File: flames_mainoptfast.c

package info (click to toggle)
cpl-plugin-uves 6.1.3+dfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 23,128 kB
  • sloc: ansic: 171,056; sh: 4,359; python: 3,002; makefile: 1,322
file content (934 lines) | stat: -rw-r--r-- 38,655 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*===========================================================================
  Copyright (C) 2001 European Southern Observatory (ESO)

  This program is free software; you can redistribute it and/or 
  modify it under the terms of the GNU General Public License as 
  published by the Free Software Foundation; either version 2 of 
  the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public 
  License along with this program; if not, write to the Free 
  Software Foundation, Inc., 675 Massachusetss Ave, Cambridge, 
  MA 02139, USA.

  Corresponding concerning ESO-MIDAS should be addressed as follows:
    Internet e-mail: midas@eso.org
    Postal address: European Southern Observatory
            Data Management Division 
            Karl-Schwarzschild-Strasse 2
            D 85748 Garching bei Muenchen 
            GERMANY
===========================================================================*/
/* Program  : mainoptfast.c                                                */
/* Author   : G. Mulas  -  ITAL_FLAMES Consortium                          */
/* Date     :                                                              */
/*                                                                         */
/* Purpose  : to do optmal extraction                                      */
/*                                                                         */
/*                                                                         */
/* Input:  see interface                                                   */ 
/*                                                                      */
/* Output:                                                              */
/*                                                                         */
/* DRS Functions called:                                                   */
/* none                                                                    */ 
/*                                                                         */ 
/* Pseudocode:                                                             */
/* Missing                                                                 */ 
/*                                                                         */ 
/* Version  :                                                              */
/* Last modification date: 2002/08/05                                      */
/* Who     When        Why                Where                            */
/* AMo     02-08-05   Add header         header                            */
/*-------------------------------------------------------------------------*/
/* C functions include files */ 

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* MIDAS include files */
#include <flames_midas_def.h>
/* FLAMES-UVES include files */ 
#include <flames_optsynth.h>
#include <flames_writesynth.h>
#include <flames_optimal.h>
#include <flames_scatter.h>
#include <flames_write_spectra.h>
#include <flames_readallff.h>
#include <flames_prepextract.h>
#include <flames_readframe.h>
#include <flames_freeordpos.h>
#include <flames_quickprepextract.h>
#include <flames_doptimal.h>
#include <flames_ffslitmultiply.h>
#include <flames_writeback.h>
#include <flames_freeallflats.h>
#include <flames_freeslitflats.h>
#include <flames_freeframe.h>
#include <flames_readback.h>
#include <flames_newmatrix.h>
#include <flames_computeback.h>
#include <flames_freespectrum.h>
#include <flames_mainoptfast.h>
#include <uves_msg.h>
#include <flames_readordpos.h>
#include <flames_readslitflats.h>


int flames_mainoptfast(const char *IN_A,
                       const cpl_frameset *fibff_set,
                       const cpl_frameset *slitff_set,
                       const char *IN_D,
                       const char *IN_E,
                       const char *BASENAME,
                       const double *MAXDISCARDFRACT,
                       const int *MAXBACKITERS,
                       const int *MINOPTITERSINT,
                       const int *MAXOPTITERSINT,
                       const int *XKILLSIZE,
                       const int *YKILLSIZE,
                       const int *BKGPOL,
                       const char *BKGFITINLINE, //was int
                       const char *BKGFITMETHOD,
                       const char *BKGBADSCAN,  //was int
                       const int *BKGBADWIN,
                       const double *BKGBADMAXFRAC,
                       const int *BKGBADMAXTOT,
                       const double *SIGMA,
                       double *OUTPUTD,
                       int *OUTPUTI)
{ 

    char output[200];
    int i=0;
    int unit=0;
    int actvals=0;
    frame_mask **mask=0;
    int bxdegree=0, bydegree=0;
    double kappa=0;
    double kappa2=0;
    int chisqpixels=0, nfittedparams=0;
    int maxbackiters=0;
    double maxdiscardfract=0;
    int ibuf=0;
    int32_t minoptitersint=0;
    int32_t maxoptitersint=0;
    int32_t xkillsize=0;
    int32_t ykillsize=0;
    double chisquare=0;
    frame_data **backframe;
    frame_data **normcover;
    flames_err status=0;

    flames_frame *ScienceFrame=0;

    allslitflats *Slit_FF=0;

    allflats *Shifted_FF=0;

    orderpos *Order=0;

