1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*
* This file is part of the ESO Common Pipeline Library
* Copyright (C) 2001-2008,2014 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @defgroup cpl_matrix Matrices
*
* This module provides functions to create, destroy and use a @em cpl_matrix.
* The elements of a @em cpl_matrix with M rows and N columns are counted
* from 0,0 to M-1,N-1. The matrix element 0,0 is the one at the upper left
* corner of a matrix. The CPL matrix functions work properly only in the
* case the matrices elements do not contain garbage (such as @c NaN or
* infinity).
*
* @par Synopsis:
* @code
* #include <flames_lsfit.h>
* @endcode
*/
#include <cpl.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <flames_lsfit.h>
#include <flames_gauss_jordan.h>
#include <flames_covariance_reorder.h>
#include <flames_newmatrix.h>
#include <uves_dfs.h>
/**@{*/
cpl_matrix * cpl_matrix_product_normal_create(const cpl_matrix * self);
cpl_error_code cpl_matrix_product_transpose(cpl_matrix * self,
const cpl_matrix * ma,
const cpl_matrix * mb);
/*-----------------------------------------------------------------------------
Private function prototypes
-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
Function codes
-----------------------------------------------------------------------------*/
/* ---------------------------------------------------------------------------*/
/**
* @brief generic 1d vandermonde matrix
*
* @param sample sampling positions
* @param degree degree of polynomial
* @param func function evaluating polynomials from [0, degree] at
* sampling point
* @param offset offset of func (1 for indexing starting with 1)
* @return matrix containing the vandermonde matrix
*/
/* ---------------------------------------------------------------------------*/
cpl_matrix * vander1d(
const cpl_vector * sample,
cpl_size degree,
void (*func)(double, double *, int),
size_t offset)
{
size_t i;
const size_t nr = cpl_vector_get_size(sample);
const size_t nc = degree + 1;
cpl_matrix * V = cpl_matrix_new(nr, nc);
double * v = cpl_matrix_get_data(V);
const double * d = cpl_vector_get_data_const(sample);
for (i = 0; i < nr; i++) {
if (offset != 0) {
double tmp[nc + offset];
func(d[i], tmp, nc);
memcpy(&v[i * nc], &tmp[offset], nc * sizeof(*v));
}
else {
func(d[i], &v[i * nc], nc);
}
}
return V;
}
cpl_matrix * vander2d(
const cpl_vector * sample_x,
const cpl_vector * sample_y,
cpl_size degree,
void (*func)(double, double, double *, int),
size_t offset)
{
size_t i;
const size_t nr = cpl_vector_get_size(sample_x);
const size_t nc = degree + 1;
cpl_matrix * V = cpl_matrix_new(nr, nc);
double * v = cpl_matrix_get_data(V);
const double * dx = cpl_vector_get_data_const(sample_x);
const double * dy = cpl_vector_get_data_const(sample_y);
assert(cpl_vector_get_size(sample_y) == nr);
for (i = 0; i < nr; i++) {
if (offset != 0) {
double tmp[nc + offset];
func(dx[i], dy[i], tmp, nc);
memcpy(&v[i * nc], &tmp[offset], nc * sizeof(*v));
