1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
|
/*
* This file is part of the HDRLDEMO pipeline
* Copyright (C) 2020 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include <cpl.h>
#include <string.h>
#include <math.h>
#include "hdrl_resample.h"
#include "hdrl_utils.h"
#ifndef _OPENMP
#define omp_get_max_threads() 1
#define omp_get_thread_num() 0
#else
#include <omp.h>
#endif
#include <sys/time.h>
/*-----------------------------------------------------------------------------
Defines
-----------------------------------------------------------------------------*/
/* Not very elegant but it removes compiler warnings */
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 200112L
#elif (_POSIX_C_SOURCE - 0) < 200112L
#undef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200112L
#endif
/* maximum keyword length for FITS headers, including '\0' */
#define KEYWORD_LENGTH 81
/* Default field margin (in percent), if the user does not specify any. 5
* percent is also used in the software package swarp */
#define FIELDMARGIN 5.
/* use bits 0-52 for the value (the pixel table row), this allows to convert
* pixel tables with up to 9e15 pixels into a pixel grid */
#define PT_IDX_MASK 0x1FFFFFFFFFFFFFll
/* use bits 53-62 to store the thread ID, this allows parallelization with up to
* 1024 cores */
#define XMAP_BITMASK 0x3FFll /* 1023 */
#define XMAP_LSHIFT 53ll
typedef struct {
double crpix1, crpix2; /* the reference point */
double crval1, crval2; /* the coordinate values at the ref. point */
double cd11, cd12, cd21, cd22; /* the four elements of the CDi_j matrix */
double cddet; /* the determinant of the CDi_j matrix */
} hdrl_resample_smallwcs;
typedef struct {
unsigned int npix; /* number of pixels in this grid point */
cpl_size *pix; /* the row number(s) in the pixel table */
} hdrl_resample_pixels_ext;
typedef struct {
/* The pixel grid array, elements can be:
0: empty
positive: row_number in the pixel table
negative: -(i_ext+1) in the extension array,
bits 53-62 contain the map index */
cpl_size *pix;
cpl_size nx; /* horizontal spatial size */
cpl_size ny; /* vertical spatial size */
cpl_size nz; /* size in dispersion direction */
unsigned short nmaps; /* number of extension maps */
cpl_size *nxmap; /* number of filled pixels in the extension maps */
cpl_size *nxalloc; /* number of allocated pixels in the extension maps */
hdrl_resample_pixels_ext **xmaps; /* the extension maps */
} hdrl_resample_pixgrid;
/*----------------------------------------------------------------------------*/
/**
@defgroup hdrl_resample Resample 2D/3D images/cubes
@brief
Algorithms to resample 2D images and 3D cubes onto a common grid based on the
MUSE code.
The routine currently implements the following algorithms:
- Nearest neighbor resampling
- Weighted resampling using Renka weighting function
- Weighted resampling using inverse distance weighting function
- Weighted resampling using quadratic inverse distance weighting function
- Weighted resampling using a drizzle-like weighting scheme
- Weighted resampling using a lanczos-like restricted sinc for weighting
The 2D and 3D interpolation is done in 2 dimension and 3 dimension,
respectively. Moreover, additional error based weights can be taken into
account.
The calculation is performed by calling the top-level function
hdrl_resample_compute(). The latter does not directly work on images but on a
cpl table. The table is created from a 2D image by calling the function
hdrl_resample_image_to_table() or from a 3D cube by calling the function
hdrl_resample_imagelist_to_table(). The advantage of this is that the user
can combine many images/cubes into a single table and perform the interpolation
based on all information in one step.
Beside the world coordinate system (wcs), there are two
hdrl_parameter passed to the function, one controlling the
interpolation method and one defining the output grid.
The parameter controlling the interpolation method can be created by
- hdrl_resample_parameter_create_nearest(), or
- hdrl_resample_parameter_create_renka(), or
- hdrl_resample_parameter_create_linear(), or
- hdrl_resample_parameter_create_quadratic(), or
- hdrl_resample_parameter_create_drizzle(), or
- hdrl_resample_parameter_create_lanczos()
that sets the interpolation method one would like to use.
The parameter controlling the output grid can be created by
- hdrl_resample_parameter_create_outgrid2D(), or
- hdrl_resample_parameter_create_outgrid3D(), or
- hdrl_resample_parameter_create_outgrid2D_userdef(), or
- hdrl_resample_parameter_create_outgrid3D_userdef()
depending on a 2D or 3D interpolation and if the user wants to specify the
final output grid on a high granularity or the hdrl routine should derive it
from the input data.
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*----------------------------------------------------------------------------*/
/**
@defgroup hdrl_resample_parameter_method HDRL parameter - interpolation method
@ingroup hdrl_resample
@brief
HDRL parameter controlling the interpolation method
The parameter controlling the interpolation method is
- hdrl_resample_parameter_create_nearest(), or
- hdrl_resample_parameter_create_renka(), or
- hdrl_resample_parameter_create_linear(), or
- hdrl_resample_parameter_create_quadratic(), or
- hdrl_resample_parameter_create_drizzle(), or
- hdrl_resample_parameter_create_lanczos()
depending on the interpolation method one would like to use.
*/
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/**
@defgroup hdrl_resample_parameter_outgrid HDRL parameter - output grid
@ingroup hdrl_resample
@brief
Hdrl parameter defining the final output grid
The parameter controlling the output grid is
- hdrl_resample_parameter_create_outgrid2D(), or
- hdrl_resample_parameter_create_outgrid3D(), or
- hdrl_resample_parameter_create_outgrid2D_userdef(), or
- hdrl_resample_parameter_create_outgrid3D_userdef()
depending on a 2D or 3D interpolation and if the user wants to specify the
final output grid on a high granularity or the hdrl routine should derive it
from the input data.
*/
/*----------------------------------------------------------------------------*/
/** @cond PRIVATE */
/*-----------------------------------------------------------------------------
RESAMPLE Parameter Definition
-----------------------------------------------------------------------------*/
typedef struct {
HDRL_PARAMETER_HEAD;
hdrl_resample_outgrid method;
double delta_ra ; /* step size in right ascension [deg] */
double delta_dec ; /* step size in declination [deg] */
double delta_lambda ; /* step size in wavelength direction [m] */
const cpl_wcs* wcs ; /* World Coordinate System */
cpl_boolean recalc_limits;
double ra_min; /* Minimal Right ascension [deg] */
double ra_max; /* Maximal Right ascension [deg] */
double dec_min; /* Minimal Declination [deg] */
double dec_max; /* Maximal Declination [deg] */
double lambda_min; /* Minimal wavelength [m] */
double lambda_max; /* Maximal wavelength [m] */
double fieldmargin; /* Field margin to add [percent] */
} hdrl_resample_outgrid_parameter;
/* Parameter type */
static hdrl_parameter_typeobj hdrl_resample_outgrid_parameter_type = {
HDRL_PARAMETER_RESAMPLE_OUTGRID, /* type */
(hdrl_alloc *)&cpl_malloc, /* fp_alloc */
(hdrl_free *)&cpl_free, /* fp_free */
NULL, /* fp_destroy */
sizeof(hdrl_resample_outgrid_parameter), /* obj_size */
};
typedef struct {
HDRL_PARAMETER_HEAD;
hdrl_resample_method method;
int loop_distance;
/** When interpolating use additional weights of 1/variance */
cpl_boolean use_errorweights;
/** the pixfrac parameter of the drizzle method: down-scaling factor *
* of input pixel size before computing drizzling weights; different *
