File: flames_Stand_Extract.c

package info (click to toggle)
cpl-plugin-uves 6.1.3+dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 23,128 kB
  • sloc: ansic: 171,056; sh: 4,359; python: 3,002; makefile: 1,322
file content (475 lines) | stat: -rw-r--r-- 17,576 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*===========================================================================
  Copyright (C) 2001 European Southern Observatory (ESO)
 
  This program is free software; you can redistribute it and/or 
  modify it under the terms of the GNU General Public License as 
  published by the Free Software Foundation; either version 2 of 
  the License, or (at your option) any later version.
 
  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
 
  You should have received a copy of the GNU General Public 
  License along with this program; if not, write to the Free 
  Software Foundation, Inc., 675 Massachusetss Ave, Cambridge, 
  MA 02139, USA.
 
  Corresponding concerning ESO-MIDAS should be addressed as follows:
  Internet e-mail: midas@eso.org
  Postal address: European Southern Observatory
  Data Management Division 
  Karl-Schwarzschild-Strasse 2
  D 85748 Garching bei Muenchen 
  GERMANY
  ===========================================================================*/


/*--------------------------------------------------------------------------*/
/**
 * @defgroup flames_Stand_Extract   Substep: Flames Standard Extraction
 *
 */
/*--------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------
  Includes
  ---------------------------------------------------------------------------*/


#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <flames_midas_def.h>
/* FLAMES-UVES include files */ 
#include <flames_uves.h>
#include <flames_Stand_Extract.h>
#include <flames_def_drs_par.h>
#include <flames_newmatrix.h>
#include <flames_gauss_jordan.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/**@{*/

/*---------------------------------------------------------------------------
  Implementation
  ---------------------------------------------------------------------------*/


/**
   @name  flames_Std_Extract()          
   @author G. Mulas  -  ITAL_FLAMES Consortium. Ported to CPL by A. Modigliani  

   @param ScienceFrame input science frame to be extracted
   @param SingleFF     input all flat field frame base structure
   @param Order        input order traces structure
   @param ordsta       input order start
   @param ordend       input order end
   @param ix
   @param mask         input mask
   @param aa
   @param varaa
   @param xx
   @param xx2
   @param covarxx
   @param covariance
   @param fibretosolve
   @param ordertosolve
   @param numslices
   @param pfibrecentre
   @param phalfwinsize 
   @param ylow
   @param pyup 
   @param ylow 
   @param yup 
   @param arraysize

   Purpose:
   DRS function called:                              
   Pseudocode:                       

   @note
 */
flames_err 
Std_Extract(flames_frame *ScienceFrame, 
            allflats *SingleFF, 
            orderpos *Order, 
            int32_t ordsta, 
            int32_t ordend, 
            int32_t ix, 
            frame_mask **mask, 
            double **aa, 
            double **varaa, 
            double **xx, 
            double *xx2, 
            double **covarxx, 
            double **covariance, 
            int32_t *fibrestosolve, 
            int32_t *orderstosolve, 
            int32_t *numslices, 
            double ***pfibrecentre, 
            double phalfwinsize, 
            double *pylow, 
            double *pyup, 
            int32_t *ylow, 
            int32_t *yup, 
            int32_t arraysize)
{ 
    int32_t i=0, j=0, m=0, n=0, k=0, o=0, p=0, iy=0;
    double pylown=0, pyupn=0, pylowk=0, pyupk=0;
    int32_t ylown=0, yupn=0, ylowk=0, yupk=0;
    int32_t fibrelowi=0, fibrehighi=0, fibrelowj=0, fibrehighj=0;
    int32_t fibrelowm=0, fibrehighm=0, fibrelown=0, fibrehighn=0;
    int32_t fibrelowo=0, fibrehigho=0;
    int32_t fibrei=0, orderi=0;
    //int32_t orderj=0, fibrej=0;
    int32_t ordern=0, fibren=0, orderk=0, fibrek=0, framek=0;
    int32_t ifibre=0;
    double dreduce=0;
    frame_data fractionn=0, fractionk=0;