    //char allfile[CATREC_LEN+2];
    //char slitsfile[CATREC_LEN+2];
    const cpl_frameset* allfile=fibff_set;
    const cpl_frameset* slitsfile=slitff_set;


    char backfile[CATREC_LEN+2];
    char infile[CATREC_LEN+2];
    char catfile[CATREC_LEN+2];
    char orderfile[CATREC_LEN+2];
    int32_t n=0;
    int32_t iframe=0;
    int nval=0;
    int null=0;
    int32_t iorder=0, ifibre=0, ix=0;

    scatterswitch bkgswitch=USEALL;
    scatterswitch2 bkgswitch2=NOBADSCAN;
    int badwinxsize=0;
    int badwinysize=0;
    double badfracthres=0;
    int badtotthres=0;
    char keytype=0;
    int noelem=0;
    int bytelem=0;
    char bkgfitmethod[CATREC_LEN+1];
    int32_t orderoffset=0;
    int32_t realfirstorder=0;
    int32_t reallastorder=0;
    int32_t slitfirstorder=0;
    int32_t slitlastorder=0;
    int32_t negativepixels=0;
    char bkginline=TRUE;

    frame_data *fdvecbuf1=0;
    frame_data *fdvecbuf2=0;
    frame_data *fdvecbuf3=0;



    frame_mask *fmvecbuf1=0;


    frame_data pixelvalue=0;


    int32_t lastiyixindex=0;
    int32_t iorderifibreixstart=0;
    int32_t iorderifibreixend=0;
    int32_t iorderifibreindex=0;
    int32_t iorderifibreixoffset=0;
    int32_t iorderifibreixindex=0;
    int32_t ixiorderifibreindex=0;

    memset(output, 0, 200);
    memset(bkgfitmethod, 0, CATREC_LEN+1);

    bkgswitch = USEALL;

    SCSPRO("standfast"); /* Get into MIDAS Env. */

    /* Read once and for all, here at the beginning, what MIDAS keywords we
    need */

    /* get input frame name from MIDAS env.*/
    SCKGETC(IN_A,1,CATREC_LEN+1,&nval,infile);

    /* read input table name */
    SCKGETC(IN_D,1,160,&nval,backfile);

    /* read order table name */
    SCKGETC(IN_E,1,160,&nval,orderfile);

    /* read output base name */
    if (SCKGETC(BASENAME,1,160,&nval,catfile)!=0) {
        /* problems reading BASENAME */
        SCTPUT("Error reading the base name for output spectra");
        return flames_midas_fail();
    }

    /* initialise MAXDISCARDFRACT from keyword */
    if (SCKRDD(MAXDISCARDFRACT, 1, 1, &actvals, &maxdiscardfract, &unit,
                    &null) != 0) {
        /* problems reading MAXDISCARDFRACT */
        SCTPUT("Error reading the MAXDISCARDFRACT keyword");
        return flames_midas_fail();
    }
    /* initialise MAXBACKITERS from keyword */
    if (SCKRDI(MAXBACKITERS, 1, 1, &actvals, &maxbackiters, &unit,
                    &null) != 0) {
        /* problems reading MAXBACKITERS */
        SCTPUT("Error reading the MAXBACKITERS keyword");
        return flames_midas_fail();
    }

    /* read the MINOPTITERSINT keyword */
    if (SCKRDI(MINOPTITERSINT, 1, 1, &actvals, &ibuf, &unit, &null) != 0) {
        /* problems reading MINOPTITERSINT */
        SCTPUT("Error reading the MINOPTITERSINT keyword");
        return flames_midas_fail();
    }
    if (ibuf<1) {
        SCTPUT("Warning: illegal (<1) value for MINOPTITERSINT, falling back to 1");
        ibuf=1;
    }
    minoptitersint = (int32_t) ibuf;
    /* read the MAXOPTITERSINT keyword */
    if (SCKRDI(MAXOPTITERSINT, 1, 1, &actvals, &ibuf, &unit, &null) != 0) {
        /* problems reading MAXOPTITERSINT */
        SCTPUT("Error reading the MAXOPTITERSINT keyword");
        return flames_midas_fail();
    }
    maxoptitersint = (int32_t) ibuf;
    if (maxoptitersint<minoptitersint) {
        SCTPUT("Warning: illegal value (too low) for MAXOPTITERSINT, \
falling back to MINOPTITERSINT");
        maxoptitersint=minoptitersint;
    }

    /* read the XKILLSIZE keyword */
    if (SCKRDI(XKILLSIZE, 1, 1, &actvals, &ibuf, &unit, &null) != 0) {
        /* problems reading XKILLSIZE */
        SCTPUT("Error reading the XKILLSIZE keyword");
        return flames_midas_fail();
    }
    if (ibuf<0) {
        SCTPUT("Warning: illegal (negative) value for XKILLSIZE, falling \
back to 0");
        ibuf=0;
    }
    xkillsize = (int32_t) ibuf;
    /* read the YKILLSIZE keyword */
    if (SCKRDI(YKILLSIZE, 1, 1, &actvals, &ibuf, &unit, &null) != 0) {
        /* problems reading YKILLSIZE */
        SCTPUT("Error reading the YKILLSIZE keyword");
        return flames_midas_fail();
    }
    if (ibuf<0) {
        SCTPUT("Warning: illegal (negative) value for YKILLSIZE, falling \
back to 0");
        ibuf=0;
    }
    ykillsize = (int32_t) ibuf;