* values for x-, y-, and lambda directions are possible */
double drizzle_pix_frac_x;
double drizzle_pix_frac_y;
double drizzle_pix_frac_lambda;
/** critical radius of the Renka-weighted method */
double renka_critical_radius;
/** kernel size of the lanczos-weighted method */
int lanczos_kernel_size;
} hdrl_resample_method_parameter;
/* Parameter type */
static hdrl_parameter_typeobj hdrl_resample_method_parameter_type = {
HDRL_PARAMETER_RESAMPLE_METHOD, /* type */
(hdrl_alloc *)&cpl_malloc, /* fp_alloc */
(hdrl_free *)&cpl_free, /* fp_free */
NULL, /* fp_destroy */
sizeof(hdrl_resample_method_parameter), /* obj_size */
};
/** @endcond */
/*-----------------------------------------------------------------------------
Functions
-----------------------------------------------------------------------------*/
static hdrl_resample_result *
hdrl_resample_cube(const cpl_table *ResTable,
hdrl_resample_method_parameter *aParams_method,
hdrl_resample_outgrid_parameter *aParams_outputgrid,
hdrl_resample_pixgrid **aGrid);
static cpl_error_code
hdrl_resample_inputtable_verify(const cpl_table *ResTable);
/*----------------------------------------------------------------------------*/
/**
@brief print content of the wcs structure
@param wcs cpl_wcs to be printed
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_wcs_print(const cpl_wcs *wcs)
{
cpl_ensure_code(wcs, CPL_ERROR_NULL_INPUT);
const cpl_array *crval = cpl_wcs_get_crval(wcs);
const cpl_array *crpix = cpl_wcs_get_crpix(wcs);
const cpl_array *ctype = cpl_wcs_get_ctype(wcs);
const cpl_array *cunit = cpl_wcs_get_cunit(wcs);
const cpl_matrix *cd = cpl_wcs_get_cd(wcs);
const cpl_array *dims = cpl_wcs_get_image_dims(wcs);
int naxis = cpl_wcs_get_image_naxis(wcs);
cpl_msg_debug(cpl_func, "NAXIS: %d", naxis);
int testerr = 0;
cpl_msg_indent_more();
/* Check NAXIS */
for (cpl_size i = 0; i < naxis; i++) {
cpl_msg_debug(cpl_func, "NAXIS%lld: %d", i + 1,
cpl_array_get_int(dims, i, &testerr));
}
cpl_msg_indent_less();
double cd11 = cpl_matrix_get(cd, 0, 0);
double cd12 = cpl_matrix_get(cd, 0, 1);
double cd21 = cpl_matrix_get(cd, 1, 0);
double cd22 = cpl_matrix_get(cd, 1, 1);
double crpix1 = cpl_array_get_double(crpix, 0, &testerr);
double crpix2 = cpl_array_get_double(crpix, 1, &testerr);
double crval1 = cpl_array_get_double(crval, 0, &testerr);
double crval2 = cpl_array_get_double(crval, 1, &testerr);
cpl_msg_debug(cpl_func, "1st and 2nd dimension");
cpl_msg_indent_more();
cpl_msg_debug(cpl_func, "CD1_1: %g", cd11);
cpl_msg_debug(cpl_func, "CD1_2: %g", cd12);
cpl_msg_debug(cpl_func, "CD2_1: %g", cd21);
cpl_msg_debug(cpl_func, "CD2_2: %g", cd22);
cpl_msg_debug(cpl_func, "CRPIX1: %g", crpix1);
cpl_msg_debug(cpl_func, "CRPIX2: %g", crpix2);
cpl_msg_debug(cpl_func, "CRVAL1: %g", crval1);
cpl_msg_debug(cpl_func, "CRVAL2: %g", crval2);
if (ctype) {
cpl_msg_debug(cpl_func, "CTYPE1: %s", cpl_array_get_string(ctype, 0));
cpl_msg_debug(cpl_func, "CTYPE2: %s", cpl_array_get_string(ctype, 1));
}
if (cunit) {
cpl_msg_debug(cpl_func, "CUNIT1: %s", cpl_array_get_string(cunit, 0));
cpl_msg_debug(cpl_func, "CUNIT2: %s", cpl_array_get_string(cunit, 1));
}
cpl_msg_indent_less();
/* Is it a 3D cube or a 2D image */
cpl_size cdncol = cpl_matrix_get_ncol(cd);
if (cdncol == 3) {
double cd13 = cpl_matrix_get(cd, 0, 2);
double cd23 = cpl_matrix_get(cd, 1, 2);
double cd31 = cpl_matrix_get(cd, 2, 0);
double cd32 = cpl_matrix_get(cd, 2, 1);
double cd33 = cpl_matrix_get(cd, 2, 2);
double crval3 = cpl_array_get_double(crval, 2, &testerr);
double crpix3 = cpl_array_get_double(crpix, 2, &testerr);
cpl_msg_debug(cpl_func, "3rd dimension");
cpl_msg_indent_more();
cpl_msg_debug(cpl_func, "CD1_3: %g", cd13);
cpl_msg_debug(cpl_func, "CD2_3: %g", cd23);
cpl_msg_debug(cpl_func, "CD3_1: %g", cd31);
cpl_msg_debug(cpl_func, "CD3_2: %g", cd32);
cpl_msg_debug(cpl_func, "CD3_3: %g", cd33);
cpl_msg_debug(cpl_func, "CRPIX3: %g", crpix3);
cpl_msg_debug(cpl_func, "CRVAL3: %g", crval3);
if (ctype) {
cpl_msg_debug(cpl_func, "CTYPE3: %s", cpl_array_get_string(ctype, 2));
}
if (cunit) {
cpl_msg_debug(cpl_func, "CUNIT3: %s", cpl_array_get_string(cunit, 2));
}
cpl_msg_indent_less();
}
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@brief print content of the outgrid parameter structure
@param p outgrid parameter structure to be printed
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_outgrid_parameter_print(hdrl_resample_outgrid_parameter* p)
{
cpl_ensure_code(p, CPL_ERROR_NULL_INPUT);
/* Content of the outgrid parameter structure */
cpl_msg_indent_more();
cpl_msg_debug(cpl_func, "delta_ra: %g", p->delta_ra);
cpl_msg_debug(cpl_func, "delta_dec: %g", p->delta_dec);
cpl_msg_debug(cpl_func, "delta_lambda: %g", p->delta_lambda);
cpl_msg_debug(cpl_func, "ra_min: %g", p->ra_min);
cpl_msg_debug(cpl_func, "ra_max: %g", p->ra_max);
cpl_msg_debug(cpl_func, "dec_min: %g", p->dec_min);
cpl_msg_debug(cpl_func, "dec_max: %g", p->dec_max);
cpl_msg_debug(cpl_func, "lambda_min: %g", p->lambda_min);
cpl_msg_debug(cpl_func, "lambda_max: %g", p->lambda_max);
cpl_msg_debug(cpl_func, "fieldmargin: %g", p->fieldmargin);
cpl_msg_debug(cpl_func, "recalc_limits: %d", p->recalc_limits);
/* World Coordinate System */
hdrl_resample_wcs_print(p->wcs);
cpl_msg_indent_less();
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@brief print content of the resample method parameter structure
@param p resample method parameter structure to be printed
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_method_parameter_print(hdrl_resample_method_parameter* p)
{
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
return cpl_error_get_code();
}
/* Content of the outgrid parameter structure */
cpl_msg_indent_more();
if(p->method == HDRL_RESAMPLE_METHOD_NEAREST) {
cpl_msg_debug(cpl_func, "method: %s", "NEAREST" );
} else if (p->method == HDRL_RESAMPLE_METHOD_RENKA) {
cpl_msg_debug(cpl_func, "method: %s", "RENKA" );
cpl_msg_debug(cpl_func, "loop_distance: %d", p->loop_distance);
cpl_msg_debug(cpl_func, "use_errorweights: %s",
p->use_errorweights == CPL_TRUE ? "TRUE" : "FALSE");
cpl_msg_debug(cpl_func, "renka_critical_radius: %g", p->renka_critical_radius);
} else if (p->method == HDRL_RESAMPLE_METHOD_LINEAR) {
cpl_msg_debug(cpl_func, "method: %s", "LINEAR" );
cpl_msg_debug(cpl_func, "loop_distance: %d", p->loop_distance);
cpl_msg_debug(cpl_func, "use_errorweights: %s",
p->use_errorweights == CPL_TRUE ? "TRUE" : "FALSE");
} else if (p->method == HDRL_RESAMPLE_METHOD_QUADRATIC) {
cpl_msg_debug(cpl_func, "method: %s", "QUADRATIC)" );
cpl_msg_debug(cpl_func, "loop_distance: %d", p->loop_distance);
cpl_msg_debug(cpl_func, "use_errorweights: %s",
p->use_errorweights == CPL_TRUE ? "TRUE" : "FALSE");
} else if (p->method == HDRL_RESAMPLE_METHOD_DRIZZLE) {
cpl_msg_debug(cpl_func, "method: %s", "DRIZZLE" );
cpl_msg_debug(cpl_func, "loop_distance: %d", p->loop_distance);
cpl_msg_debug(cpl_func, "use_errorweights: %s",
p->use_errorweights == CPL_TRUE ? "TRUE" : "FALSE");
cpl_msg_debug(cpl_func, "drizzle_pix_frac_x: %g", p->drizzle_pix_frac_x);
cpl_msg_debug(cpl_func, "drizzle_pix_frac_y: %g", p->drizzle_pix_frac_y);
cpl_msg_debug(cpl_func, "drizzle_pix_frac_lambda: %g", p->drizzle_pix_frac_lambda);
} else if (p->method == HDRL_RESAMPLE_METHOD_LANCZOS) {
cpl_msg_debug(cpl_func, "method: %s", "LANCZOS" );
cpl_msg_debug(cpl_func, "loop_distance: %d", p->loop_distance);
cpl_msg_debug(cpl_func, "use_errorweights: %s",
p->use_errorweights == CPL_TRUE ? "TRUE" : "FALSE");
cpl_msg_debug(cpl_func, "lanczos_kernel_size: %d", p->lanczos_kernel_size);
}
cpl_msg_indent_less();
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@private
@brief A 2D WCS structure is used to convert input x,y coordinates to
equatorial coordinates.
