1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/*===========================================================================
Copyright (C) 2001 European Southern Observatory (ESO)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Massachusetss Ave, Cambridge,
MA 02139, USA.
Corresponding concerning ESO-MIDAS should be addressed as follows:
Internet e-mail: midas@eso.org
Postal address: European Southern Observatory
Data Management Division
Karl-Schwarzschild-Strasse 2
D 85748 Garching bei Muenchen
GERMANY
===========================================================================*/
/*--------------------------------------------------------------------------*/
/**
* @defgroup flames_opt_extract Substep: Flames Optimal Extraction
*
*/
/*--------------------------------------------------------------------------*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
/*----------------------------------------------------------------------------
Includes
---------------------------------------------------------------------------*/
/* C functions include files */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* MIDAS include files */
#include <flames_midas_def.h>
/* FLAMES-UVES include files */
#include <flames_gauss_jordan.h>
#include <flames_uves.h>
#include <flames_Opt_Extract.h>
#include <flames_newmatrix.h>
/**@{*/
#include <uves_msg.h>
#include <string.h> //memset
#include <flames_def_drs_par.h> //DRS_VERBOSITY
/*---------------------------------------------------------------------------
Implementation
---------------------------------------------------------------------------*/
/**
@name flames_Opt_Extract()
@author G. Mulas - ITAL_FLAMES Consortium. Ported to CPL by A. Modigliani
@param ScienceFrame input science frame to be extracted
@param SingleFF input all flat field frame base structure
@param Order input order traces structure
@param ordsta input order start
@param ordend input order end
@param j pixel position in the science frame
@param mask input mask
@param aa array of size [arraysize,arraysize]
@param xx array of size [1,arraysize]
@param arraysize array size = norders*nfibres
@param fibrestosolve vector of size arraysize
@param orderstosolve vector of size arraysize
@param numslices output number of slices
@param normcover array to hold fibre normalization factors
@param orderoffset order offset
DRS function called:
Pseudocode:
@ doc:
-Determine the actual size of the problem to be solved and which are the slices to be included
- Loop over orders
Loop over fibres
check if a given fibre should be extracted at a given slice.
skip not-extract-able slices, since they would invariably lead to
singular matrices, being ill-conditioned problems
To be extracted a fibre should be least half good=>check fibre coverage.
for good pixels
-add their contribution to the fibre coverage factor
-then divide by the normalisation fraction
-if the fraction of collected light for the current fibre exceeds a given threshold
it is worth to extract that slice
else mark the fibre slice as bad
else
this slice is bad, mark it as such in the mask associated
count how many good slices we found:
if there are no good slices just free allocated memory and exit
else
performs optimal extraction
Create matrices and vectors to be used in matrix inversion
if a fibre is at least half good, go ahead and extract it
use a pixel only if it is good in the overall mask
Invert matrix aa using Gauss-Jordan elimination getting in xx the de-blended spectrum
@note
In the following is supposed that:
flatdata[n] -> n-th fibre FF
flatdata[n+1] -> upper half slit FF
flatdata[n+2] -> lower half slit FF
*/
flames_err Opt_Extract(flames_frame *ScienceFrame, allflats *SingleFF,
orderpos *Order, int32_t ordsta, int32_t ordend, int32_t j,
frame_mask **mask, double **aa, double **xx, int32_t arraysize,
int32_t *fibrestosolve, int32_t *orderstosolve, int32_t *numslices,
frame_data **normcover, int32_t orderoffset) {
int32_t i = 0, m = 0, n = 0, k = 0;
int32_t ilow = 0, ihigh = 0;
int32_t ordern, fibren, framen, orderk, fibrek, framek, ifibre, iframe;
frame_data ffcoverage = 0;
frame_data fdbuf1 = 0;
int32_t *lvecbuf1 = 0;
int32_t *lvecbuf2 = 0;
frame_data *fdvecbuf1 = 0;
frame_data *fdvecbuf2 = 0;
frame_data *fdvecbuf3 = 0;
frame_data *fdvecbuf4 = 0;
frame_data *fdvecbuf5 = 0;
frame_data *fdvecbuf6 = 0;
frame_mask *fmvecbuf1 = 0;
frame_mask *fmvecbuf2 = 0;
frame_mask *fmvecbuf3 = 0;
frame_mask *fmvecbuf4 = 0;
double *dvecbuf1 = 0;
double *dvecbuf2 = 0;
int32_t offsetm = 0;
int32_t offsetmjindex = 0;
int32_t mifibreoffset = 0;
int32_t mifibreindex = 0;
int32_t mifibrejindex = 0;
int32_t ijindex = 0;
int32_t orderoffsetmjindex = 0;
int32_t upnlimit = 0;
int32_t noffset = 0;
int32_t noffset1 = 0;
int32_t nkindex = 0;
int32_t ordernfibrenjindex = 0;
int32_t nnindex = 0;
int32_t koffset = 0;
int32_t koffset1 = 0;
int32_t knindex = 0;
int32_t orderkfibrekjindex = 0;
int32_t kbsubcols;
frame_data kbthreshold;
/* Here the variance of the spectra is computed too. This calculation is
carried out at first order of approximation.
i.e. the following formulae hold
A*X=B
which gives the spectra and
(A+dA)*(X+dX)=B+dB
which with the approximation
dA*dX=0
and the first formula becomes
A*dX=dB+dA*X
and so we have the variances for the each spectrum.