    /* initialise background fitting scalars */
    if (SCKRDI(BKGPOL, 1, 1, &actvals, &bxdegree, &unit, &null)
                    != 0) {
        /* problems reading xdegree */
        SCTPUT("Error reading the x degree of the background polynomial");
        return flames_midas_fail();
    }
    if (SCKRDI(BKGPOL, 2, 1, &actvals, &bydegree, &unit, &null)
                    != 0) {
        /* problems reading xdegree */
        SCTPUT("Error reading the y degree of the background polynomial");
        return flames_midas_fail();
    }

    /* Is inline background fitting and subtraction required? */
    if (SCKFND_string(BKGFITINLINE, &keytype, &noelem, &bytelem) != 0) {
        /* SCKFND failed, major problems */
        SCTPUT("Internal MIDAS error in mainopt: SCKFND failed");
        return flames_midas_fail();
    }
    switch(keytype) {
    case 'C':
        /* it exists and it is a character keyword, do read it */
        if (SCKGETC(BKGFITINLINE, 1, CATREC_LEN, &nval, bkgfitmethod)
                        != 0) {
            /* problems reading BKGFITINLINE */
            SCTPUT("Warning: error reading the BKGFITINLINE keyword, falling back to \
default");
        }
        else {
            /* is the string long enough to be unambiguous? */
            if (nval<1) {
                SCTPUT("Warning: BKGFITINLINE is ambiguous, falling back to default");
            }
            else {
                /* convert bkgfitmethod to upper case, to ease the subsequent check */
                for (i=0; i<=(nval-1); i++) bkgfitmethod[i] = toupper(bkgfitmethod[i]);
                /* compare as many letters as we have with the expected values */
                if (strncmp("YES", bkgfitmethod, (size_t) nval) == 0)
                    bkginline = TRUE;
                else if (strncmp("NO", bkgfitmethod, (size_t) nval)
                                == 0) bkginline = FALSE;
                else {
                    SCTPUT("Warning: unsupported BKGFITINLINE value, falling back to \
default");
                }
            }
        }
        break;
    case ' ':
        /* the keyword does not exist at all */
        SCTPUT("Warning: BKGFITINLINE is undefined, falling back to default");
        break;
    default:
        /* the keyword is of the wrong type */
        SCTPUT("Warning: BKGFITINLINE is not a string, falling back to default");
        break;
    }

    /* before trying to read it, make sure that BKGFITMETHOD exists and it is
    of the appropriate type */
    if (SCKFND_string(BKGFITMETHOD, &keytype, &noelem, &bytelem) != 0) {
        /* SCKFND failed, give up! */
        SCTPUT("Internal MIDAS error in mainopt: SCKFND failed");
        return flames_midas_fail();
    }
    switch(keytype) {
    case 'C':
        /* it exists and it is a character keyword, go ahead and read it */
        if (SCKGETC(BKGFITMETHOD, 1, CATREC_LEN, &nval, bkgfitmethod)
                        != 0) {
            /* problems reading BKGFITMETHOD */
            SCTPUT("Warning: error reading the BKGFITMETHOD keyword, falling back to \
default");
        }
        else {
            /* is the string long enough to be unambiguous? */
            if (nval<2) {
                /* no, fall back to the default */
                SCTPUT("Warning: BKGFITMETHOD is ambiguous, falling back to default");
            }
            else {
                /* convert bkgfitmethod to upper case, to ease the subsequent check */
                for (i=0; i<=(nval-1); i++) bkgfitmethod[i] = toupper(bkgfitmethod[i]);
                /* compare as many letters as we have with the expected values */
                if (strncmp("ALL", bkgfitmethod, (size_t) nval) == 0)
                    bkgswitch = USEALL;
                else if (strncmp("MEDIAN", bkgfitmethod, (size_t) nval)
                                == 0) bkgswitch = USEMEDIAN;
                else if (strncmp("MINIMUM", bkgfitmethod, (size_t) nval)
                                == 0) bkgswitch = USEMINIMUM;
                else if (strncmp("AVERAGE", bkgfitmethod, (size_t) nval)
                                == 0) bkgswitch = USEAVERAGE;
                else {
                    SCTPUT("Warning: unsupported BKGFITMETHOD value, falling back to \
default");
                }
            }
        }
        break;
    case ' ':
        /* the keyword does not exist at all */
        SCTPUT("Warning: BKGFITMETHOD is undefined, falling back to default");
        break;
    default:
        /* the keyword is of the wrong type */
        SCTPUT("Warning: BKGFITMETHOD is not a string, falling back to default");
        break;
    }

