_sq = uves_min_double(
nn_distance_sq,
(lambda_cat_next - lambda_cat)*
(lambda_cat_next - lambda_cat)
);
}
/* Update distance to nearest neighbour with a
safety margin (determined by parameter ALPHA < 1) */
if (nn_distance_sq < DBL_MAX)
{
nn_distance_sq *= ALPHA*ALPHA;
}
}/* Find next neighbour */
/* Update line table */
cpl_table_set_double(linetable, "Lambda_candidate", row, lambda_cat);
cpl_table_set_double(linetable, "dLambda_candidate",row, lambda_cat_sigma);
cpl_table_set_double(linetable, "dLambda_cat_sq", row, distance_cat_sq);
cpl_table_set_double(linetable, "dLambda_nn_sq", row, nn_distance_sq);
/* Update histogram with the interval
[distance_cat_sq ; nn_distance_sq] (in units of line_fwhm) */
{
int ilow = uves_round_double((0.5*log(distance_cat_sq/(line_fwhm*line_fwhm))
- minlog)/(maxlog - minlog) * nbins);
int ihigh = uves_round_double((0.5*log(nn_distance_sq /(line_fwhm*line_fwhm))
- minlog)/(maxlog - minlog) * nbins);
int i;
for (i = uves_max_int(ilow, 0); i < uves_min_int(ihigh, nbins); i++)
{
histogram[i] += 1;
}
}
}/* ... finding neighbours */
/* Determine error as peak of histogram */
{
int i;
int maxfreq = -1;
for (i = 0; i < nbins; i++)
{
uves_msg_debug("histogram[%d] = %d", i, histogram[i]);
if (histogram[i] > maxfreq)
{
maxfreq = histogram[i];
error = exp( i / ((double)nbins) * (maxlog - minlog) + minlog ) ;
/* == the dimensionless factor to be multiplied by Xwidth */
}
}
uves_msg_debug("Dimensionless error factor is %f", error);
}
/* Sketch of situation:
lambda_com Nearest neighbour
| |
| | |
| | |
| | |
|
lambda_cat
The 'average' (as inferred from the histogram)
midpoint between 'lambda_cat' and 'nearest neighbour'
is at 'error' * 'line_fwhm' .
*/
/* Make the identification if
1) the catalogue candidate is within two sigma:
| lambda_cat - lambda_com | < 2 * dlambda_com
and
2) after multiplying the distance to the nearest neighbour by ALPHA < 1,
the nearest neighbour is farther away than the catalogue wavelength
distance_nn > distance_cat
and farther away than the tolerance
distance_nn > line_fwhm * error
*/
for (row = 0; row < linetable_size; row++)
{
double distance_cat_sq; /* Distance to catalogue wavelength (squared) */
double nn_distance_sq; /* Distance to nearest neighbour (squared) */
double tolerance_sq;
double dlambda_com;
double line_width; /* Line width (1 sigma) */
double line_fwhm;
double lambda_cat;
double lambda_cat_sigma; /* Uncertainty of lambda_cat */
lambda_cat = cpl_table_get_double(linetable, "Lambda_candidate", row, NULL);
lambda_cat_sigma = cpl_table_get_double(linetable, "dLambda_candidate", row, NULL);
/* Sigma less than 1 pixel is usually not
justified by the data (which obviously
has a resolution of only 1 pixel). Such
an underenstimation of the uncertainty
leads to wrong identifications.
Therefore use a width of at least 1 pixel */
line_width =
uves_max_double(1, cpl_table_get_double(linetable, "Xwidth" , row, NULL)) *
fabs(cpl_table_get_double(linetable, LINETAB_PIXELSIZE , row, NULL));
/* convert to wlu */
line_fwhm = TWOSQRT2LN2 * line_width;
/* As the uncertainty of the computed wavelength is used
* line_fwhm (in w.l.u.)
* To take into account the fact that lines near the edge of
* the chip have larger error of the computed wavelength,
* this is also scaled according to the accuracy of the dispersion
* relation, i.e. multiplied by dl/<dl>,
* where <dl> is an average, say the median, of uncertainties of
* all predicted wavelengths.