Moreover, we assume the variance in the FF frames to be negligible with
respect to that in the Science Frame, which in turn means that dA is
negligible with respect to dB. If all of this holds, it can be shown
that, to a very decent first order approximation,
cov(Xi,Xj) = (Inv(A))ij
A more accurate estimate involves some heavier loops which are better
done elsewhere, to avoid unnecessarily cluttering the extraction loop,
which is supposed to be executed many times. For this reason, get
Inv(A), the extracted X, fibrestosolve and numslices out of this
function, for further processing elsewhere.
*/
/* Determine here the actual size of the problem to be solved and which
are the slices to be included */
(*numslices) = 0;
lvecbuf1 = SingleFF->lowfibrebounds[0][0] + j;
lvecbuf2 = SingleFF->highfibrebounds[0][0] + j;
fmvecbuf1 = SingleFF->goodfibres[0][0] + j;
fmvecbuf2 = mask[0] + j;
fmvecbuf3 = ScienceFrame->specmask[j][0];
fdvecbuf1 = normcover[0] + j;
fdvecbuf2 = ScienceFrame->frame_array[0] + j;
fdvecbuf3 = ScienceFrame->frame_sigma[0] + j;
kbsubcols = SingleFF->subcols;
m = ordsta - Order->firstorder;
offsetm = m - orderoffset;
offsetmjindex = offsetm * kbsubcols;
mifibreoffset = m * SingleFF->maxfibres;
kbthreshold = fdvecbuf1[orderoffsetmjindex] * SingleFF->minfibrefrac;
for (m = ordsta - Order->firstorder; m <= ordend - Order->firstorder; m++) {
for (n = 0; n <= (ScienceFrame->num_lit_fibres - 1); n++) {
ifibre = ScienceFrame->ind_lit_fibres[n];
mifibreindex = mifibreoffset + ifibre;
mifibrejindex = (mifibreindex) * kbsubcols;
iframe = SingleFF->fibre2frame[ifibre];
fdvecbuf4 = SingleFF->flatdata[iframe].data[0] + j;
/* should I try to extract this fibre at this slice? It is crucial to
skip not-extract-able slices, since they would invariably lead to
singular matrices, being ill-conditioned problems */
if (fmvecbuf1[mifibrejindex] != BADSLICE) {
/* it is at least half good, is coverage good enough for this fibre? */
ffcoverage = 0;
ijindex = lvecbuf1[mifibrejindex] * kbsubcols;
for (i = lvecbuf1[mifibrejindex]; i <= lvecbuf2[mifibrejindex]; i++) {
/* is this pixel good? */
if (fmvecbuf2[ijindex] == 0) {
/* add its contribution to the fibre coverage factor */
ffcoverage += fdvecbuf4[ijindex];
}
ijindex += kbsubcols;
}
/* divide by the normalisation fraction
ffcoverage /= fdvecbuf1[orderoffsetmjindex]; */
/* does the fraction of collected light for this fibre exceed the
threshold making it worth extracting?