    singleflat *myflat=0;
    double *dvecbuf1=0;
    double *dvecbuf2=0;
    double *dvecbuf3=0;
    double *dvecbuf4=0;
    double *dvecbuf5=0;
    double *dvecbuf6=0;
    frame_data *fdvecbuf1=0;
    frame_data *fdvecbuf2=0;
    frame_data *fdvecbuf3=0;
    frame_data *fdvecbuf4=0;
    frame_data *fdvecbuf5=0;
    frame_data *fdvecbuf6=0;
    frame_data *fdvecbuf7=0;
    frame_mask *fmvecbuf1=0;
    frame_mask *fmvecbuf2=0;
    frame_mask *fmvecbuf3=0;
    int32_t *lvecbuf1=0;
    int32_t *lvecbuf2=0;
    int32_t mifibreixoffsetstep=0;
    int32_t mifibreixoffset=0;
    int32_t mifibreixindex=0;
    int32_t upnlimit=0;
    int32_t ioffset=0;
    int32_t ioffset1=0;
    int32_t ioffset2=0;
    int32_t joffset=0;
    int32_t joffset1=0;
    int32_t joffset2=0;
    int32_t moffset=0;
    int32_t moffset1=0;
    int32_t moffset2=0;
    int32_t noffset=0;
    int32_t noffset1=0;
    int32_t noffset2=0;
    int32_t ooffset=0;
    int32_t ooffset1=0;
    int32_t ooffset2=0;
    int32_t poffset=0;
    int32_t poffset1=0;
    int32_t iiindex=0;
    int32_t ijindex=0;
    int32_t imindex=0;
    int32_t ioindex=0;
    int32_t jiindex=0;
    int32_t jnindex=0;
    int32_t joindex=0;
    int32_t mnindex=0;
    int32_t nkindex=0;
    int32_t npindex=0;
    int32_t opindex=0;
    int32_t pmindex=0;
    int32_t ymax=0;
    int32_t orderifibreiindex=0;
    int32_t ordernfibrenixindex=0;
    int32_t orderkfibrekixindex=0;
    int32_t iyixindex=0;



    int actvals=0;
    char drs_verbosity[10];
    //int status=0;
    memset(drs_verbosity, 0, 10);
    if (0 != SCKGETC(DRS_VERBOSITY, 1, 3, &actvals, drs_verbosity)) {
        /* the keyword seems undefined, protest... */
        return(MAREMMA);
    }

    /* Determine here the actual size of the problem to be solved and which
     are the slices to be included */

    (*numslices) = 0;

    dvecbuf6 = pfibrecentre[0][0]+ix;
    lvecbuf1 = SingleFF->lowfibrebounds[0][0]+ix;
    lvecbuf2 = SingleFF->highfibrebounds[0][0]+ix;
    fmvecbuf1 = SingleFF->goodfibres[0][0]+ix;
    fmvecbuf2 = mask[0]+ix;
    fdvecbuf1 = ScienceFrame->frame_array[0]+ix;
    fdvecbuf2 = ScienceFrame->frame_sigma[0]+ix;
    fdvecbuf5 = ScienceFrame->spectrum[ix][0];
    fdvecbuf6 = ScienceFrame->specsigma[ix][0];
    fdvecbuf7 = ScienceFrame->speccovar[ix][0];
    fmvecbuf3 = ScienceFrame->specmask[ix][0];
    mifibreixoffsetstep=SingleFF->subcols*SingleFF->maxfibres;

    for (m=ordsta-Order->firstorder; m<=ordend-Order->firstorder; m++) {
        mifibreixoffset = m*mifibreixoffsetstep;
        for (n=0; n<=(ScienceFrame->num_lit_fibres-1); n++) {
            ifibre = ScienceFrame->ind_lit_fibres[n];
            mifibreixindex = mifibreixoffset+(ifibre*SingleFF->subcols);
            /* should I try to extract this fibre at this slice? It is crucial to
	 skip unextractible slices, since they would invariably lead to 
	 singular matrices, being ill-conditioned problems */
            if(fmvecbuf1[mifibreixindex]!=BADSLICE){
                /* it is at least half good, extract it */
                (*numslices)++;
                fibrestosolve[*numslices] = ifibre;
                orderstosolve[*numslices] = m;
            }
        }
    }