*/
dlambda_com = line_fwhm
* cpl_table_get_double(linetable, "dLambdaC" , row, NULL)
/ average_dlambda_com;
tolerance_sq = line_fwhm*line_fwhm * error*error;
distance_cat_sq = cpl_table_get_double(linetable, "dLambda_cat_sq", row, NULL);
nn_distance_sq = cpl_table_get_double(linetable, "dLambda_nn_sq" , row, NULL);
#if WANT_BIG_LOGFILE
uves_msg_debug("(order,x) = (%d,%f) lcom = %f+-%f lcat = %f "
"dist_cat = %f (%f pixels) tolerance = %.3f error = %f "
"nn = %f (%f pixels)",
cpl_table_get_int (linetable, "Order" , row, NULL),
cpl_table_get_double(linetable, "X" , row, NULL),
cpl_table_get_double(linetable, LINETAB_LAMBDAC, row, NULL),
dlambda_com,
lambda_cat,
sqrt(distance_cat_sq),
sqrt(distance_cat_sq)
/cpl_table_get_double(linetable, LINETAB_PIXELSIZE, row, NULL),
sqrt(tolerance_sq),
error,
sqrt(nn_distance_sq),
sqrt(nn_distance_sq)
/cpl_table_get_double(linetable, LINETAB_PIXELSIZE, row, NULL));
#endif
/* Make the ID? */
if (distance_cat_sq < (dlambda_com)*(dlambda_com)
&& tolerance_sq < nn_distance_sq
&& distance_cat_sq < nn_distance_sq)
{
number_identifications++;
cpl_table_set_double(linetable, "Ident", row, lambda_cat);
cpl_table_set_double(linetable, "dIdent",row, lambda_cat_sigma);
#if WANT_BIG_LOGFILE
uves_msg_debug("ID made");
#endif
}
else
{
if (cpl_table_is_valid(linetable, "Ident", row)) {
number_identifications++;
/* Also count lines that were already identified */
uves_msg_debug("Line at (%d,%f) does not match ID criterion anymore",
cpl_table_get_int (linetable, "Order", row, NULL),
cpl_table_get_double(linetable, "X", row, NULL)
);
}
}
}
cleanup:
cpl_free(histogram);
return number_identifications;
}
/*----------------------------------------------------------------------------*/
/**
@brief Create a fit of all orders
@param linetable The line table
@param selected (output) if non-NULL, subset of linetable containing
the lines which were used in the final fit
@param degree Degree of both independent variables of polynomial fit
@param verbose Be verbose about autodegree fitting?
@param reject Do rejection?
@param TOLERANCE Before fitting, exclude lines with residuals worse than
@em TOLERANCE. If positive, this tolerance
is considered in pixel units, otherwise in w.l.u.
@param kappa used for removing outliers
@param red_chisq If non-NULL, the reduced chi square of the fit.
@param dispersion_variance If non-NULL, the variance of the fit returned polynomial.
@param pixelsize If non-NULL, the average of d(lambda)/dx
@param rms_wlu If non-NULL, the root-mean-square residual (w.l.u)
@param rms_pixels If non-NULL, the root-mean-square residual (pixels)
@return The obtained dispersion relation in the form
@em lambda * @em m = @em f(@em x, @em m),
or NULL on error
@note Un-identified lines and lines with residuals larger then @em TOLERANCE
(from the previous fit) are excluded from the fit.