@param wcs Input WCS structure
@param x Input X position
@param y Input Y position
@param ra Output right ascension (RA)
@param dec Output declination (DEC)
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
cpl_error_code
hdrl_wcs_xy_to_radec(const cpl_wcs *wcs, double x, double y, double *ra,
double *dec) {
cpl_ensure_code(wcs && ra && dec, CPL_ERROR_NULL_INPUT);
double * xy = NULL;
double * radec = NULL;
cpl_matrix * from = NULL;
cpl_matrix * to = NULL;
cpl_array * status = NULL;
/* Load up the information */
int naxis = cpl_wcs_get_image_naxis(wcs);
from = cpl_matrix_new(1, naxis);
xy = cpl_matrix_get_data(from);
xy[0] = x;
xy[1] = y;
/* Call the conversion routine */
cpl_wcs_convert(wcs, from, &to, &status, CPL_WCS_PHYS2WORLD);
/* Pass it back now */
radec = cpl_matrix_get_data(to);
*ra = radec[0];
*dec = radec[1];
/* Tidy and exit */
cpl_matrix_delete(from);
cpl_matrix_delete(to);
cpl_array_delete(status);
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@brief find out the WCS reference point
@param aHeaders property list/headers to read from
@param aAxis the axis (the "i" of CRPIXi)
@return the requested value or 0.0 on error
Queries FITS header CRPIXi
*/
/*----------------------------------------------------------------------------*/
static double
hdrl_resample_pfits_get_crpix(const cpl_propertylist *aHeaders, unsigned int aAxis)
{
cpl_errorstate prestate = cpl_errorstate_get();
cpl_ensure(aHeaders, CPL_ERROR_NULL_INPUT, 0);
char keyword[KEYWORD_LENGTH];
snprintf(keyword, KEYWORD_LENGTH, "CRPIX%u", aAxis);
const double value = cpl_propertylist_get_double(aHeaders, keyword);
/* default to 0.0 as per FITS Standard v3.0 */
cpl_ensure(cpl_errorstate_is_equal(prestate), cpl_error_get_code(), 0.0);
return value;
}
/*----------------------------------------------------------------------------*/
/**
@brief find out the WCS coordinate at the reference point
@param aHeaders property list/headers to read from
@param aAxis the axis (the "i" of CRVALi)
@return the requested value or 0.0 on error
Queries FITS header CRVALi
*/
/*----------------------------------------------------------------------------*/
static double
hdrl_resample_pfits_get_crval(const cpl_propertylist *aHeaders, unsigned int aAxis)
{
cpl_errorstate prestate = cpl_errorstate_get();
cpl_ensure(aHeaders, CPL_ERROR_NULL_INPUT, 0);
char keyword[KEYWORD_LENGTH];
snprintf(keyword, KEYWORD_LENGTH, "CRVAL%u", aAxis);
const double value = cpl_propertylist_get_double(aHeaders, keyword);
/* default to 0.0 as per FITS Standard v3.0 */
cpl_ensure(cpl_errorstate_is_equal(prestate), cpl_error_get_code(), 0.0);
return value;
}
/*----------------------------------------------------------------------------*/
/**
@brief find out the WCS coordinate at the reference point
@param aHeaders property list/headers to read from
@param aAxisI the first axis (the "i" of CDi_j)
@param aAxisJ the second axis (the "j" of CDi_j)
@return the requested value or 0.0 on error
Queries FITS header CDi_j
*/
/*----------------------------------------------------------------------------*/
static double
hdrl_resample_pfits_get_cd(const cpl_propertylist *aHeaders, unsigned int aAxisI,
unsigned int aAxisJ)
{
cpl_errorstate prestate = cpl_errorstate_get();
cpl_ensure(aHeaders, CPL_ERROR_NULL_INPUT, 0);
char keyword[KEYWORD_LENGTH];
snprintf(keyword, KEYWORD_LENGTH, "CD%u_%u", aAxisI, aAxisJ);
const double value = cpl_propertylist_get_double(aHeaders, keyword);
/* default to 0.0 as per FITS Standard v3.0 */
cpl_ensure(cpl_errorstate_is_equal(prestate), cpl_error_get_code(), 0.0);
return value;
}
/*----------------------------------------------------------------------------*/
/**
@brief Create a new WCS structure from a given FITS header.
@param aHeader the input header containing the input WCS
@return A newly allocated hdrl_resample_smallwcs *.
The world coordinate system from aHeader, i.e. the CDi_j matrix, the CRPIXi,
CRVALi, are used to fill the structure.
The returned pointer has to be deallocated using cpl_free().
@error{return the structure initialized with zeros\,
except cd11 = cd22 = cddet = 1.,
aHeader is NULL or does not contain the needed values}
@error{set CPL_ERROR_SINGULAR_MATRIX\, but continue normally,
the determinant of the CDi_j matrix (the cddet element) is zero}
*/
/*----------------------------------------------------------------------------*/
static hdrl_resample_smallwcs *
hdrl_resample_smallwcs_new(cpl_propertylist *aHeader)
{
cpl_ensure(aHeader, CPL_ERROR_NULL_INPUT, NULL);
hdrl_resample_smallwcs *wcs = cpl_calloc(1, sizeof(hdrl_resample_smallwcs));
cpl_errorstate prestate = cpl_errorstate_get();
wcs->crpix1 = hdrl_resample_pfits_get_crpix(aHeader, 1);
wcs->crpix2 = hdrl_resample_pfits_get_crpix(aHeader, 2);
wcs->crval1 = hdrl_resample_pfits_get_crval(aHeader, 1);
wcs->crval2 = hdrl_resample_pfits_get_crval(aHeader, 2);
if (!cpl_errorstate_is_equal(prestate)) {
/* all these headers default to 0.0 following the FITS *
* Standard, so we can ignore any errors set here */
cpl_errorstate_set(prestate);
}
prestate = cpl_errorstate_get();
wcs->cd11 = hdrl_resample_pfits_get_cd(aHeader, 1, 1);
wcs->cd22 = hdrl_resample_pfits_get_cd(aHeader, 2, 2);
wcs->cd12 = hdrl_resample_pfits_get_cd(aHeader, 1, 2);
wcs->cd21 = hdrl_resample_pfits_get_cd(aHeader, 2, 1);
if (!cpl_errorstate_is_equal(prestate) &&
wcs->cd11 == 0. && wcs->cd12 == 0. && wcs->cd21 == 0. && wcs->cd22 == 0.) {
/* FITS Standard says to handle the CD matrix like the PC *
* matrix in this case, with 1 for the diagonal elements */
wcs->cd11 = wcs->cd22 = wcs->cddet = 1.;
cpl_errorstate_set(prestate); /* not a real error */
}
wcs->cddet = wcs->cd11 * wcs->cd22 - wcs->cd12 * wcs->cd21;
if (wcs->cddet == 0.) {
cpl_error_set(cpl_func, CPL_ERROR_SINGULAR_MATRIX);
}
return wcs;
} /* hdrl_resample_smallwcs_new() */
/*---------------------------------------------------------------------------*/
/**
@brief Delete a pixel grid and remove its memory.
@param aGrid Pointer to pixel grid.
@return void
*/
/*---------------------------------------------------------------------------*/
static void
hdrl_resample_pixgrid_delete(hdrl_resample_pixgrid *aGrid)
{
if (!aGrid) {
return;
}
cpl_free(aGrid->pix);
aGrid->pix = NULL;
/* clean up extension maps */
unsigned short ix;
for (ix = 0; ix < aGrid->nmaps; ix++) {
cpl_size iext; /* index in this extension map */
for (iext = 0; iext < aGrid->nxalloc[ix]; iext++) {
cpl_free(aGrid->xmaps[ix][iext].pix);
} /* for iext (all allocated pixels in this extension map) */
cpl_free(aGrid->xmaps[ix]);
} /* for ix (all extension maps) */
cpl_free(aGrid->xmaps);
aGrid->xmaps = NULL;
cpl_free(aGrid->nxmap);
aGrid->nxmap = NULL;
cpl_free(aGrid->nxalloc);
aGrid->nxalloc = NULL;
cpl_free(aGrid);
} /* hdrl_resample_pixgrid_delete() */
/*---------------------------------------------------------------------------*/
/**
@brief High level resampling function.
@param ResTable The cpl table to be resampled. Should be derived by the
hdrl_resample_imagelist_to_table() or by the
hdrl_resample_image_to_table() function.
@param method The hdrl parameter defining the resampling method
@param outputgrid The hdrl parameter defining the output grid
@param wcs The cpl wcs parameter do derive scalings/normalisations
@return The hdrl_resample_result structure containing all informations of the
resampled output (data, error, bpm, wcs encoded in a
cpl_propertylist). The returned hdrl_resample_result structure must
be deleted with hdrl_resample_result_delete()
The routine currently implements the following algorithms:
- Nearest neighbor resampling
- Weighted resampling using Renka weighting function
- Weighted resampling using inverse distance weighting function
- Weighted resampling using quadratic inverse distance weighting function
- Weighted resampling using a drizzle-like weighting scheme
- Weighted resampling using a lanczos-like restricted sinc for weighting
The 2D and 3D interpolation is done in 2 dimension and 3 dimension,
respectively. Moreover, additional error based weights can be taken into
account.
As can be seen from the interface, this function does not directly work on
images but on the cpl table ResTable. The table is created from a 2D image by
calling the function hdrl_resample_image_to_table() or from a 3D cube by
calling the function hdrl_resample_imagelist_to_table(). In case you create the
table on your own without the above mentioned functions, make sure to flag
all(!) non normal pixels as bad (e.g. by using the isfinite() function).
The parameter controlling the interpolation method (method) is created with
- hdrl_resample_parameter_create_nearest(), or
- hdrl_resample_parameter_create_renka(), or
- hdrl_resample_parameter_create_linear(), or
- hdrl_resample_parameter_create_quadratic(), or
- hdrl_resample_parameter_create_drizzle(), or
- hdrl_resample_parameter_create_lanczos()
depending on the interpolation method one would like to use.