    /* before trying to read it, make sure that BKGFITMETHOD exists and it is
    of the appropriate type */
    if (SCKFND_string(BKGBADSCAN, &keytype, &noelem, &bytelem) != 0) {
        /* SCKFND failed, give up! */
        SCTPUT("Internal MIDAS error in mainopt: SCKFND failed");
        return flames_midas_fail();
    }
    switch(keytype) {
    case 'C':
        /* it exists and it is a character keyword, go ahead and read it */
        if (SCKGETC(BKGBADSCAN, 1, CATREC_LEN, &nval, bkgfitmethod)
                        != 0) {
            /* problems reading BKGFITMETHOD */
            SCTPUT("Warning: error reading the BKGBADSCAN keyword, falling back to \
default");
        }
        else {
            /* is the string long enough to be unambiguous? */
            if (nval<1) {
                /* no, fall back to the default */
                SCTPUT("Warning: BKGBADSCAN is ambiguous, falling back to default");
            }
            else {
                /* convert bkgfitmethod to upper case, to ease the subsequent check */
                for (i=0; i<=(nval-1); i++) bkgfitmethod[i] = toupper(bkgfitmethod[i]);
                /* compare as many letters as we have with the expected values */
                if (strncmp("NONE", bkgfitmethod, (size_t) nval) == 0)
                    bkgswitch2 = NOBADSCAN;
                else if (strncmp("FRACTION", bkgfitmethod, (size_t) nval)
                                == 0) bkgswitch2 = FRACBADSCAN;
                else if (strncmp("ABSOLUTE", bkgfitmethod, (size_t) nval)
                                == 0) bkgswitch2 = ABSBADSCAN;
                else {
                    SCTPUT("Warning: unsupported BKGBADSCAN value, falling back to \
default");
                }
            }
        }
        break;
    case ' ':
        /* the keyword does not exist at all */
        SCTPUT("Warning: BKGBADSCAN is undefined, falling back to default");
        break;
    default:
        /* the keyword is of the wrong type */
        SCTPUT("Warning: BKGBADSCAN is not a string, falling back to default");
        break;
    }

    /* if neighborhood bad pixel scanning was requested, read the other
    keywords needed */
    if (bkgswitch2 == FRACBADSCAN) {
        if ((SCKRDI(BKGBADWIN, 1, 1, &actvals, &badwinxsize, &unit, &null) != 0)
                        || (SCKRDI(BKGBADWIN, 2, 1, &actvals, &badwinysize, &unit, &null)
                                        != 0)) {
            SCTPUT("Error reading the BKGBADWIN keyword");
            return flames_midas_fail();
        }
        if (SCKRDD(BKGBADMAXFRAC, 1, 1, &actvals, &badfracthres, &unit,
                        &null) != 0) {
            SCTPUT("Error reading the BKGBADMAXFRAC keyword");
            return flames_midas_fail();
        }
        /* check the values read for consistence */
        if ((badwinxsize < 0) || (badwinysize < 0)) {
            SCTPUT("Warning: BKGBADWIN values must be non negative, disabling \
BKGBADSCAN");
            bkgswitch2 = NOBADSCAN;
        }
        if (badfracthres < 0) {
            SCTPUT("Warning: BKGBADMAXFRAC value must be non negative, disabling \
BKGBADSCAN");
            bkgswitch2 = NOBADSCAN;
        }
    }
    else if (bkgswitch2 == ABSBADSCAN) {
        if ((SCKRDI(BKGBADWIN, 1, 1, &actvals, &badwinxsize, &unit, &null) != 0)
                        || (SCKRDI(BKGBADWIN, 2, 1, &actvals, &badwinysize, &unit, &null)
                                        != 0)) {
            SCTPUT("Error reading the BKGBADWIN keyword");
            return flames_midas_fail();
        }
        if (SCKRDI(BKGBADMAXTOT, 1, 1, &actvals, &badtotthres, &unit,
                        &null) != 0) {
            SCTPUT("Error reading the BKGBADMAXTOT keyword");
            return flames_midas_fail();
        }
        /* check the values read for consistence */
        if ((badwinxsize < 0) || (badwinysize < 0)) {
            SCTPUT("Warning: BKGBADWIN values must be non negative, disabling \
BKGBADSCAN");
            bkgswitch2 = NOBADSCAN;
        }
        if (badtotthres < 0) {
            SCTPUT("Warning: BKGBADMAXTOT value must be non negative, disabling \
BKGBADSCAN");
            bkgswitch2 = NOBADSCAN;
        }
    }

    /* read the kappa factor to be used later in kappa-sigma clipping */
    if ((status=SCKRDD(SIGMA, 1, 1, &actvals, &kappa, &unit, &null))!=0) {
        /* something went wrong while reading the kappa-sigma factor */
        sprintf(output, "Error %d while reading SIGMA keyword", status);
        SCTPUT(output);
        memset(output, '\0', 70);
        return flames_midas_fail();
    }
    /* compute once and for all the square of kappa, as we will be using that */
    kappa2 = kappa*kappa;


    /* Link the MIDAS names of the frames to the physical ones */

    if(!(ScienceFrame = calloc(1, sizeof(flames_frame)))) {
        SCTPUT("Allocation error during ScienceFrame memory allocation");
        return flames_midas_fail();
    }