if(ffcoverage<SingleFF->minfibrefrac) */
if (ffcoverage < kbthreshold) {
/* no, forget it and mark this fact where it belongs */
fmvecbuf1[mifibrejindex] = BADSLICE;
} else {
(*numslices)++;
fibrestosolve[*numslices] = ifibre;
orderstosolve[*numslices] = m;
}
} else {
/* this slice is bad, mark it as such in the specmask */
fmvecbuf3[mifibreindex] = 0;
}
}
offsetm++;
offsetmjindex += kbsubcols;
mifibreoffset += SingleFF->maxfibres;
}
/* if there are no good slices just free allocated memory and return right
now */
if ((*numslices) == 0)
return (NOERR);
/* Initialize xx and aa */
dvecbuf2 = xx[1] + 1;
upnlimit = (*numslices) - 1;
for (n = 0; n <= upnlimit; n++)
dvecbuf2[n] = 0;
dvecbuf1 = aa[1];
noffset1 = 0;
for (noffset = 0; noffset < (*numslices); noffset++) {
for (k = 1; k <= (*numslices); k++) {
dvecbuf1[noffset1 + k] = 0;
}
noffset1 += arraysize;
}
/* Create matrices and vectors to be used in matrix inversion */
/* nm=0;*/
for (n = 1; n <= (*numslices); n++) {
/* it is at least half good, go ahead and extract it */
noffset = n - 1;
ordern = orderstosolve[n];
fibren = fibrestosolve[n];
ordernfibrenjindex = ((ordern * SingleFF->maxfibres) + fibren) * kbsubcols;
framen = SingleFF->fibre2frame[fibren];
fdvecbuf4 = SingleFF->flatdata[framen].data[0] + j;
for (i = lvecbuf1[ordernfibrenjindex]; i <= lvecbuf2[ordernfibrenjindex];
i++) {
ijindex = i * SingleFF->subcols;
/* use this pixel only if it is good in the overall mask */
if (fmvecbuf2[ijindex] == 0) {
dvecbuf2[noffset] += (double) (fdvecbuf2[ijindex] * fdvecbuf4[ijindex]
/ fdvecbuf3[ijindex]);
}
}
}
for (n = 1; n <= (*numslices); n++) {
noffset = n - 1;
noffset1 = noffset * arraysize;
nnindex = noffset1 + n;
ordern = orderstosolve[n];
fibren = fibrestosolve[n];
ordernfibrenjindex = ((ordern * SingleFF->maxfibres) + fibren)
* SingleFF->subcols;
framen = SingleFF->fibre2frame[fibren];
fdvecbuf4 = SingleFF->flatdata[framen].data[0] + j;
/* compute diagonal terms first */
ijindex = lvecbuf1[ordernfibrenjindex] * kbsubcols;
for (i = lvecbuf1[ordernfibrenjindex]; i <= lvecbuf2[ordernfibrenjindex];
i++) {
if (fmvecbuf2[ijindex] == 0) {
fdbuf1 = fdvecbuf4[ijindex];
dvecbuf1[nnindex] += fdbuf1 * fdbuf1 / fdvecbuf3[ijindex];
}
ijindex += kbsubcols;
}
/* now go for off-diagonal terms */
for (k = n + 1; k <= (*numslices); k++) {
koffset = k - 1;
koffset1 = koffset * arraysize;
nkindex = noffset1 + k;
knindex = koffset1 + n;
orderk = orderstosolve[k];
fibrek = fibrestosolve[k];
orderkfibrekjindex = ((orderk * SingleFF->maxfibres) + fibrek)
* SingleFF->subcols;
framek = SingleFF->fibre2frame[fibrek];
fdvecbuf5 = SingleFF->flatdata[framek].data[0] + j;
/* the y loop must run only where the two fibres overlap */
ilow =
lvecbuf1[ordernfibrenjindex] < lvecbuf1[orderkfibrekjindex] ?
lvecbuf1[orderkfibrekjindex] : lvecbuf1[ordernfibrenjindex];
ihigh =
lvecbuf2[ordernfibrenjindex] < lvecbuf2[orderkfibrekjindex] ?
lvecbuf2[ordernfibrenjindex] : lvecbuf2[orderkfibrekjindex];
ijindex = ilow * kbsubcols;
for (i = ilow; i <= ihigh; i++) {
if (fmvecbuf2[ijindex] == 0) {
dvecbuf1[nkindex] += (double) (fdvecbuf5[ijindex] * fdvecbuf4[ijindex]
/ fdvecbuf3[ijindex]);
}
ijindex += kbsubcols;
}
/* use symmetry to set values on the other side of the diagonal */
dvecbuf1[knindex] = dvecbuf1[nkindex];
}
}
/* Invert matrix aa using Gauss-Jordan elimination getting in xx the
deblended spectrum */
cpl_matrix* m_aa=cpl_matrix_new(*numslices+1,*numslices+1);
cpl_matrix* m_xx=cpl_matrix_new(*numslices+1,*numslices+1);
cpl_matrix_set(m_aa,0,0,0);
cpl_matrix_set(m_xx,0,0,0);
flames_gauss_jordan(aa, (*numslices), xx, 1);
fdvecbuf6 = ScienceFrame->spectrum[j][0];
fmvecbuf4 = ScienceFrame->specmask[j][0];
/* Retrieving spectrum from the temporary vector */
/* AMO: repeat this setting to be sure */
dvecbuf2 = xx[1] + 1;
//printf("ok6\n");
for (n = 1; n <= (*numslices); n++) {
noffset = n - 1;
ordern = orderstosolve[n];
fibren = fibrestosolve[n];
ordernfibrenjindex = (ordern * ScienceFrame->maxfibres) + fibren;
fdvecbuf6[ordernfibrenjindex] = (frame_data) dvecbuf2[noffset];
fmvecbuf4[ordernfibrenjindex] = 1;
}
cpl_matrix_delete(m_aa);
cpl_matrix_delete(m_xx);
/*
SCTDIS("Exiting Opt_Extract\n",0);
*/
return NOERR;
}
/**@}*/
|