The parameter controlling the output grid (outputgrid) is created with
- hdrl_resample_parameter_create_outgrid2D(), or
- hdrl_resample_parameter_create_outgrid3D(), or
- hdrl_resample_parameter_create_outgrid2D_userdef(), or
- hdrl_resample_parameter_create_outgrid3D_userdef()
depending on a 2D or 3D interpolation and if the user wants to specify the
final output grid on a high granularity or the hdrl routine should derive it
from the input data.
*/
/*---------------------------------------------------------------------------*/
hdrl_resample_result *
hdrl_resample_compute(const cpl_table *ResTable,
hdrl_parameter *method,
hdrl_parameter *outputgrid,
const cpl_wcs* wcs)
{
cpl_ensure(ResTable && method, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(wcs != NULL, CPL_ERROR_NULL_INPUT, NULL);
if (hdrl_resample_inputtable_verify(ResTable)) {
return NULL;
}
if (hdrl_resample_parameter_method_verify((hdrl_parameter *)method)) {
return NULL;
}
if (hdrl_resample_parameter_outgrid_verify((hdrl_parameter *)outputgrid)) {
return NULL;
}
if (hdrl_resample_inputtable_verify(ResTable)) {
return NULL;
}
hdrl_resample_outgrid_parameter *aParams_outputgrid =
(hdrl_resample_outgrid_parameter *) outputgrid;
hdrl_resample_method_parameter *aParams_method =
(hdrl_resample_method_parameter *) method;
/*Assign the wcs*/
aParams_outputgrid->wcs = wcs;
/* Recalculate the limits if the user did not specify any */
cpl_boolean recalc_limits = aParams_outputgrid->recalc_limits;
if (recalc_limits == CPL_TRUE) {
double ramin = cpl_table_get_column_min(ResTable, HDRL_RESAMPLE_TABLE_RA);
double ramax = cpl_table_get_column_max(ResTable, HDRL_RESAMPLE_TABLE_RA);
double decmin = cpl_table_get_column_min(ResTable, HDRL_RESAMPLE_TABLE_DEC);
double decmax = cpl_table_get_column_max(ResTable, HDRL_RESAMPLE_TABLE_DEC);
double lmin = cpl_table_get_column_min(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA);
double lmax = cpl_table_get_column_max(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA);
/* We have the rare case that the image spans over ra = 0.*/
if(ramax - ramin > 180){
const double *ra = cpl_table_get_data_double_const(ResTable,
HDRL_RESAMPLE_TABLE_RA);
/* set to extreme values for a start */
ramin = 0.;
ramax = 360.;
cpl_size nrow = cpl_table_get_nrow(ResTable);
for (cpl_size i = 0; i < nrow; i++) {
if (ra[i] > ramin && ra[i] <= 180.) ramin = ra[i]; /* get the maximum */
if (ra[i] < ramax && ra[i] > 180.) ramax = ra[i]; /* get the minimum */
}
}
aParams_outputgrid->ra_min = ramin;
aParams_outputgrid->ra_max = ramax;
aParams_outputgrid->dec_min = decmin;
aParams_outputgrid->dec_max = decmax;
aParams_outputgrid->lambda_min = lmin;
aParams_outputgrid->lambda_max = lmax;
}
cpl_msg_debug(cpl_func, "Content of the outgrid parameter structure "
"hdrl_resample_outgrid_parameter when resampling starts:");
hdrl_resample_outgrid_parameter_print(aParams_outputgrid);
cpl_msg_debug(cpl_func, "Content of the method parameter structure "
"hdrl_resample_method_parameter when resampling starts:");
hdrl_resample_method_parameter_print(aParams_method);
/* create cube and cast to generic pointer to save code duplication */
hdrl_resample_result *cube = NULL;
hdrl_resample_pixgrid *grid = NULL;
cpl_msg_debug(cpl_func, "Resampling starts ...");
cpl_msg_indent_more();
cube = hdrl_resample_cube(ResTable,
(hdrl_resample_method_parameter *)aParams_method,
(hdrl_resample_outgrid_parameter *)aParams_outputgrid,
&grid);
cpl_msg_indent_less();
cpl_ensure(cube, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(cube->header, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(cube->himlist, CPL_ERROR_NULL_INPUT, NULL);
/* Cleanup wcs for 2D / 3D case */
if(hdrl_imagelist_get_size(cube->himlist) == 1) { /* 2D case */
cpl_propertylist *header = cpl_propertylist_new();
cpl_wcs* wcs_local = cpl_wcs_new_from_propertylist(cube->header);
hdrl_wcs_to_propertylist(wcs_local, header, CPL_TRUE);
cpl_wcs_delete(wcs_local);
cpl_propertylist_delete(cube->header);
cpl_propertylist_set_comment(header, "CTYPE1", "Gnomonic projection");
cpl_propertylist_set_comment(header, "CTYPE2", "Gnomonic projection");
cube->header = header;
}
hdrl_resample_pixgrid_delete(grid);
return cube;
} /* hdrl_resample_compute() */
/*---------------------------------------------------------------------------*/
/**
@brief Deallocates the memory associated to a hdrl_resample_result object.
@param aCube input hdrl_resample_result object
@return void
*/
/*---------------------------------------------------------------------------*/
void
hdrl_resample_result_delete(hdrl_resample_result *aCube)
{
/* if the cube does not exists at all, we don't need to do anything */
if (!aCube) {
return;
}
/* checks for the existence of the sub-images *
* are done in the CPL functions */
hdrl_imagelist_delete(aCube->himlist);
aCube->himlist = NULL;
/* delete the FITS header, too */
cpl_propertylist_delete(aCube->header);
aCube->header = NULL;
cpl_free(aCube);
} /* hdrl_resample_result_delete() */
/*----------------------------------------------------------------------------*/
/**
@brief Convert from celestial spherical coordinates to projection plane
coordinates.
@param aParams_outputgrid the input outgrid parameter containing the WCS
of the exposure
@param aRA the right-ascension in degrees
@param aDEC the declination in degrees
@param aX the output horizontal proj. plane position
@param aY the output vertical proj. plane position
@return CPL_ERROR_NONE for success, any other value for failure
The world coordinate system from aHeader is used to do the transformation,
only the gnomonic (TAN) is supported.
Uses Eqns (5), (12), (13), and (54) from Calabretta & Greisen 2002 A&A 395,
1077 (Paper II). We use that phi_p = 180 deg for zenithal projections (like
TAN).
XXX this duplicates most of the code of hdrl_resample_wcs_pixel_from_celestial()
@error{return CPL_ERROR_NULL_INPUT, aHeader\, aX\, and/or aY are NULL}
@error{return CPL_ERROR_UNSUPPORTED_MODE,
aHeader does not contain gnomonic (TAN) WCS}
@error{return CPL_ERROR_ILLEGAL_INPUT,
determinant of the CDi_j matrix in aHeader is zero}
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_wcs_projplane_from_celestial(hdrl_resample_outgrid_parameter *
aParams_outputgrid, double aRA,
double aDEC, double *aX, double *aY)
{
cpl_ensure_code(aParams_outputgrid && aX && aY, CPL_ERROR_NULL_INPUT);
/* make sure that the header represents TAN */
//const char * type1 = aParams_outputgrid->limits.ctype1;
//const char * type2 = aParams_outputgrid->limits.ctype2;
/*
cpl_ensure_code(type1 && type2 && !strncmp(type1, "RA---TAN", 9) &&
!strncmp(type2, "DEC--TAN", 9),
CPL_ERROR_UNSUPPORTED_MODE);
*/
int err = 0;
const cpl_array *crval = cpl_wcs_get_crval(aParams_outputgrid->wcs);
double crval1 = cpl_array_get_double(crval, 0, &err);
double crval2 = cpl_array_get_double(crval, 1, &err);
/* spherical coordinate shift/translation */
double a = aRA / CPL_MATH_DEG_RAD, /* RA in radians */
d = aDEC / CPL_MATH_DEG_RAD, /* DEC in radians */
/* alpha_p and delta_p in Paper II (in radians) */
//ap = aParams_outputgrid->limits.crval1 / CPL_MATH_DEG_RAD,
//dp = aParams_outputgrid->limits.crval2 / CPL_MATH_DEG_RAD,
ap = crval1 / CPL_MATH_DEG_RAD,
dp = crval2 / CPL_MATH_DEG_RAD,
phi = atan2(-cos(d) * sin(a - ap),
sin(d) * cos(dp) - cos(d) * sin(dp) * cos(a-ap))
+ 180 / CPL_MATH_DEG_RAD,
theta = asin(sin(d) * sin(dp) + cos(d) * cos(dp) * cos(a-ap)),
R_theta = CPL_MATH_DEG_RAD / tan(theta);
/* spherical deprojection */
*aX = R_theta * sin(phi),
*aY = -R_theta * cos(phi);
return CPL_ERROR_NONE;
} /* hdrl_resample_wcs_projplane_from_celestial() */
/*---------------------------------------------------------------------------*/
/**
@brief Convert from celestial spherical coordinates to pixel coordinates.
@param aWCS the input WCS structure,
<b>with the crpix components in radians!</b>
@param aRA the right-ascension <b>in radians!</b>
@param aDEC the declination <b>in radians!</b>
@param aX the output horizontal pixel position
@param aY the output vertical pixel position
@warning This function does not do any safety checks. If you are not sure, if
the WCS does not contain a proper gnomonic (TAN) setup, use
hdrl_resample_wcs_pixel_from_celestial() instead!