**/
/*----------------------------------------------------------------------------*/
static polynomial *
calibrate_global(const cpl_table *linetable,
cpl_table **selected,
int degree, bool verbose,
bool reject,
double TOLERANCE,
double kappa,
double *red_chisq, polynomial **dispersion_variance,
double *pixelsize,
double *rms_wlu,
double *rms_pixels)
{
polynomial *dispersion_relation = NULL; /* Result */
cpl_table *identified = NULL;
int valid_ids =
cpl_table_get_nrow(linetable) -
cpl_table_count_invalid(linetable, "Ident");
int rejected;
passure( (pixelsize == NULL) == (rms_wlu == NULL) &&
(pixelsize == NULL) == (rms_pixels == NULL), " ");
assure( degree < 0 ||
valid_ids >= (degree + 1)*(degree + 1), CPL_ERROR_ILLEGAL_INPUT,
"There are not enough identifications to create a %d.-degree global fit. "
"%d needed. %d found", degree, (degree + 1)*(degree + 1), valid_ids);
identified = cpl_table_duplicate(linetable);
assure_mem(identified);
/* Delete rows with invalid 'Ident' and large residuals */
if (reject)
{
check_nomsg( rejected = uves_delete_bad_lines(identified, TOLERANCE, kappa) );
uves_msg_debug("%d lines rejected %f %f", rejected, TOLERANCE, kappa);
}
else
{
check( uves_erase_invalid_table_rows(identified, "Ident"),
"Error erasing un-identified lines");
}
/* Create column 'Aux' = 'Order' * 'Ident' */
check(( cpl_table_duplicate_column(identified, "Aux", identified, "Ident"),
cpl_table_multiply_columns(identified, "Aux", "Order"),
/* Create column 'dAux' = 'Order' * 'dIdent' */
cpl_table_duplicate_column(identified, "dAux", identified, "dIdent"),
cpl_table_multiply_columns(identified, "dAux", "Order")),
"Error setting up temporary table");
/* Fit */
if (degree >= 0) {
check( dispersion_relation =
uves_polynomial_regression_2d(identified,
"X", "Order", "Aux",
"dAux", /* Use "dAux" for weighting,
to be able to compute an uncertainty
of WAVEC.
It would probably make more sense
to use the uncertainty of 'dX' for
weighting. */
degree, degree,
NULL, NULL, NULL, /* Don't add extra columns */
NULL, /* mse */
red_chisq,
dispersion_variance,
reject ? kappa : -1, -1),
"Error fitting polynomial. Possible cause: too few (%d) "
"line identifications", valid_ids);
}
else {
int max_degree = 8;
double min_rms = -1; /* disabled */
double min_reject = -1; /* disabled */
check( dispersion_relation =
uves_polynomial_regression_2d_autodegree(identified,
"X", "Order", "Aux",
"dAux",
NULL, NULL, NULL,
NULL,
red_chisq,
dispersion_variance,
reject ? kappa : -1,
max_degree, max_degree,
min_rms, min_reject,
verbose,
NULL, NULL, 0, NULL),
"Error fitting polynomial. Possible cause: too few (%d) "
"line identifications", valid_ids);
}
if (pixelsize != NULL)
{
/* Compute parameters if requested */
check( compute_lambda(identified, dispersion_relation, NULL,
false),
"Error applying dispersion relation");
*pixelsize = cpl_table_get_column_median(identified, LINETAB_PIXELSIZE);
*rms_wlu = cpl_table_get_column_stdev (identified, LINETAB_RESIDUAL);
*rms_pixels= cpl_table_get_column_stdev (identified, "Residual_pix");
}
if (selected != NULL) {
*selected = cpl_table_duplicate(identified);
}
cleanup:
uves_free_table(&identified);
if (cpl_error_get_code() != CPL_ERROR_NONE)
{
uves_polynomial_delete(&dispersion_relation);
}
return dispersion_relation;
}
/*----------------------------------------------------------------------------*/
/**
@brief Identify lines using point pattern matching
@param linetable The line table containing the line positions
@param line_refer The wavelength catalogue
@return number of identifications
**/
/*----------------------------------------------------------------------------*/
int