    /* let's read the Science Frame */
    sprintf(output, "I'm reading the frame %s", infile);
    SCTPUT(output);

    if (readframe(ScienceFrame, infile) != NOERR) {
        SCTPUT("Error while reading the frame");
        return flames_midas_fail();
    }

    /* Read the table data and then put them in the C structures */
    sprintf(output,"Reading the order/fibre table...");
    SCTPUT(output);
    if(!(Order = calloc(1, sizeof(orderpos)))) {
        SCTPUT("Allocation error during the allocation of Order structure");
        return flames_midas_fail();
    }
    /* use the readordpos function to read the descriptors */
    if (readordpos(orderfile, Order) != NOERR) {
        SCTPUT("Error while reading the order table");
        return flames_midas_fail();
    }
    /* does the order table match the Science frame chip? */
    if(Order->chipchoice != ScienceFrame->chipchoice) {
        /* no, it doesn't */
        SCTPUT("Error: chip mismatch between Science frame and order table");
        return flames_midas_fail();
    }

    /* initialise firstorder and lastorder in ScienceFrame from Order */
    ScienceFrame->firstorder = Order->firstorder;
    ScienceFrame->lastorder = Order->lastorder;
    ScienceFrame->tab_io_oshift = Order->tab_io_oshift;

    /* allocate and initialise the frame which will contain the
    estimated background. This will remain zero if no background fitting 
    was required*/
    lastiyixindex = (ScienceFrame->subrows*ScienceFrame->subcols)-1;
    backframe = fdmatrix(0, ScienceFrame->subrows-1, 0,
                    ScienceFrame->subcols-1);
    memset(&backframe[0][0], 0,
           ScienceFrame->subrows*ScienceFrame->subcols*sizeof(frame_data));

    if (bkginline==TRUE) {
        /* Inline background fitting and subtraction required */

        SCTPUT("*** Step 1: Background fitting and subtraction ***\n");

        sprintf(output, "I'm reading the background table %s", backfile);
        SCTPUT(output); /* Display text w/o storing it into MIDAS logfile */
        memset(output, '\0', 70);

        /* read in the background table */
        if ((status=readback(&(ScienceFrame->back), backfile, bxdegree, bydegree))
                        != NOERR) {
            /* something went wrong while reading the background table */
            sprintf(output, "Error %d while reading the background table", status);
            SCTPUT(output);
            memset(output, '\0', 70);
            return flames_midas_fail();
        }

        /* Calculate the fit model of the background */

        SCTPUT("Start the background fitting procedure");

        if (ScienceFrame->back.Window_Number > 0) {
            if (scatter(ScienceFrame, Order, bkgswitch, bkgswitch2, badwinxsize,
                            badwinysize, badfracthres, badtotthres, kappa2,
                            (int32_t) maxbackiters, maxdiscardfract, OUTPUTI)) {
                SCTPUT("Error executing the scatter function");
                return flames_midas_fail();
            }
            /* compute the estimated background */
            if (computeback(ScienceFrame, backframe) != NOERR) {
                SCTPUT("Error computing fitted background");
                return flames_midas_fail();
            }
            /* subtract the estimated background from the data frame */
            /* the error of the estimated background is assumed to be negligible */
            SCTPUT("Subtracting fitted background from Science Frame");
            fdvecbuf1 = ScienceFrame->frame_array[0];
            fdvecbuf2 = backframe[0];
            for (ix=0; ix<=lastiyixindex; ix++) {
                fdvecbuf1[ix] -= fdvecbuf2[ix];
            }
            /* some more black magic to make the thing more robust: scan the frame
    for any negative pixel values; if any are found, compare them to the
    standard deviation: if the negative value is not compatible with zero, 
    otherwise mark that pixel as bad */
            negativepixels=0;
            fdvecbuf1 = ScienceFrame->frame_array[0];
            fdvecbuf2 = ScienceFrame->frame_sigma[0];
            fmvecbuf1 = ScienceFrame->badpixel[0];
            for (ix=0; ix<=lastiyixindex; ix++) {
                if (fmvecbuf1[ix]==0 && (pixelvalue=fdvecbuf1[ix])<0) {
                    if ((pixelvalue*pixelvalue)>4*fdvecbuf2[ix]) {
                        fmvecbuf1[ix]=1;
                        negativepixels++;
                    }
                }
            }
            if (negativepixels!=0) {
                sprintf(output, "Warning: %d pixels result lower than fitted \
background", negativepixels);
                SCTPUT(output);
                SCTPUT("either they are unmasked bad pixels or some contamination is");
                SCTPUT("skewing background determination");
            }
            SCTPUT("Writing fitted background frame to middumma.bdf");
            if (writeback(ScienceFrame, "middumma.bdf", backframe)!=NOERR)
                SCTPUT("Warning: error writing background frame to disk");
        }
        else {
            SCTPUT("Error: no regions available for background estimation");
            return flames_midas_fail();
        }

    }

    /* Allocate memory for the Shifted_FF structure */

    if(!(Shifted_FF = calloc(1, sizeof(allflats)))) {
        SCTPUT("Allocation error during Shifted_FF structure memory allocation");
        return flames_midas_fail();
    }