@note This function is defined as static inline, i.e. should get integrated
into the caller by the compiler, to maximise execution speed.
See hdrl_resample_wcs_pixel_from_celestial() for the origin of the equations.
*/
/*---------------------------------------------------------------------------*/
static inline void
hdrl_resample_wcs_pixel_from_celestial_fast(hdrl_resample_smallwcs *aWCS,
double aRA, double aDEC, double *aX, double *aY)
{
if(!aWCS) return;
/* spherical coordinate shift/translation */
/*Calabretta & Greisen 2002 A&A 395, 1077 (Paper II) */
/* aRA is alpha in Paper II, aDEC is delta, aWCS->crval1 is alpha_p, *
* aWCS->crval2 is delta_p, all of them in units of radians, eq (5), arg=atan2 */
double phi = atan2(-cos(aDEC) * sin(aRA - aWCS->crval1),
sin(aDEC) * cos(aWCS->crval2)
- cos(aDEC) * sin(aWCS->crval2) * cos(aRA - aWCS->crval1))
+ 180 / CPL_MATH_DEG_RAD,
theta = asin(sin(aDEC) * sin(aWCS->crval2)
+ cos(aDEC) * cos(aWCS->crval2) * cos(aRA - aWCS->crval1)),
R_theta = CPL_MATH_DEG_RAD / tan(theta);
/* spherical deprojection */
double x = R_theta * sin(phi),
y = -R_theta * cos(phi);
/* inverse linear transformation */
*aX = (aWCS->cd22 * x - aWCS->cd12 * y) / aWCS->cddet + aWCS->crpix1;
*aY = (aWCS->cd11 * y - aWCS->cd21 * x) / aWCS->cddet + aWCS->crpix2;
} /* hdrl_resample_wcs_pixel_from_celestial_fast() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Compute "natural" cube size from the data.
@param aParams_outputgrid the outputgrid parameters
@param aX pointer to horizontal cube size to update
@param aY pointer to vertical cube size to update
@param aZ pointer to dispersion direction cube size to update
@return CPL_ERROR_NONE on non-critical failure or success, another CPL error
code otherwise.
@error{return CPL_ERROR_NULL_INPUT,
ResTable\, aParams\, aX\, aY\, or aZ are NULL}
*/
/*---------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_compute_size(hdrl_resample_outgrid_parameter *aParams_outputgrid,
int *aX, int *aY, int *aZ)
{
cpl_ensure_code(aParams_outputgrid && aX && aY && aZ, CPL_ERROR_NULL_INPUT);
const char func[] = "hdrl_resample_compute_size"; /* pretend to be in that fct... */
double x1, y1, x2, y2;
double ramin = aParams_outputgrid->ra_min;
double ramax = aParams_outputgrid->ra_max;
double decmin = aParams_outputgrid->dec_min;
double decmax = aParams_outputgrid->dec_max;
hdrl_resample_wcs_projplane_from_celestial(aParams_outputgrid, ramin, decmin,
&x1, &y1);
hdrl_resample_wcs_projplane_from_celestial(aParams_outputgrid, ramax, decmax,
&x2, &y2);
*aX = lround(fabs(x2 - x1) / aParams_outputgrid->delta_ra) + 1;
*aY = lround(fabs(y2 - y1) / aParams_outputgrid->delta_dec) + 1;
double lmin = aParams_outputgrid->lambda_min;
double lmax = aParams_outputgrid->lambda_max;
*aZ = (int)ceil((lmax - lmin) / aParams_outputgrid->delta_lambda) + 1;
cpl_msg_debug(func, "Output cube size %d x %d x %d (fit to data)",
*aX, *aY, *aZ);
return CPL_ERROR_NONE;
} /* hdrl_resample_compute_size() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Add a table row to the pixel grid.
@param aGrid Pointer to pixel grid.
@param aIndex Pixel index, as computed by hdrl_resample_pixgrid_get_index().
@param aRow Row number to be added.
@param aXIdx Index of the extension map to use.
This function adds a new entry into the grid, either directly in the grid or
in the extension maps (aGrid->xmaps). To do the latter, it allocates space
for storage in one extension map, doubling the amount of allocated memory
every time an enlargement is needed. The number of real (filled) extension map
entries is stored in aGrid->nxmap, while the current number of allocated
entries is tracked with aGrid->nxalloc.
*/
/*---------------------------------------------------------------------------*/
static void
hdrl_resample_pixgrid_add(hdrl_resample_pixgrid *aGrid, cpl_size aIndex,
cpl_size aRow, unsigned short aXIdx)
{
if (aIndex < 0 || aGrid == NULL) {
return;
}
if (aGrid->pix[aIndex] == 0 && aRow > 0) {
/* First pixel is stored directly. */
aGrid->pix[aIndex] = aRow;
} else if (aGrid->pix[aIndex] == 0 && aRow == 0) {
/* Special case: we cannot put "0" into the main map. */
cpl_size iext = aGrid->nxmap[aXIdx]++;
if (aGrid->nxmap[aXIdx] > aGrid->nxalloc[aXIdx]) {
/* double the number of allocated entries */
aGrid->nxalloc[aXIdx] = 2 * aGrid->nxmap[aXIdx];
aGrid->xmaps[aXIdx] = cpl_realloc(aGrid->xmaps[aXIdx],
aGrid->nxalloc[aXIdx]
* sizeof(hdrl_resample_pixels_ext));
}
aGrid->xmaps[aXIdx][iext].npix = 1;
aGrid->xmaps[aXIdx][iext].pix = cpl_malloc(sizeof(cpl_size));
aGrid->xmaps[aXIdx][iext].pix[0] = aRow;
aGrid->pix[aIndex] = -(iext + 1 + ((cpl_size)aXIdx << XMAP_LSHIFT));
} else if (aGrid->pix[aIndex] > 0) {
/* When a second pixel is added, put both to the extension map. */
cpl_size iext = aGrid->nxmap[aXIdx]++;
if (aGrid->nxmap[aXIdx] > aGrid->nxalloc[aXIdx]) {
/* double the number of allocated entries */
aGrid->nxalloc[aXIdx] = 2 * aGrid->nxmap[aXIdx];
aGrid->xmaps[aXIdx] = cpl_realloc(aGrid->xmaps[aXIdx],
aGrid->nxalloc[aXIdx]
* sizeof(hdrl_resample_pixels_ext));
}
aGrid->xmaps[aXIdx][iext].npix = 2;
aGrid->xmaps[aXIdx][iext].pix = cpl_malloc(2 * sizeof(cpl_size));
aGrid->xmaps[aXIdx][iext].pix[0] = aGrid->pix[aIndex];
aGrid->xmaps[aXIdx][iext].pix[1] = aRow;
aGrid->pix[aIndex] = -(iext + 1 + ((cpl_size)aXIdx << XMAP_LSHIFT));
} else {
/* Append additional pixels to the extension map. */
cpl_size iext = (-aGrid->pix[aIndex] - 1) & PT_IDX_MASK;
/* index of the new entry in this grid point */
unsigned int ipix = aGrid->xmaps[aXIdx][iext].npix;
aGrid->xmaps[aXIdx][iext].npix++;
aGrid->xmaps[aXIdx][iext].pix = cpl_realloc(aGrid->xmaps[aXIdx][iext].pix,
(ipix + 1) * sizeof(cpl_size));
aGrid->xmaps[aXIdx][iext].pix[ipix] = aRow;
}
} /* hdrl_resample_pixgrid_add() */
/*---------------------------------------------------------------------------*/
/**
@brief Return the number of rows stored in one pixel.
@param aGrid Pointer to pixel grid.
@param aIndex Pixel index, as computed by hdrl_resample_pixgrid_get_index().
@note This function is defined as static inline, i.e. should get integrated
into the caller by the compiler, to maximise execution speed.
*/
/*---------------------------------------------------------------------------*/
static inline cpl_size
hdrl_resample_pixgrid_get_count(hdrl_resample_pixgrid *aGrid, cpl_size aIndex)
{
if (aIndex < 0 || aGrid == NULL) {
return 0;
}
/* get entry in pixel grid */
cpl_size p = aGrid->pix[aIndex];
if (p == 0) { /* points nowhere --> no pixels */
return 0;
}
if (p > 0) { /* points to pixel table --> 1 pixel */
return 1;
}
/* p is negative, so points to an extension map, get its index */
unsigned short ix = (-p >> XMAP_LSHIFT) & XMAP_BITMASK;
p = (-p - 1) & PT_IDX_MASK;
/* the npix component now gives the number of pixels in this grid index */
return aGrid->xmaps[ix][p].npix;
} /* hdrl_resample_pixgrid_get_count() */
/*---------------------------------------------------------------------------*/
/**
@brief Get the grid index determined from all three coordinates.
@param aGrid Pointer to pixel grid.
@param aX x index
@param aY y index
@param aZ z index
@param aAllowOutside if true, return a positive value for pixels nominally
outside the grid
@return Index to be used in the other pixel grid functions, or -1 on error.
@note This function is defined as static inline, i.e. should get integrated
into the caller by the compiler, to maximise execution speed.