uves_wavecal_identify_lines_ppm(cpl_table *linetable, const cpl_table *line_refer)
{
int result = 0;
int minorder, maxorder;
int order;
cpl_table *lt_order = NULL;
cpl_table *refer_order = NULL;
cpl_vector *peaks = NULL;
cpl_vector *lines = NULL;
cpl_bivector *ids = NULL;
assure( cpl_table_has_column(linetable, LINETAB_LAMBDAC), CPL_ERROR_DATA_NOT_FOUND,
"Missing column %s", LINETAB_LAMBDAC);
assure( cpl_table_has_column(linetable, LINETAB_PIXELSIZE), CPL_ERROR_DATA_NOT_FOUND,
"Missing column %s", LINETAB_PIXELSIZE);
assure( cpl_table_has_column(linetable, "Order"), CPL_ERROR_DATA_NOT_FOUND,
"Missing column %s", "Order");
minorder = uves_round_double( cpl_table_get_column_min(linetable, "Order"));
maxorder = uves_round_double( cpl_table_get_column_max(linetable, "Order"));
/* Reset identifications */
if (cpl_table_has_column(linetable, "Ident_ppm"))
{
cpl_table_erase_column(linetable, "Ident_ppm");
}
cpl_table_new_column(linetable, "Ident_ppm", CPL_TYPE_DOUBLE);
for (order = minorder; order <= maxorder; order++)
{
const double tolerance = 0.05; /* relative tolerance on interval ratios */
double min_lambda, max_lambda;
double min_disp, max_disp;
/* Extract current order */
uves_free_table(<_order);
lt_order = uves_extract_table_rows(linetable, "Order",
CPL_EQUAL_TO, order); /* Uses integer comparison */
check_nomsg((min_lambda = cpl_table_get_column_min(lt_order, LINETAB_LAMBDAC),
max_lambda = cpl_table_get_column_max(lt_order, LINETAB_LAMBDAC),
min_disp = cpl_table_get_column_min(lt_order, LINETAB_PIXELSIZE)*0.99,
max_disp = cpl_table_get_column_max(lt_order, LINETAB_PIXELSIZE)*1.01));
uves_free_table(&refer_order);
refer_order = uves_extract_table_rows(line_refer, "Wave", CPL_GREATER_THAN,
min_lambda);
uves_extract_table_rows_local(refer_order, "Wave", CPL_LESS_THAN,
max_lambda);
/* Convert to vectors */
{
int i;
uves_free_vector(&peaks);
peaks = cpl_vector_new(cpl_table_get_nrow(lt_order));
for (i = 0; i < cpl_vector_get_size(peaks); i++)
{
cpl_vector_set(peaks, i, cpl_table_get_double(lt_order, "X", i, NULL));
}
uves_free_vector(&lines);
lines = cpl_vector_new(cpl_table_get_nrow(refer_order));
for (i = 0; i < cpl_vector_get_size(lines); i++)
{
cpl_vector_set(lines, i, cpl_table_get_double(refer_order, "Wave", i, NULL));
}
}
/* Not sure if this is necessary for the PPM algorithm */
cpl_vector_sort(peaks, 1);
cpl_vector_sort(lines, 1);
uves_msg_debug("Call ppm with %" CPL_SIZE_FORMAT " peaks, %" CPL_SIZE_FORMAT " lines, dispersion range = %f - %f A/pixel",
cpl_vector_get_size(peaks),
cpl_vector_get_size(lines),
min_disp, max_disp);
uves_free_bivector(&ids);
ids = cpl_ppm_match_positions(peaks, lines,
min_disp, max_disp,
tolerance,
NULL, NULL);
if (ids == NULL)
{
uves_msg_warning("Order %d: Point pattern matching failed", order);
if (cpl_error_get_code() != CPL_ERROR_NONE)
{
uves_msg_debug("%s at %s", cpl_error_get_message(),
cpl_error_get_where());
uves_error_reset();
}
}
else
{
int i, j;
uves_msg_debug("%" CPL_SIZE_FORMAT " identifications from point pattern matching (order %d)",
cpl_bivector_get_size(ids), order);
result += cpl_bivector_get_size(ids);
for (i = 0; i < cpl_table_get_nrow(linetable); i++) {
if (cpl_table_get_int(linetable, "Order", i, NULL) == order)
for (j = 0; j < cpl_bivector_get_size(ids); j++)
{
if (fabs(cpl_table_get_double(linetable, "X", i, NULL) -
cpl_bivector_get_x_data(ids)[j]) < 0.001)
cpl_table_set_double(linetable, "Ident_ppm", i,
cpl_bivector_get_y_data(ids)[j]);
}
}
}
}
cleanup:
uves_free_table(<_order);
uves_free_table(&refer_order);
uves_free_vector(&peaks);
uves_free_vector(&lines);
uves_free_bivector(&ids);
return result;
}
/**@}*/
|