    /* if there are no good slices just free allocated memory and return right
     now */
    if ((*numslices)==0) {
        if ( strcmp(drs_verbosity,"LOW") == 0 ){
        } else {
        	char output[70]; /* only for testing purposes */
            sprintf(output,"bad slice at %d-th column", ix);
            SCTPUT(output);
        }
        return NOERR;
    }

    /* Initialize xx, aa and covariance matrices*/

    dvecbuf5 = xx[1]+1;
    upnlimit = (*numslices)-1;
    for (n=0; n<=upnlimit; n++) dvecbuf5[n]=0;

    dvecbuf1 = aa[1];
    dvecbuf2 = varaa[1];
    dvecbuf3 = covarxx[1];
    dvecbuf4 = covariance[1];
    for (n=1; n<=(*numslices); n++) {
        noffset = n-1;
        noffset1 = noffset*arraysize;
        for (k=1; k<=(*numslices); k++) {
            nkindex = noffset1+k;
            dvecbuf1[nkindex] = 0;
            dvecbuf2[nkindex] = 0;
            dvecbuf3[nkindex] = 0;
            dvecbuf4[nkindex] = 0;
        }
    }

    /* Create matrices and vectors to be used in matrix inversion */

    ymax = ScienceFrame->subrows-1;
    for (n=1; n<=(*numslices); n++) {
        noffset = n-1;
        noffset1 = noffset*arraysize;
        ordern = orderstosolve[n];
        fibren = fibrestosolve[n];
        ordernfibrenixindex =
                        ((ordern*SingleFF->maxfibres)+fibren)*SingleFF->subcols;
        /* we will need these integration limits over and over, compute them once */
        pylow[n] = pylown = dvecbuf6[ordernfibrenixindex]-phalfwinsize;
        pyup[n] = pyupn = dvecbuf6[ordernfibrenixindex]+phalfwinsize;
        ylown = (int32_t) floor(pylown+.5);
        if (ylown<0) ylown = 0;
        ylow[n] = ylown;
        yupn = (int32_t) floor(pyupn+.5);
        if (yupn>ymax) yup[n] = yupn = ymax;
        yup[n] = yupn;
    }