}
else {
func(dx[i], dy[i], &v[i * nc], nc);
}
}
return V;
}
static void flames_polynomial(double x, double * p, int ncoefs)
{
int i;
p[0] = 1.;
for (i = 1; i < ncoefs; i++) {
p[i] = pow(x, i);
}
}
cpl_matrix * polyvander1d(
const cpl_vector * sample,
cpl_size degree)
{
return vander1d(sample, degree, &flames_polynomial, 0);
}
void lsqfit(
const cpl_matrix * design,
const cpl_vector * values,
const cpl_vector * errors,
cpl_matrix **coef)
{
/* weight response and design */
cpl_vector * vrhs = cpl_vector_duplicate(errors);
cpl_vector_power(vrhs, -1);
cpl_matrix * wdesign = cpl_matrix_duplicate(design);
long i, j;
for (i = 0; i < cpl_vector_get_size(errors); i++) {
double w = cpl_vector_get(vrhs,i);
for (j = 0; j < cpl_matrix_get_ncol(wdesign); j++) {
cpl_matrix_set(wdesign, i, j,
cpl_matrix_get(wdesign, i, j) * w);
}
}
cpl_vector_multiply(vrhs, values);
cpl_matrix * rhs = cpl_matrix_wrap(cpl_vector_get_size(vrhs), 1,
cpl_vector_get_data(vrhs));
/* solve Ax = b */
/* cpl_matrix_solve_normal(design, rhs) + covariance */
{
cpl_matrix * At = cpl_matrix_transpose_create(wdesign);
cpl_matrix * AtA = cpl_matrix_product_normal_create(At);
/* RRt = AtA */
cpl_matrix_decomp_chol(AtA);
/* solve for pseudo inverse: (RRt)P=At*/
cpl_matrix_solve_chol(AtA, At);
/* compute solution to system Ax=b -> x=Pb */
*coef = cpl_matrix_product_create(At, rhs);
/* compute covariance matrix cov(b) = PPt */
//cpl_matrix * cov = cpl_matrix_new(cpl_matrix_get_ncol(At),
// cpl_matrix_get_ncol(At));
//cpl_matrix_product_transpose(cov, At, At);
cpl_matrix_delete(At);
cpl_matrix_delete(AtA);
}
cpl_matrix_unwrap(rhs);
cpl_vector_delete(vrhs);
cpl_matrix_delete(wdesign);
return;
}
void lsqfit_nr(
double x[], double y[], double sig[], int32_t ndat, double a[],
int ma,
void (*funcs)(double, double [], int))
{
int i;
cpl_vector * vX = cpl_vector_wrap(ndat, &x[1]);
cpl_vector * vY = cpl_vector_wrap(ndat, &y[1]);
cpl_vector * vS;
cpl_matrix * design = vander1d(vX, ma -1, funcs, 1);
cpl_matrix * mcoef;
if (sig) {
vS = cpl_vector_wrap(ndat, &sig[1]);
}
else {
vS = cpl_vector_new(ndat);
for (i= 0; i < ndat; i++)
cpl_vector_set(vS, i, 1.);
}
lsqfit(design, vY, vS, &mcoef);
for (i = 1; i <= ma; i++) {
a[i] = cpl_matrix_get(mcoef, i -1, 0);
}
cpl_vector_unwrap(vX);
cpl_vector_unwrap(vY);
if (sig) {
cpl_vector_unwrap(vS);
}
else {
cpl_vector_delete(vS);
}
cpl_matrix_delete(design);
cpl_matrix_delete(mcoef);
}
void lsqfit2d_nr(
double x[], double y[], double z[], double sig[], int ndat, double a[],
int ma,
void (*funcs)(double, double, double [], int))
{
int i;
cpl_vector * vX = cpl_vector_wrap(ndat, &x[1]);
cpl_vector * vY = cpl_vector_wrap(ndat, &y[1]);
cpl_vector * vZ = cpl_vector_wrap(ndat, &z[1]);
cpl_vector * vS;
cpl_matrix * design = vander2d(vX, vY, ma - 1, funcs, 1);
cpl_matrix * mcoef;
if (sig) {
vS = cpl_vector_wrap(ndat, &sig[1]);
}
else {
vS = cpl_vector_new(ndat);
for (i= 0; i < ndat; i++)
cpl_vector_set(vS, i, 1.);
}
lsqfit(design, vZ, vS, &mcoef);