*/
/*---------------------------------------------------------------------------*/
static inline cpl_size
hdrl_resample_pixgrid_get_index(hdrl_resample_pixgrid *aGrid, cpl_size aX,
cpl_size aY, cpl_size aZ, cpl_boolean aAllowOutside)
{
if (aGrid == NULL) {
return -1;
}
if (!aAllowOutside &&
(aX < 0 || aX >= aGrid->nx || aY < 0 || aY >= aGrid->ny ||
aZ < 0 || aZ >= aGrid->nz)) {
return -1;
}
if (aX < 0) {
aX = 0;
}
if (aX >= aGrid->nx) {
aX = aGrid->nx - 1;
}
if (aY < 0) {
aY = 0;
}
if (aY >= aGrid->ny) {
aY = aGrid->ny - 1;
}
if (aZ < 0) {
aZ = 0;
}
if (aZ >= aGrid->nz) {
aZ = aGrid->nz - 1;
}
return aX + aGrid->nx * (aY + aGrid->ny * aZ);
} /* hdrl_resample_pixgrid_get_index() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Create a new pixel grid.
@param aSizeX X size of the grid.
@param aSizeY Y size of the grid.
@param aSizeZ Z size of the grid.
@param aNMaps number of extensions maps.
@return Pointer to the newly created pixel grid.
*/
/*---------------------------------------------------------------------------*/
static hdrl_resample_pixgrid *
hdrl_resample_pixgrid_new(cpl_size aSizeX, cpl_size aSizeY, cpl_size aSizeZ,
unsigned short aNMaps)
{
cpl_ensure(aSizeX > 0 && aSizeY > 0 && aSizeZ > 0 && aNMaps > 0,
CPL_ERROR_ILLEGAL_INPUT, NULL);
hdrl_resample_pixgrid *pixels = cpl_calloc(1, sizeof(hdrl_resample_pixgrid));
pixels->nx = aSizeX;
pixels->ny = aSizeY;
pixels->nz = aSizeZ;
pixels->pix = cpl_calloc(aSizeX * aSizeY * aSizeZ, sizeof(cpl_size));
/* extension maps for possibly multiple threads */
pixels->nmaps = aNMaps;
pixels->nxalloc = cpl_calloc(aNMaps, sizeof(cpl_size));
pixels->xmaps = cpl_calloc(aNMaps, sizeof(hdrl_resample_pixels_ext *));
pixels->nxmap = cpl_calloc(aNMaps, sizeof(cpl_size));
return pixels;
} /* hdrl_resample_pixgrid_new() */
/*---------------------------------------------------------------------------*/
/**
@brief Convert selected rows of a pixel table into pixel grid, linking the
grid points to entries (=rows) in the pixel table.
@param ResTable the input pixel table
@param aHeader the FITS header of the hdrl_resample datacube to be created
@param aXSize x size of the output grid
@param aYSize y size of the output grid
@param aZSize z size of the output grid (wavelength direction)
@return A hdrl_resample_pixels * buffer for the output pixel grid or NULL on error.
@remark The returned pixel grid has to be deallocated after use with
hdrl_resample_pixgrid_delete().
Construct a standard C array, where the array indices representing the 3D grid
in the sense the the x-coordinate is varying fastest, the lambda-coordinate
varying slowest (like in FITS buffers), i.e.
index = [i + nx * j + nx*ny * l]
(i: x-axis index, j: y-axis index, l: lambda-axis index,
nx: x-axis length, ny: y-axis length).
For each pixel table row search for the closest grid point. Store the pixel
table row number in that grid point.
@error{set CPL_ERROR_NULL_INPUT\, return NULL,
ResTable is NULL or it contains zero rows}
@error{set CPL_ERROR_ILLEGAL_INPUT\, return NULL,
one of the sizes is not positive}
@error{set CPL_ERROR_UNSUPPORTED_MODE\, return NULL,
the WCS in the pixel table is neither in pixels nor degrees}
@error{set CPL_ERROR_DATA_NOT_FOUND\, return NULL,
ResTable is missing one of the coordinate columns}
@error{set CPL_ERROR_ILLEGAL_OUTPUT and ERROR message\, but return created grid,
ResTable contains different number of pixels than the output pixel grid}
*/
/*---------------------------------------------------------------------------*/
static hdrl_resample_pixgrid *
hdrl_resample_pixgrid_create(const cpl_table *ResTable, cpl_propertylist *aHeader,
cpl_size aXSize, cpl_size aYSize, cpl_size aZSize)
{
cpl_ensure(ResTable, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(aHeader, CPL_ERROR_NULL_INPUT, NULL);
cpl_size nrow = cpl_table_get_nrow(ResTable);
if (nrow == 0) {
cpl_msg_error(cpl_func, "Invalid pixel table (no entries?)");
cpl_error_set(cpl_func, CPL_ERROR_NULL_INPUT);
return NULL;
}
cpl_ensure(aXSize > 0 && aYSize > 0 && aZSize > 0, CPL_ERROR_ILLEGAL_INPUT,
NULL);
double crval3 = hdrl_resample_pfits_get_crval(aHeader, 3),
crpix3 = hdrl_resample_pfits_get_crpix(aHeader, 3),
cd33 = hdrl_resample_pfits_get_cd(aHeader, 3, 3);
hdrl_resample_smallwcs *wcs = hdrl_resample_smallwcs_new(aHeader);
/* get all (relevant) table columns for easy pointer access */
const double *xpos = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_RA),
*ypos = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_DEC),
*lbda = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA);
if (!xpos || !ypos || !lbda) {
cpl_msg_error(cpl_func, "Missing pixel table column (%p %p %p): %s",
(void *)xpos, (void *)ypos, (void *)lbda,
cpl_error_get_message());
cpl_error_set(cpl_func, CPL_ERROR_DATA_NOT_FOUND);
cpl_free(wcs);
return NULL;
}
wcs->crval1 /= CPL_MATH_DEG_RAD; /* convert to radians before calling... */
wcs->crval2 /= CPL_MATH_DEG_RAD; /* ...hdrl_resample_wcs_pixel_from_celestial_fast() */
double timeinit = cpl_test_get_walltime(),
timeprogress = timeinit,
cpuinit = cpl_test_get_cputime();
cpl_boolean showprogress = cpl_msg_get_level() == CPL_MSG_DEBUG
|| cpl_msg_get_log_level() == CPL_MSG_DEBUG;
/* check for the selected pixels in the pixel table, only those *
* are used to construct the pixel grid; since constructing the *
* array of selected pixels costs significant amounts of time, *
* do that only when not all pixels are selected! */
cpl_array *asel = NULL;
const cpl_size *sel = NULL;
cpl_size nsel = cpl_table_count_selected(ResTable);
if (nsel < nrow) {
asel = cpl_table_where_selected(ResTable);
sel = cpl_array_get_data_cplsize_const(asel);
}
/* can use at most XMAP_BITMASK threads so that the bitmask does not *
* overflow, but ensure that we are not using more cores than available... */
int nth = omp_get_max_threads() > XMAP_BITMASK ? XMAP_BITMASK
: omp_get_max_threads();
/* prepare the ranges for the different threads, store them in arrays */
cpl_array *az1 = cpl_array_new(nth, CPL_TYPE_INT),
*az2 = cpl_array_new(nth, CPL_TYPE_INT);
if (aZSize < nth) {
/* pre-fill arrays with values that cause the threads to do nothing */
cpl_array_fill_window_int(az1, aZSize, nth, -1);
cpl_array_fill_window_int(az2, aZSize, nth, -2);
}
/* now fill the (first) ones with real ranges */
double base = nth > aZSize ? 1. : (double)aZSize / nth;
cpl_size ith;
for (ith = 0; ith < nth && ith < aZSize; ith++) {
cpl_array_set_int(az1, ith, lround(base * ith));
cpl_array_set_int(az2, ith, lround(base * (ith + 1) - 1));
} /* for */
/* make sure that we don't lose pixels at the edges of the wavelength *
* range, put them into the extreme threads by making their ranges larger; *
* set the relevant array entries to something close to the largest value, *
* that we can still add as an integer (to compute the z-range) */
cpl_array_set_int(az1, 0, -INT_MAX / 2 + 1);
cpl_array_set_int(az2, ith - 1, INT_MAX / 2 - 1);
/* create the pixel grid with extension maps for threads */
hdrl_resample_pixgrid *grid = hdrl_resample_pixgrid_new(aXSize, aYSize, aZSize, nth);
/* parallel region to fill the pixel grid */
struct timeval tv1, tv2;
cpl_msg_debug(cpl_func,"Starting parallel loop in hdrl_resample_pixgrid_create");
gettimeofday(&tv1, NULL);
#pragma omp parallel num_threads(nth) /* default(none) as req. by Ralf */ \
shared(aXSize, aYSize, aZSize, az1, az2, cd33, crpix3, crval3, grid, \
lbda, nsel, sel, showprogress, \
timeinit, timeprogress, wcs, xpos, ypos)