    /* let's read the fibre FFs */
    sprintf(output, "I'm reading the fibre FF frames");
    SCTPUT(output);

    if (readallff(allfile, Shifted_FF) != NOERR) {
        SCTPUT("Error while reading the fibre Flat Field frames");
        return flames_midas_fail();
    }

    /* is this fibre FF frames set shiftable? */
    if (Shifted_FF->shiftable != 'y') {
        sprintf(output, "The fibre FF set is not slit-flatfielded");
        SCTPUT(output);
        return flames_midas_fail();
    }

    if (ScienceFrame->nflats != 0) {
        /* I need to deallocate the yshift vector and to reallocate it with
      a different size */
        free_dvector(ScienceFrame->yshift, 0, ScienceFrame->nflats-1);
    }
    /* set ScienceFrame->nflats equal to Shifted_FF->nflats, and allocate
    ScienceFrame->yshift accordingly */
    ScienceFrame->nflats = Shifted_FF->nflats;
    ScienceFrame->yshift = dvector(0, ScienceFrame->nflats-1);
    /* here, in the "fast" version, set the yshifts to zero
    with the simulated data the shifts ARE zero! */
    for (iframe=0; iframe <= (Shifted_FF->nflats-1); iframe++)
        ScienceFrame->yshift[iframe]=0;

    /* we must multiply the "shifted" FF frames by the slit FF, hence allocate
    and load the latter */
    if(!(Slit_FF = calloc(1, sizeof(allslitflats)))) {
        SCTPUT("Allocation error during Slit_FF memory allocation");
        return flames_midas_fail();
    }
    /* let's read the slit FFs */
    sprintf(output, "I'm reading the slit FF frames");
    SCTPUT(output);
    memset(output, '\0', 70);
    if ((status = readslitflats(slitsfile, Slit_FF)) != NOERR) {
        /* problems reading slitflats members from disk */
        SCTPUT("Error while reading the slit Flat Field frames");
        return flames_midas_fail();
    }
    orderoffset = Slit_FF->tab_io_oshift-Order->tab_io_oshift;
    slitfirstorder = Slit_FF->firstorder;
    slitlastorder = Slit_FF->lastorder;
    realfirstorder = Order->firstorder;
    if (orderoffset > 0) realfirstorder += orderoffset;
    reallastorder = Slit_FF->lastorder+orderoffset;
    if (reallastorder > Order->lastorder) reallastorder = Order->lastorder;
    if (realfirstorder > reallastorder) {
        /* this should really never happen with sane data, complain and exit */
        strcpy(output, "Error: The orders in the slit FF(s) and in the order \
table being used do not overlap at all!");
        SCTPUT(output);
        return flames_midas_fail();
    }
    /* make sure we do not attempt extraction for uncovered fibres */
    fmvecbuf1 = Shifted_FF->goodfibres[0][0];
    if (Order->firstorder<realfirstorder) {
        iorderifibreixstart = 0;
        iorderifibreixend = ((realfirstorder-Order->firstorder)*
                        Shifted_FF->maxfibres*Shifted_FF->subcols)-1;
        for (ix=iorderifibreixstart; ix<=iorderifibreixend; ix++) {
            fmvecbuf1[ix] = BADSLICE;
        }
    }
    if (Order->lastorder>reallastorder) {
        iorderifibreixstart = (reallastorder-Order->firstorder+1)*
                        Shifted_FF->maxfibres*Shifted_FF->subcols;
        iorderifibreixend = ((Order->lastorder-Order->firstorder)*
                        Shifted_FF->maxfibres*Shifted_FF->subcols)-1;
        for (ix=iorderifibreixstart; ix<=iorderifibreixend; ix++) {
            fmvecbuf1[ix] = BADSLICE;
        }
    }
    /* correct for the ycorrection, if present */
    if (Order->corrected=='t') {
        for (iframe=0; iframe<=(Slit_FF->nflats-1);iframe++)
            Slit_FF->slit[iframe].yshift -= Order->ycorrection;
    }
    /* do multiply the shifted fibre FF frames by the slit FF, in place
    to save memory */
    SCTPUT("Multiplying the shifted FF frame(s) by the slit FF frame(s)");
    if (ffslitmultiply(Slit_FF, Order, Shifted_FF, Shifted_FF) != NOERR) {
        SCTPUT("Error multiplying the shifted fibre FF by the slit FF");
        return flames_midas_fail();
    }
    /* copy the normalisation factors from the slit FF structure before
    freeing it for good */
    normcover = fdmatrix(0, Slit_FF->lastorder-Slit_FF->firstorder,
                    0, Slit_FF->subcols-1);
    memcpy(normcover[0], Slit_FF->normfactor[0],
           (size_t) ((Slit_FF->lastorder-Slit_FF->firstorder+1)*
                           Slit_FF->subcols)*sizeof(frame_data));
    /* finally free for good the memory for the slit FF */
    if (freeslitflats(Slit_FF)!=NOERR) {
        SCTPUT("Error while freeing the memory for the Slit_FF structure");
        return flames_midas_fail();
    }
    free(Slit_FF);