for (i = 1; i <= ma; i++) {
a[i] = cpl_matrix_get(mcoef, i - 1, 0);
}
cpl_vector_unwrap(vX);
cpl_vector_unwrap(vY);
cpl_vector_unwrap(vZ);
if (sig) {
cpl_vector_unwrap(vS);
}
else {
cpl_vector_delete(vS);
}
cpl_matrix_delete(design);
cpl_matrix_delete(mcoef);
}
cpl_vector * eval_poly(
cpl_matrix * design,
cpl_matrix * coef)
{
cpl_matrix * fvalues = cpl_matrix_product_create(design, coef);
cpl_vector * res = cpl_vector_wrap(cpl_matrix_get_nrow(fvalues),
cpl_matrix_get_data(fvalues));
cpl_matrix_unwrap(fvalues);
return res;
}
/* fill upper-left matrix elements as mirror of lower-right elements
* below matrix diagonal
*/
static void
flames_matrix_mirror_lu(double** mat,const int nraws)
{
int j,k;
for (j=2;j<=nraws;j++)
for (k=1;k<j;k++)
mat[k][j]=mat[j][k];
return;
}
/* compute chi2 */
static double
flames_compute_chi2(double* data, double* value, double* errs, const int ndat,
double* par, const int npar,double* afunc,
void (*model)(double, double [], int)) {
double chi2=0,sum=0;
int i,j;
for (i=1;i<=ndat;i++) {
(*model)(data[i],afunc,npar);
for (sum=0.0,j=1;j<=npar;j++) sum += par[j]*afunc[j];
double scatter = (value[i]-sum)/errs[i];
chi2 += scatter*scatter;
}
return chi2;
}
/* build design matrix: pointer to be allocated */
static void
flames_matrix_design(double* data,double* value,double* ps,const int ndat,
double* par,int* par_sw, const int npar,const int nfit,
double** covar,double** mat, double* afunc,
void (*model)(double, double [], int))
{
int j,k,l,m;
for (int i=1;i<=ndat;i++) {
(*model)(data[i],afunc,npar);
double value_model=value[i];
if (nfit < npar) {
for (j=1;j<=npar;j++)
if (!par_sw[j]) value_model -= par[j]*afunc[j];
}
double sig2i=1.0/(ps[i]*ps[i]);
for (j=0,l=1;l<=npar;l++) {
if (par_sw[l]) {
double weight=afunc[l]*sig2i;
for (j++,k=0,m=1;m<=l;m++)
if (par_sw[m]) covar[j][++k] += weight*afunc[m];
mat[j][1] += value_model*weight;
}
}
}
return;
}
void flames_lfit(cpl_vector* vx, cpl_vector* vy, cpl_vector* vs, int32_t ndat,
double a[],
int ia[], int ma, double **covar, double *chisq,
void (*funcs)(double, double [], int))
{
int j=0;
int l=0;
int mfit=0;
double **beta=0;
double *afunc=0;
double *px = cpl_vector_get_data(vx);
double *py = cpl_vector_get_data(vy);
double *ps = cpl_vector_get_data(vs);
beta=dmatrix(1,ma,1,1);
afunc=dvector(1,ma);
/* Not needed as calloc also init to 0.
for (i=1; i<=ma; i++) {
beta[i][1] = 0;
afunc[i] = 0;
}
*/
for (j=1;j<=ma;j++)
if (ia[j]) mfit++;
if (mfit == 0) nrerror("lfit: no parameters to be fitted");
/* Not needed as calloc also init to 0.
for (j=1;j<=mfit;j++) {
for (k=1;k<=mfit;k++) covar[j][k]=0.0;
beta[j][1]=0.0;
}
*/
flames_matrix_design(px,py,ps,ndat,a,ia,ma,mfit,covar,beta,afunc,funcs);
flames_matrix_mirror_lu(covar,mfit);
flames_gauss_jordan(covar,mfit,beta,1);
for (j=0,l=1;l<=ma;l++)
if (ia[l]) a[l]=beta[++j][1];
*chisq=flames_compute_chi2(px,py,ps,ndat,a,ma,afunc,funcs);
flames_covariance_reorder(covar,ma,ia,mfit);
free_dvector(afunc,1,ma);
free_dmatrix(beta,1,ma,1,1);
return;
}
|