    for (n=1; n<=(*numslices); n++) {
        noffset = n-1;
        noffset1 = noffset*arraysize;
        ordern = orderstosolve[n];
        fibren = fibrestosolve[n];
        ordernfibrenixindex =
                        ((ordern*SingleFF->maxfibres)+fibren)*SingleFF->subcols;
        /* reduce the y loop to the intervals to be used in the
       integration */
        pylown = pylow[n];
        pyupn = pyup[n];
        if (ylow[n]<lvecbuf1[ordernfibrenixindex])
            ylown = lvecbuf1[ordernfibrenixindex];
        else ylown = ylow[n];
        if (yup[n]>lvecbuf2[ordernfibrenixindex])
            yupn = lvecbuf2[ordernfibrenixindex];
        else yupn = yup[n];
        /* integrate the science frame over the interval centered around the
       nth fibre */
        for (iy=ylown; iy<=yupn; iy++) {
            iyixindex = iy*ScienceFrame->subcols;
            /* use this pixel only if it is good in the overall mask */
            if (fmvecbuf2[iyixindex]==0) {
                /* take care of fractional pixels */
                fractionn = 1;
                if ((dreduce=pylown+.5-(double)iy)>0) fractionn -= (frame_data) dreduce;
                if ((dreduce=.5-pyupn+(double)iy)>0) fractionn -= (frame_data) dreduce;
                dvecbuf5[noffset] += fractionn*fdvecbuf1[iyixindex];
            }
        }
        /* in standard extraction, the aa matrix is not symmetric by construction,
       therefore I must loop over all indices */
        for (k=1; k<=(*numslices); k++) {
            nkindex = noffset1+k;
            orderk = orderstosolve[k];
            fibrek = fibrestosolve[k];
            orderkfibrekixindex =
                            ((orderk*SingleFF->maxfibres)+fibrek)*SingleFF->subcols;
            framek = SingleFF->fibre2frame[fibrek];
            myflat = SingleFF->flatdata+framek;
            fdvecbuf3 = myflat->data[0]+ix;
            fdvecbuf4 = myflat->sigma[0]+ix;
            /* the y loop must run only where integration interval overlaps with
	 the kth fibre */
            if (ylow[n]<lvecbuf1[orderkfibrekixindex])
                ylowk = lvecbuf1[orderkfibrekixindex];
            else ylowk = ylow[n];
            if (yup[n]>lvecbuf2[orderkfibrekixindex])
                yupk = lvecbuf2[orderkfibrekixindex];
            else yupk = yup[n];
            /* integrate the kth fibre over the interval centered around the nth
	 fibre */
            for (iy=ylowk; iy<=yupk; iy++) {
                iyixindex = iy*ScienceFrame->subcols;
                if (fmvecbuf2[iyixindex]==0) {
                    /* take care of fractional pixels */
                    fractionn = 1;
                    if ((dreduce=pylown+.5-(double)iy)>0)
                        fractionn -= (frame_data)dreduce;
                    if ((dreduce=.5-pyupn+(double)iy)>0) fractionn -= (frame_data)dreduce;
                    dvecbuf1[nkindex] += fractionn*fdvecbuf3[iyixindex];
                    dvecbuf2[nkindex] += fractionn*fractionn*fdvecbuf4[iyixindex];
                }
            }
            /* now find the overlap between the integration interval around nth
	 fibre n and kth fibre */
            if (ylow[k]<lvecbuf1[orderkfibrekixindex])
                ylowk = lvecbuf1[orderkfibrekixindex];
            else ylowk = ylow[k];
            if (yup[k]>lvecbuf2[orderkfibrekixindex])
                yupk = lvecbuf2[orderkfibrekixindex];
            else yupk = yup[k];
            pylowk = pylow[k];
            pyupk = pyup[k];
            if (ylowk<ylown) ylowk=ylown;
            if (yupk>yupn) yupk=yupn;
            /* compute the covariances of the elements of the xx vector */
            for (iy=ylowk; iy<=yupk; iy++) {
                iyixindex = iy*ScienceFrame->subcols;
                if (fmvecbuf2[iyixindex]==0) {
                    /* take care of fractional pixels */
                    fractionn = fractionk = 1;
                    if ((dreduce=pylown+.5-(double)iy)>0) fractionn-=(frame_data)dreduce;
                    if ((dreduce=.5-pyupn+(double)iy)>0) fractionn-=(frame_data)dreduce;
                    if ((dreduce=pylowk+.5-(double)iy)>0) fractionk-=(frame_data)dreduce;
                    if ((dreduce=.5-pyupk+(double)iy)>0) fractionk-=(frame_data)dreduce;
                    dvecbuf3[nkindex] += fractionn*fractionk*fdvecbuf2[iyixindex];
                }
            }
        }
        /* make a second copy of xx, to keep it after gauss-jordan */
        xx2[n] = dvecbuf5[noffset];
    }

    /* Invert matrix aa using Gauss-Jordan elimination getting in xx the
     deblended spectrum */
    flames_gauss_jordan(aa, (*numslices), xx, 1);