{
/* split the work up into threads, for non-overlapping wavelength ranges */
unsigned short ithread = omp_get_thread_num(); /* index of this thread */
int z1 = cpl_array_get_int(az1, ithread, NULL),
z2 = cpl_array_get_int(az2, ithread, NULL),
zrange = z2 - z1 + 1;
/* check if we actually need to enter the (parallel) loop, i.e. *
* if the current thread is handling any wavelength planes */
/* now the actual parallel loop */
cpl_size isel;
for (isel = 0 ; zrange > 0 && isel < nsel; isel++) {
#pragma omp master /* only output progress from the master thread */
if (showprogress && !((isel+1) % 1000000ll)) { /* output before every millionth entry */
double timenow = cpl_test_get_walltime();
if (timenow - timeprogress > 30.) { /* and more than half a minute passed */
timeprogress = timenow;
double percent = 100. * (isel + 1.) / nsel,
elapsed = timeprogress - timeinit,
remaining = (100. - percent) * elapsed / percent;
/* overwritable only exists for INFO mode, but we check *
* above that we want this only for DEBUG mode output... */
cpl_msg_info_overwritable(cpl_func, "pixel grid creation is %.1f%% "
"complete, %.1fs elapsed, ~%.1fs remaining",
percent, elapsed, remaining);
} /* if: 1/2 min passed */
} /* if: want debug output */
/* either use the index from the array of selected rows *
* or the row numberdirectly (for a fully selected table) */
cpl_size n = sel ? sel[isel] : isel;
int z = -1;
z = lround((lbda[n] - crval3) / cd33 + crpix3) - 1;
if (z < z1 || z > z2) {
continue; /* skip this entry, one of the other threads handles it */
}
/* determine the pixel coordinates in the grid (indices, starting at 0) */
double xpx = 0., ypx = 0.;
hdrl_resample_wcs_pixel_from_celestial_fast(wcs, (xpos[n]) / CPL_MATH_DEG_RAD,
(ypos[n]) / CPL_MATH_DEG_RAD,
&xpx, &ypx);
int x = lround(xpx) - 1,
y = lround(ypx) - 1;
cpl_size idx = hdrl_resample_pixgrid_get_index(grid, x, y, z, CPL_TRUE);
/* write the pixel values to the correct place in the grid */
hdrl_resample_pixgrid_add(grid, idx, n, ithread);
} /* for isel (all selected pixel table rows) */
/* Clean up the possibly too many allocations; this is not strictly *
* needed but nice to only consume as much memory as we need. */
grid->xmaps[ithread] = cpl_realloc(grid->xmaps[ithread],
grid->nxmap[ithread]
* sizeof(hdrl_resample_pixels_ext));
grid->nxalloc[ithread] = grid->nxmap[ithread];
} /* omp parallel */
gettimeofday(&tv2, NULL);
cpl_msg_debug(cpl_func, "Wall time for hdrl_resample_pixgrid_create was %f seconds\n",
(double) (tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double) (tv2.tv_sec - tv1.tv_sec));
cpl_array_delete(asel);
cpl_free(wcs);
cpl_array_delete(az1);
cpl_array_delete(az2);
cpl_size idx, npix = 0;
for (idx = 0; idx < aXSize * aYSize * aZSize; idx++) {
npix += hdrl_resample_pixgrid_get_count(grid, idx);
}
cpl_size nxmap = 0;
for (idx = 0; idx < (cpl_size)grid->nmaps; idx++) {
nxmap += grid->nxmap[idx];
}
if (npix != nsel) {
char *msg = cpl_sprintf("Pixels got lost while creating the cube (input "
"pixel table: %"CPL_SIZE_FORMAT", output pixel grid"
": %"CPL_SIZE_FORMAT")", nsel, npix);
cpl_msg_error(cpl_func, "%s:", msg);
cpl_error_set_message(cpl_func, CPL_ERROR_ILLEGAL_OUTPUT, "%s!", msg);
cpl_free(msg);
}
double timefini = cpl_test_get_walltime(),
cpufini = cpl_test_get_cputime();
cpl_msg_debug(cpl_func, "pixel grid: %dx%dx%d, %"CPL_SIZE_FORMAT" pixels "
"total, %"CPL_SIZE_FORMAT" (%.1f%%) in %hu extension maps; took"
" %gs (wall-clock) and %gs (CPU) to create", (int)grid->nx,
(int)grid->ny, (int)grid->nz, npix, nxmap,
(double)nxmap / npix * 100., grid->nmaps, timefini - timeinit,
cpufini - cpuinit);
return grid;
} /* hdrl_resample_pixgrid_create() */
/*----------------------------------------------------------------------------*/
/**
@brief Compute the spatial scales (in degrees) from the FITS header WCS.
@param aParams_outputgrid the input outgrid parameter containing the WCS
of the exposure
@param aXScale the output scale in x-direction
@param aYScale the output scale in y-direction
@return CPL_ERROR_NONE for success, any other value for failure
The world coordinate system from aHeader, i.e. the CDi_j matrix, is used to
compute the scales.
References:
- based on public domain code of the IDL astro-lib procedure getrot.pro
- http://idlastro.gsfc.nasa.gov/ftp/pro/astrom/getrot.pro
@error{return CPL_ERROR_NULL_INPUT, aHeader\, aX\, and/or aY are NULL}
@error{propagate the error of cpl_propertylist_get_double(),
some elements of the CDi_j matrix don't exist in aHeader}
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_wcs_get_scales(hdrl_resample_outgrid_parameter *aParams_outputgrid,
double *aXScale, double *aYScale)
{
cpl_ensure_code(aParams_outputgrid && aXScale && aYScale, CPL_ERROR_NULL_INPUT);
cpl_errorstate prestate = cpl_errorstate_get();
const cpl_matrix *cd = cpl_wcs_get_cd(aParams_outputgrid->wcs);
//double cd11 = aParams_outputgrid->limits.cd11;
//double cd22 = aParams_outputgrid->limits.cd22;
//double cd12 = aParams_outputgrid->limits.cd12;
//double cd21 = aParams_outputgrid->limits.cd21;
double cd11 = cpl_matrix_get(cd, 0, 0);
double cd12 = cpl_matrix_get(cd, 0, 1);
double cd21 = cpl_matrix_get(cd, 1, 0);
double cd22 = cpl_matrix_get(cd, 1, 1);
double det = cd11 * cd22 - cd12 * cd21;
cpl_ensure_code(cpl_errorstate_is_equal(prestate), cpl_error_get_code());
if (det < 0.) {
cd12 *= -1;
cd11 *= -1;
}
if (cd12 == 0. && cd21 == 0.) { /* matrix without rotation */
*aXScale = cd11;
*aYScale = cd22;
return CPL_ERROR_NONE;
}
*aXScale = sqrt(cd11*cd11 + cd12*cd12); /* only the absolute value */
*aYScale = sqrt(cd22*cd22 + cd21*cd21);
return CPL_ERROR_NONE;
} /* hdrl_resample_wcs_get_scales() */
/*---------------------------------------------------------------------------*/
/**
@brief Return a pointer to the rows stored in one pixel.
@param aGrid Pointer to pixel grid.
@param aIndex Pixel index, as computed by hdrl_resample_pixgrid_get_index().
@note This function is defined as static inline, i.e. should get integrated
into the caller by the compiler, to maximise execution speed.
*/
/*---------------------------------------------------------------------------*/
static inline const cpl_size *
hdrl_resample_pixgrid_get_rows(hdrl_resample_pixgrid *aGrid, cpl_size aIndex)
{
cpl_ensure(aGrid , CPL_ERROR_NULL_INPUT, 0);
cpl_ensure(aIndex >= 0 , CPL_ERROR_ILLEGAL_INPUT, 0);
cpl_ensure(aIndex < aGrid->nx * aGrid->ny * aGrid->nz, CPL_ERROR_ILLEGAL_INPUT, 0);
/* get entry in pixel grid */
cpl_size p = aGrid->pix[aIndex];
if (p == 0) { /* points nowhere --> no array */
return NULL;
}
if (p > 0) { /* points to pixel table */
return aGrid->pix + aIndex;
}
/* p is negative, so points to an extension map, get its array */
unsigned short ix = (-p >> XMAP_LSHIFT) & XMAP_BITMASK;
p = (-p - 1) & PT_IDX_MASK;
/* the pix component provides the array of pixel table rows in this index */
return aGrid->xmaps[ix][p].pix;
} /* hdrl_resample_pixgrid_get_rows() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Do the resampling from pixel grid into 3D cube using nearest
neighbor.
@param aCube the hdrl_resample datacube to fill
@param ResTable the input pixel table
@param aGrid the input pixel grid
@param aParams_outputgrid resampling outgrid parameters
@return CPL_ERROR_NONE on success, another cpl_error_code on failure
Simply loop through all grid points wavelength by wavelength and set the data,
dq, and stat values of the one or closest data point.
