1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/*===========================================================================
Copyright (C) 2001 European Southern Observatory (ESO)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Massachusetss Ave, Cambridge,
MA 02139, USA.
Corresponding concerning ESO-MIDAS should be addressed as follows:
Internet e-mail: midas@eso.org
Postal address: European Southern Observatory
Data Management Division
Karl-Schwarzschild-Strasse 2
D 85748 Garching bei Muenchen
GERMANY
===========================================================================*/
/* Program : opterrors.c */
/* Author : G. Mulas - ITAL_FLAMES Consortium */
/* Date : */
/* */
/* Purpose : Missing */
/* */
/* */
/* Input: see interface */
/* */
/* Output: */
/* */
/* DRS Functions called: */
/* none */
/* */
/* Pseudocode: */
/* Missing */
/* */
/* Version : */
/* Last modification date: 2002/08/05 */
/* Who When Why Where */
/* AMo 02-08-05 Add header header */
/*-------------------------------------------------------------------------*/
/* C functions include files */
/* 020716 KB */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* MIDAS include files */
#include <flames_midas_def.h>
/* FLAMES-UVES include files */
#include <flames_uves.h>
#include <flames_opterrors.h>
#include <flames_newmatrix.h>
flames_err opterrors(flames_frame *ScienceFrame, allflats *SingleFF,
orderpos *Order, int32_t ix, frame_mask **mask,
double **aa, double **xx, int32_t *fibrestosolve,
int32_t *orderstosolve, int32_t numslices,
int32_t arraysize)
{
/* char output[70]; */ /* only for testing purposes */
double **covariance;
/* some array buffers to speed up access to multidimensional arrays */
frame_data *vecsigmaflatj, *vecflatk, *vecflatp;
int32_t m, n, i, j, k, p, ilowj, ihighj, ilowk, ihighk, ilowp, ihighp;
int32_t ilow, ihigh, ilow2, ihigh2;
int32_t orderj, orderk, orderp;
int32_t framej, framek, framep;
int32_t fibrem, fibrej, fibrek, fibrep;
int32_t fibrelow, fibrehigh, fibrelow2, fibrehigh2, fibrelow3, fibrehigh3;
int32_t fibrelow4, fibrehigh4;
double overlap;
frame_data sigma=0, sigma2=0;
double dbuf1=0, dbuf2=0;
double *dvecbuf1=0;
double *dvecbuf2=0;
double *dvecbuf3=0;
int32_t *lvecbuf1=0;
int32_t *lvecbuf2=0;
frame_data *fdvecbuf1=0;
frame_data *fdvecbuf2=0;
frame_data *fdvecbuf3=0;
frame_data *fdvecbuf4=0;
frame_mask *fmvecbuf1=0;
int32_t moffset=0;
int32_t moffset1=0;
int32_t moffset2=0;
int32_t noffset=0;
int32_t noffset1=0;
int32_t noffset2=0;
int32_t mnindex1=0;
int32_t mnindex2=0;
int32_t joffset=0;
int32_t mjindex2=0;
int32_t njindex2=0;
int32_t koffset=0;
int32_t mkindex2=0;
int32_t nkindex2=0;
int32_t poffset=0;
int32_t mpindex2=0;
int32_t npindex2=0;
int32_t ordermfibremindex=0;
int32_t orderjfibrejixindex=0;
int32_t orderkfibrekixindex=0;
int32_t orderpfibrepixindex=0;
int32_t iixindex=0;
int32_t ksubcols;
/* Here the variance of the spectra is computed too. This calculation is
carried out at first order of approximation.
i.e. the following formulae hold
A*X=B
which gives the spectra and
(A+dA)*(X+dX)=B+dB
which with the approximation
dA*dX=0
and the first formula becomes
A*dX=dB+dA*X
and so we have the variances for the each spectrum.
Moreover, we assume the variance in the FF frames to be negligible with
respect to that in the Science Frame, which in turn means that dA is
negligible with respect to dB. If all of this holds, it can be shown
that, to a very decent first order approximation,
cov(Xi,Xj) = (Inv(A))ij
The above quantity is known already as a side product of the optimal
extraction previously done, and is taken as an input parameter here.