    /* now compute the errors */
    for (i=1; i<=(*numslices); i++) {
        ioffset = i-1;
        ioffset2 = i+1;
        ioffset1 = ioffset*arraysize;
        fibrelowi = i>2 ? ioffset : 1;
        fibrehighi = ioffset2<(*numslices) ? ioffset2 : (*numslices);
        fibrei = fibrestosolve[i];
        orderi = orderstosolve[i];
        for (j=i; j<=fibrehighi; j++) {
            joffset = j-1;
            joffset2 = j+1;
            joffset1 = joffset*arraysize;
            ijindex = ioffset1+j;
            fibrelowj = joffset>fibrelowi ? joffset : fibrelowi;
            fibrehighj = joffset2<fibrehighi ? joffset2 : fibrehighi;
            //fibrej = fibrestosolve[j];
            //orderj = orderstosolve[j];
            /* here go the internal loops to compute the errors */
            for (m=fibrelowj; m<=fibrehighj; m++) {
                moffset = m-1;
                moffset2 = m+1;
                imindex = ioffset1+m;
                moffset1 = moffset*arraysize;
                fibrelowm = moffset>fibrelowj ? moffset : fibrelowj;
                fibrehighm = moffset2<fibrehighj ? moffset2 : fibrehighj;
                for (n=fibrelowm; n<=fibrehighm; n++) {
                    noffset = n-1;
                    noffset2 = n+1;
                    mnindex = moffset1+n;
                    jnindex = joffset1+n;
                    /* start with the first, presumably largest, component */
                    if (dvecbuf3[mnindex]>0)
                        dvecbuf4[ijindex] += dvecbuf1[imindex]*dvecbuf1[jnindex]*
                        dvecbuf3[mnindex];
                    fibrelown = noffset>fibrelowm ? noffset : fibrelowm;
                    fibrehighn = noffset2<fibrehighm ? noffset2 : fibrehighm;
                    for (o=fibrelown; o<=fibrehighn; o++) {
                        ooffset = o-1;
                        ooffset2 = o+1;
                        ooffset1 = ooffset*arraysize;
                        ioindex = ioffset1+o;
                        joindex = joffset1+o;
                        fibrelowo = ooffset>fibrelown ? ooffset : fibrelown;
                        fibrehigho = ooffset2<fibrehighn ? ooffset2 : fibrehighn;
                        for (p=fibrelowo; p<=fibrehigho; p++) {
                            poffset = p-1;
                            poffset1 = poffset*arraysize;
                            npindex = noffset1+p;
                            opindex = ooffset1+p;
                            pmindex = poffset1+m;
                            if (dvecbuf2[opindex]>0)
                                dvecbuf4[ijindex] += dvecbuf1[ioindex]*dvecbuf1[pmindex]*
                                dvecbuf1[joindex]*dvecbuf1[npindex]*xx2[m]*xx2[n]*
                                dvecbuf2[opindex];
                        }
                    }
                }
            }
        }
        /* exploit the symmetry of the covariance */
        for (j=i+1; j<=fibrehighi; j++) {
            jiindex = ((j-1)*arraysize)+i;
            ijindex = ioffset1+j;
            dvecbuf4[jiindex] = dvecbuf4[ijindex];
        }
        /* put the spectrum, variance and mask where they belong */
        iiindex = ioffset1+i;
        orderifibreiindex = (orderi*ScienceFrame->maxfibres)+fibrei;
        fdvecbuf5[orderifibreiindex] = dvecbuf5[ioffset];
        fmvecbuf3[orderifibreiindex] = 1;
        fdvecbuf6[orderifibreiindex] = dvecbuf4[iiindex];
        /* if the following covariance is between this fibre and the following one,
       put it in speccovar */
        if ((ioffset2<=(*numslices)) && (fibrestosolve[ioffset2]==fibrei+1))
            fdvecbuf7[orderifibreiindex] = dvecbuf4[iiindex+1];
    }

    return NOERR;
}
/**@}*/