    SCTPUT("\n*** Step 2: prepare merged bad pixel mask and final \
initialisations ***\n");
    /* allocate the global, merged bad pixel mask */
    mask=fmmatrix(0,ScienceFrame->subrows-1,0,ScienceFrame->subcols-1);
    if(!mask) {
        SCTPUT("Error in allocating mask matrix");
        return flames_midas_fail();
    }

    /* initialise the global, merged bad pixel mask to be used
    in the subsequent optimal extraction, initialise the lookup tables for 
    lit fibres in the ScienceFrame and allocate the arrays to store the 
    allocated spectra again in ScienceFrame */
    if (prepextract(ScienceFrame, Shifted_FF, Order, normcover, orderoffset,
                    realfirstorder, reallastorder, mask)!=NOERR) {
        /* something went wrong in prepextract */
        SCTPUT("Error in prepextract");
        return flames_midas_fail();
    }


    /* Going to do the real spectrum extraction */
    SCTPUT("\n*** Step 3: optimal extraction proper ***\n");
    if (doptimal(ScienceFrame, Order, Shifted_FF, kappa2, mask, backframe,
                    normcover, orderoffset, realfirstorder, reallastorder,
                    minoptitersint, maxoptitersint, xkillsize, ykillsize)!=NOERR) {
        SCTPUT("Error in doptimal");
        return flames_midas_fail();
    }

    /* free the old bad pixel mask, replace it with the global mask */
    free_fmmatrix(ScienceFrame->badpixel, 0, ScienceFrame->subrows-1, 0,
                  ScienceFrame->subcols-1);
    ScienceFrame->badpixel = mask;

    /* build the fitted Science Frame, do it in place to save memory */
    if (optsynth(ScienceFrame, Shifted_FF, Order, &backframe, &chisquare,
                    &chisqpixels, &nfittedparams)!=NOERR){
        SCTPUT("Error computing the fitted frame");
        return flames_midas_fail();
    }
    SCKWRD(OUTPUTD, &chisquare, 1, 1, &unit);
    SCKWRI(OUTPUTI, &chisqpixels, 1, 1, &unit);
    SCKWRI(OUTPUTI, &nfittedparams, 2, 1, &unit);
    SCTPUT("Writing the synthesized data frame to middummb.bdf");
    SCTPUT("Writing the synthesized sigma frame to middummc.bdf");
    SCTPUT("Writing the overall mask to middummd.bdf");
    if (writesynth(ScienceFrame, "middummb.bdf", "middummc.bdf", "middummd.bdf")
                    != NOERR)
        SCTPUT("Warning: error writing dummy debugging frames");

    SCTPUT("\n*** Step 4: write extrated spectra to disk, clean up and \
exit ***\n");

    /* let's free a bit of memory */

    /* free the estimated background frame, we don't need it any more */
    free_fdmatrix(backframe, 0, ScienceFrame->subrows-1, 0,
                  ScienceFrame->subcols-1);

    /* free the normcover array */
    free_fdmatrix(normcover, 0, slitlastorder-slitfirstorder,
                  0, ScienceFrame->subcols-1);

    /* Creating the output catalog of the spectra extracted */
    //Fixme: the next 3 lines are useless as that catalog is not used elsewhere
    //SCTPUT("Creating catalog of the spectra extracted");
    //SCCCRE("spectra.cat",F_IMA_TYPE,0);
    //SCTPUT("Created catalog of Spectra ");