A more accurate estimate involves some heavier loops which add some
more complicated terms to this first estimate.
*/
covariance = dmatrix(1, numslices, 1, numslices);
dvecbuf1 = covariance[1];
dvecbuf2 = aa[1];
dvecbuf3 = xx[1]+1;
lvecbuf1 = SingleFF->lowfibrebounds[0][0]+ix;
lvecbuf2 = SingleFF->highfibrebounds[0][0]+ix;
fdvecbuf1 = ScienceFrame->frame_array[0]+ix;
fdvecbuf2 = ScienceFrame->frame_sigma[0]+ix;
fmvecbuf1 = mask[0]+ix;
fdvecbuf3 = ScienceFrame->specsigma[ix][0];
fdvecbuf4 = ScienceFrame->speccovar[ix][0];
ksubcols = ScienceFrame->subcols;
/* since the covariances matrix is symmetric, compute only the half
above (and including) the diagonal */
moffset1 = 0;
moffset2 = 0;
for (m=1; m<=numslices; m++)
{
moffset = m-1;
fibrelow = moffset>1 ? moffset : 1;
fibrehigh = (m+1)<numslices ? m+1 : numslices;
fibrem = fibrestosolve[m];
ordermfibremindex = (orderstosolve[m]*ScienceFrame->maxfibres)+fibrem;
/* this is overkill right now, since we only save the m,m+1 covariances,
but I prefer to write this in the Right Way now and comment out
superfluous stuff later */
/* after some profiling, it is clear that this part is a major bottleneck;
therefore, just do the excruciatingly detailed and expensive
calculations for the variances and the covariances of adjacent fibres.
Moreover, assume without checking that non-adjacent fibres do not
overlap */
noffset1 = (m-1)*numslices;
noffset2 = (m-1)*arraysize;
for (n=m; n<=numslices; n++)
{
noffset = n-1;
mnindex1 = moffset1+n;
mnindex2 = moffset2+n;
/* start with the first, presumably largest, component */
dvecbuf1[mnindex1] = dvecbuf2[mnindex2];
/* here check whether to spend additional time on this covariance */
if ((n>=fibrelow) && (n<=fibrehigh))
{
fibrelow2 = noffset>fibrelow ? noffset : fibrelow;
fibrehigh2 = (n+1)<fibrehigh ? n+1 : fibrehigh;
/* here goes the double internal loop for the second term */
for (j=fibrelow2; j<=fibrehigh2; j++)
{
joffset = j-1;
mjindex2 = moffset2+j;
njindex2 = noffset2+j;
fibrelow3 = joffset>fibrelow2 ? joffset : fibrelow2;
fibrehigh3 = (j+1)<fibrehigh2 ? j+1: fibrehigh2;
fibrej = fibrestosolve[j];
orderj = orderstosolve[j];
framej = SingleFF->fibre2frame[fibrej];
vecsigmaflatj = SingleFF->flatdata[framej].sigma[0]+ix;
orderjfibrejixindex =
(((orderj*SingleFF->maxfibres)+fibrej)*SingleFF->subcols);
ilowj = lvecbuf1[orderjfibrejixindex];
ihighj = lvecbuf2[orderjfibrejixindex];
for (k=fibrelow3; k<=fibrehigh3; k++)
{
koffset = k-1;
mkindex2 = moffset2+k;
nkindex2 = noffset2+k;
fibrelow4 = koffset>fibrelow3 ? koffset : fibrelow3;
fibrehigh4 = (k+1)<fibrehigh3 ? k+1 : fibrehigh3;
fibrek = fibrestosolve[k];
orderk = orderstosolve[k];
framek = SingleFF->fibre2frame[fibrek];
vecflatk = SingleFF->flatdata[framek].data[0]+ix;
/* this term can only be non zero if the jth and kth slices
have some overlap, i.e. if and only if the corresponding
fibres have some overlap */
orderkfibrekixindex =
(((orderk*SingleFF->maxfibres)+fibrek)*SingleFF->subcols);