    /* can these spectra be normalised? */
    if ((Order->corrected == 't')&&(Shifted_FF->normalised == 'y')) {
        /* yes, compensation was performed already */
        SCTPUT("Correcting for normalisation factors");
        fdvecbuf1 = Shifted_FF->normfactors[0][0];
        fdvecbuf2 = Shifted_FF->normsigmas[0][0];
        fmvecbuf1 = Shifted_FF->goodfibres[0][0];
        fdvecbuf3 = ScienceFrame->spectrum[0][0];
        frame_data* fdvecbuf4 = ScienceFrame->normsigma[0][0];
        frame_data* fdvecbuf5 = ScienceFrame->specsigma[0][0];
        frame_data* fdvecbuf6 = ScienceFrame->normspec[0][0];
        frame_mask* fmvecbuf2 = ScienceFrame->specmask[0][0];
        frame_mask* fmvecbuf3 = ScienceFrame->normmask[0][0];
        for (ifibre=0; ifibre<=(ScienceFrame->maxfibres-1); ifibre++) {
            /* is this fibre lit? */
            if ((ScienceFrame->fibremask[ifibre] == TRUE) &&
                            (Shifted_FF->fibremask[ifibre] == TRUE)) {
                for (iorder=0; iorder<=(Order->lastorder-Order->firstorder); iorder++) {
                    iorderifibreindex = (iorder*ScienceFrame->maxfibres)+ifibre;
                    iorderifibreixoffset = iorderifibreindex*ScienceFrame->subcols;
                    for (ix=0; ix<=(ScienceFrame->subcols-1); ix++) {
                        iorderifibreixindex = iorderifibreixoffset+ix;
                        ixiorderifibreindex = (ix*(1+Order->lastorder-Order->firstorder)*
                                        ScienceFrame->maxfibres)+iorderifibreindex;
                        /* can this fibre be corrected here? */
                        if ((fmvecbuf2[ixiorderifibreindex]==1) &&
                                        (fmvecbuf1[iorderifibreixindex]==GOODSLICE)) {
                            /* yes, therefore correct and propagate errors */
                            frame_data normvalue = fdvecbuf1[iorderifibreixindex];
                            frame_data normvalue2 = normvalue*normvalue;
                            pixelvalue = ScienceFrame->spectrum[ix][iorder][ifibre];
                            fdvecbuf4[ixiorderifibreindex] =
                                            (fdvecbuf5[ixiorderifibreindex]/normvalue2) +
                                            ((pixelvalue*pixelvalue)*fdvecbuf2[iorderifibreixindex]/
                                                            (normvalue2*normvalue2));
                            fdvecbuf6[ixiorderifibreindex] =
                                            fdvecbuf3[ixiorderifibreindex]/normvalue;
                            fmvecbuf3[ixiorderifibreindex] = 1;
                        }
                        /* no, mark this slice as bad */
                        else {
                            fmvecbuf3[ixiorderifibreindex] = 0;
                            fdvecbuf6[ixiorderifibreindex] = 0;
                            fdvecbuf4[ixiorderifibreindex] = 0;
                        }
                    }
                }
            }
        }
    }
    else {
        SCTPUT("Warning: no correction factors available");
        fdvecbuf1 = ScienceFrame->normspec[0][0];
        fdvecbuf2 = ScienceFrame->normsigma[0][0];
        fmvecbuf1 = ScienceFrame->normmask[0][0];
        for (ifibre=0; ifibre<=(ScienceFrame->maxfibres-1); ifibre++) {
            /* is this fibre lit? */
            if ((ScienceFrame->fibremask[ifibre] == TRUE) &&
                            (Shifted_FF->fibremask[ifibre] == TRUE)) {
                for (iorder=0; iorder<=(Order->lastorder-Order->firstorder); iorder++) {
                    iorderifibreindex = (iorder*ScienceFrame->maxfibres)+ifibre;
                    for (ix=0; ix<=(ScienceFrame->subcols-1); ix++) {
                        ixiorderifibreindex = (ix*(1+Order->lastorder-Order->firstorder)*
                                        ScienceFrame->maxfibres)+iorderifibreindex;
                        fmvecbuf1[ixiorderifibreindex] = 0;
                        fdvecbuf1[ixiorderifibreindex] = 0;
                        fdvecbuf2[ixiorderifibreindex] = 0;
                    }
                }
            }
        }
    }

    for (n=0; n<ScienceFrame->maxfibres; n++) {
        if(ScienceFrame->fibremask[n] == TRUE) {
            if (n==0) sprintf(output,"Writing spectrum for the first fibre...");
            else if (n==1) sprintf(output,"Writing spectrum for the second fibre...");
            else if (n==2) sprintf(output,"Writing spectrum for the third fibre...");
            else sprintf(output,"Writing spectrum for the %d-th fibre...", n+1);
            SCTPUT(output);
            memset(output, '\0', 70);
            status=Write_Spectra(ScienceFrame, n, catfile);
            if (status) SCTPUT("Error during the writing on disk");
            else if (n==0) sprintf(output,"Spectrum for the first fibre written");
            else if (n==1) sprintf(output,"Spectrum for the second fibre written");
            else if (n==2) sprintf(output,"Spectrum for the third fibre written");
            else sprintf(output,"Spectrum for the %d-th fibre written", n+1);
            SCTPUT(output);
        }
    }

    /* finally free for good the ScienceFrame (including the spectrum)
    Shifted_FF and Order */
    if (free_spectrum(ScienceFrame)!=NOERR) {
        SCTPUT("Error while freeing the spectrum in the ScienceFrame structure");
        return flames_midas_fail();
    }
    if (freeframe(ScienceFrame)!=NOERR) {
        SCTPUT("Error while freeing the memory of the ScienceFrame structure");
        return flames_midas_fail();
    }
    free(ScienceFrame);
    if (freeallflats(Shifted_FF)!=NOERR) {
        SCTPUT("Error while freeing the memory of the Shifted_FF structure");
        return flames_midas_fail();
    }
    free(Shifted_FF);
    if (freeordpos(Order)!=NOERR) {
        SCTPUT("Error while freeing the memory of the Order structure");
        return flames_midas_fail();
    }
    free(Order);

    SCTPUT("\n*** Optimal extraction complete ***\n");

    return SCSEPI();

}