ilowk = lvecbuf1[orderkfibrekixindex];
ihighk = lvecbuf2[orderkfibrekixindex];
/* set the y interval to the overlap between the jth and kth
slice */
ilow = (ilowj>ilowk) ? ilowj : ilowk;
ihigh = (ihighj<ihighk) ? ihighj : ihighk;
if (ihigh>=ilow)
{ /* there is some overlap */
overlap = 0;
iixindex = ilow*ksubcols;
for (i=ilow; i<=ihigh; i++)
{
if (fmvecbuf1[iixindex]==0)
{ /* this is a good pixel, include it */
sigma = fdvecbuf2[iixindex];
sigma2 = sigma*sigma;
overlap +=
(double) (fdvecbuf1[iixindex]*vecsigmaflatj[iixindex]*
vecflatk[iixindex]/sigma2);
}
iixindex += ksubcols;
} /* end of `i' loop */
dvecbuf1[mnindex1] += overlap*
(2*dvecbuf2[mjindex2]*dvecbuf2[njindex2]*dvecbuf3[koffset]+
(dvecbuf2[mjindex2]*dvecbuf2[nkindex2]+
dvecbuf2[mkindex2]*dvecbuf2[njindex2])*dvecbuf3[joffset]);
} /* end of if statement */
/* add here the third loop for last contribution to the
covariance */
for (p=fibrelow4; p<=fibrehigh4; p++)
{
poffset = p-1;
mpindex2 = moffset2+p;
npindex2 = noffset2+p;
fibrep = fibrestosolve[p];
orderp = orderstosolve[p];
framep = SingleFF->fibre2frame[fibrep];
vecflatp = SingleFF->flatdata[framep].data[0]+ix;
/* this term can only be non zero if the jth, kth and pth
slices have some overlap, i.e. if and only if the
corresponding fibres have some overlap */
orderpfibrepixindex =
(((orderp*SingleFF->maxfibres)+fibrep)*SingleFF->subcols);
ilowp = lvecbuf1[orderpfibrepixindex];
ihighp = lvecbuf2[orderpfibrepixindex];
/* set the y interval to the overlap between the jth, the
kth and the pth slice */
ilow2 = (ilowp>ilow) ? ilowp : ilow;
ihigh2 = (ihighp<ihigh) ? ihighp : ihigh;
if (ihigh2>=ilow2)
{ /* there is some overlap */
overlap = 0;
iixindex = ilow*ksubcols;
for (i=ilow; i<=ihigh; i++)
{
if (fmvecbuf1[iixindex]==0)
{ /* this is a good pixel, include it */
sigma = fdvecbuf2[iixindex];
sigma2 = sigma*sigma;
overlap +=
(double) (vecsigmaflatj[iixindex]*vecflatk[iixindex]*
vecflatp[iixindex]/sigma2);
}
iixindex += ksubcols;
} /* end of `i' loop */
dbuf1 = dvecbuf3[joffset];
dbuf2 = dbuf1*dbuf1;
dvecbuf1[mnindex1] += overlap*
(dvecbuf2[mjindex2]*dvecbuf2[njindex2]*
dvecbuf3[koffset]*dvecbuf3[poffset]+
(dvecbuf2[mjindex2]*dvecbuf2[npindex2]+
dvecbuf2[mpindex2]*dvecbuf2[njindex2])*
dvecbuf3[joffset]*dvecbuf3[koffset]+
dvecbuf2[mkindex2]*dvecbuf2[npindex2]*dbuf2);
}
} /* end `p' loop */
} /* end `k' loop */
} /* end `j' loop */
} /* end if statement */
noffset1 += numslices;
noffset2 += arraysize;
} /* end `n' loop */
/* put the variance where it belongs */
fdvecbuf3[ordermfibremindex] = (frame_data) dvecbuf1[moffset1+m];
/* if the following covariance is between this fibre and the following
one, put it in speccovar */
if (((m+1)<=numslices) && (fibrestosolve[m+1]==fibrem+1))
fdvecbuf4[ordermfibremindex] = (frame_data) dvecbuf1[moffset1+m+1];
moffset1 += numslices;
moffset2 += arraysize;
} /* end `m' loop */
/* now the covariances matrix is not used anymore, free it */
free_dmatrix(covariance, 1, numslices, 1, numslices);
return NOERR;
}
|