@error{set CPL_ERROR_NULL_INPUT\, return NULL,
aCube\, ResTable\, or aGrid are NULL}
*/
/*---------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_cube_nearest(hdrl_resample_result *aCube, const cpl_table *ResTable,
hdrl_resample_pixgrid *aGrid,
hdrl_resample_outgrid_parameter *aParams_outputgrid)
{
cpl_ensure_code(aCube && ResTable && aGrid && aParams_outputgrid,
CPL_ERROR_NULL_INPUT);
cpl_ensure_code(cpl_propertylist_has(aCube->header,"CRVAL3") == 1,
CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(cpl_propertylist_has(aCube->header,"CRPIX3") == 1,
CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(cpl_propertylist_has(aCube->header,"CD3_3") == 1,
CPL_ERROR_ILLEGAL_INPUT);
double crval3 = hdrl_resample_pfits_get_crval(aCube->header, 3);
double crpix3 = hdrl_resample_pfits_get_crpix(aCube->header, 3);
double cd33 = hdrl_resample_pfits_get_cd(aCube->header, 3, 3);
cpl_ensure_code(cd33 != 0, CPL_ERROR_ILLEGAL_INPUT);
cpl_wcs *wcscpl = cpl_wcs_new_from_propertylist(aCube->header);
if (hdrl_resample_inputtable_verify(ResTable)) {
return CPL_ERROR_ILLEGAL_INPUT;
}
const double *xpos = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_RA),
*ypos = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_DEC),
*lbda = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA),
*data = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_DATA),
*stat = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_ERRORS);
const int *dq = cpl_table_get_data_int_const(ResTable, HDRL_RESAMPLE_TABLE_BPM);
/* If our data was astrometrically calibrated, we need to scale the *
* data units to the pixel size in all three dimensions so that the *
* radius computation works again. *
* Otherwise dx~5.6e-5deg won't contribute to the weighting at all. */
double xnorm = 1., ynorm = 1., znorm = 1. ;
hdrl_resample_wcs_get_scales(aParams_outputgrid, &xnorm, &ynorm);
//TODO: we should check that xnorm, ynorm, znorm are not zero
xnorm = 1. / xnorm;
ynorm = 1. / ynorm;
//znorm = 1. / aParams_outputgrid->limits.cd33;
const cpl_matrix *cd = cpl_wcs_get_cd(aParams_outputgrid->wcs);
if (cpl_matrix_get_ncol(cd) == 3) {
znorm = 1. / cpl_matrix_get(cd, 2, 2);
}
/*
cpl_msg_debug(cpl_func, "Norm factors from wcs - xnorm: %g ynorm: %g znorm: %g",
xnorm, ynorm, znorm);
need to use the real coordinate offset for celestial spherical
// We are now working with the full astrometric solution
//ptxoff = hdrl_resample_pfits_get_crval(ResTable->header, 1);
//ptyoff = hdrl_resample_pfits_get_crval(ResTable->header, 2);
*/
struct timeval tv1, tv2;
cpl_msg_debug(cpl_func,"Starting parallel loop in hdrl_resample_cube_nearest");
gettimeofday(&tv1, NULL);
#pragma omp parallel for default(none) /* as req. by Ralf */ \
shared(aCube, aGrid, cd33, crpix3, crval3, data, dq, lbda, \
stat, stdout, wcscpl, \
xnorm, xpos, ynorm, ypos, znorm) collapse(2)
for (cpl_size l = 0; l < aGrid->nz; l++) {
for (cpl_size i = 0; i < aGrid->nx; i++) {
double *pdata = cpl_image_get_data_double(hdrl_image_get_image(hdrl_imagelist_get(aCube->himlist, l)));
double *pstat = cpl_image_get_data_double(hdrl_image_get_error(hdrl_imagelist_get(aCube->himlist, l)));
cpl_binary *pdq = cpl_mask_get_data(hdrl_image_get_mask(hdrl_imagelist_get(aCube->himlist, l)));
/* wavelength of center of current grid cell (l is index starting at 0) */
double lambda = (l + 1. - crpix3) * cd33 + crval3;
cpl_size j;
for (j = 0; j < aGrid->ny; j++) {
cpl_size idx = hdrl_resample_pixgrid_get_index(aGrid, i, j, l, CPL_FALSE),
n_rows = hdrl_resample_pixgrid_get_count(aGrid, idx);
const cpl_size *rows = hdrl_resample_pixgrid_get_rows(aGrid, idx);
/* x and y position of center of current grid cell (i, j start at 0) */
double x = 0., y = 0.;
// We are now working with the full astrometric solution
// hdrl_resample_wcs_celestial_from_pixel_fast(wcs, i + 1, j + 1, &x, &y);
hdrl_wcs_xy_to_radec(wcscpl, i + 1, j + 1, &x, &y);
if (n_rows == 1) {
if ((cpl_binary)dq[rows[0]] == CPL_BINARY_0) {
/* if there is only one pixel in the cell, just use it */
pdata[i + j * aGrid->nx] = data[rows[0]];
pstat[i + j * aGrid->nx] = stat[rows[0]];
pdq[i + j * aGrid->nx] = (cpl_binary)dq[rows[0]];
} else {
pdq[i + j * aGrid->nx] = CPL_BINARY_1;
}
} else if (n_rows >= 2) {
/* loop through all available values and take the closest one */
cpl_size n, nbest = -1;
double dbest = FLT_MAX; /* some unlikely large value to start with*/
for (n = 0; n < n_rows; n++) {
/* do not use bad pixels */
if((cpl_binary)dq[rows[n]] != CPL_BINARY_0) {
continue;
}
/* the differences for the cell center and the current pixel */
double dx = fabs(x - xpos[rows[n]]) * xnorm,
dy = fabs(y - ypos[rows[n]]) * ynorm,
dlambda = fabs(lambda - lbda[rows[n]]) * znorm,
dthis = sqrt(dx*dx + dy*dy + dlambda*dlambda);
/* Not strictly necessary for NN, but still scale the RA *
* distance properly, see hdrl_resample_cube_weighted(). */
dx *= cos(y * CPL_MATH_RAD_DEG);
if (dthis < dbest) {
nbest = n;
dbest = dthis;
}
}
if (nbest >= 0) { /* We found a good nearest neighbor */
pdata[i + j * aGrid->nx] = data[rows[nbest]];
pstat[i + j * aGrid->nx] = stat[rows[nbest]];
pdq[i + j * aGrid->nx] = (cpl_binary)dq[rows[nbest]];
}
} else {
/* npix == 0: do nothing, pixel stays zero */
pdq[i + j * aGrid->nx] = CPL_BINARY_1;
}
} /* for j (y direction) */
} /* for i (x direction) */
} /* for l (wavelength planes) */
gettimeofday(&tv2, NULL);
cpl_msg_debug(cpl_func, "Wall time for hdrl_resample_cube_nearest was %f seconds\n",
(double) (tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double) (tv2.tv_sec - tv1.tv_sec));
/* Make sure that the bpm of the image and the error are in sinc as we are
* working with pointers */
cpl_size size = hdrl_imagelist_get_size(aCube->himlist);
for(cpl_size i = 0; i < size; i++){
/* sync image and error bpm ignoring what is in error before */
cpl_image_reject_from_mask(hdrl_image_get_error(hdrl_imagelist_get(aCube->himlist, i)),
hdrl_image_get_mask(hdrl_imagelist_get(aCube->himlist, i) ));
}
cpl_wcs_delete(wcscpl);
return CPL_ERROR_NONE;
} /* hdrl_resample_cube_nearest() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Modified Shepard-like distance weighting function following Renka.
@param r linear distance r
@param r_c critical radius r_c beyond which the function returns 0
@return the weight
Set weight to high number in case of perfect match (using FLT_MAX for this
double variable should allow enough space for other pixel's weights to be
added on top of this) and to a very low number in case this value is outside
the critical radius r_c (using DBL_MIN avoids divide-by-zero).
*/
/*---------------------------------------------------------------------------*/
static inline double
hdrl_resample_weight_function_renka(double r, double r_c)
{
if (r == 0) {
return FLT_MAX;
} else if (r >= r_c) {
return DBL_MIN;
} else {
double p = (r_c - r) / (r_c * r);
return p*p;
}
} /* hdrl_resample_weight_function_renka() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Drizzle-like distance weighting function.
@param xin pixfrac-scaled input pixel size in x direction (spatial)
@param yin pixfrac-scaled input pixel size in y direction (spatial)
@param zin pixfrac-scaled input pixel size in z direction (wavelength)
@param xout target voxel size in x direction (spatial)
@param yout target voxel size in y direction (spatial)
@param zout target voxel size in z direction (wavelength)
@param dx offset from target voxel in x direction (spatial)
@param dy offset from target voxel in y direction (spatial)
@param dz offset from target voxel in z direction (wavelength)
@return the weight
This function computes the percentage of flux of the original pixel that
"drizzles" into the target voxel. It therefore has to be given a good estimate
of the input size and the target size as well as the offset in all three axes.
*/
/*---------------------------------------------------------------------------*/
static inline double
hdrl_resample_weight_function_drizzle(double xin, double yin, double zin,
double xout, double yout, double zout,
double dx, double dy, double dz)
{
/* compute the three terms in the numerator: if the offset *
* plus the output halfsize is less than the input halfsize, *
* then that side is fully contained in the input pixel */
double x = (dx + xout / 2.) <= xin / 2. ? xout : (xin + xout) / 2. - dx,
y = (dy + yout / 2.) <= yin / 2. ? yout : (yin + yout) / 2. - dy,
z = (dz + zout / 2.) <= zin / 2. ? zout : (zin + zout) / 2. - dz;
/* any negative value means that the input pixel is completely *
* outside the target voxel, so it doesn't contribute */
if (x <= 0 || y <= 0 || z <= 0) {
return 0.;
}
/* any value > input size means this dimension of the input pixel *
* is completely inside the target voxel, so that's the limit! */
return (x > xin ? xin : x) * (y > yin ? yin : y) * (z > zin ? zin : z)
/ (xin * yin * zin);
} /* hdrl_resample_weight_function_drizzle() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Linear inverse distance weighting function.
@param r linear distance r
@return the weight
Set weight to high number in case of perfect match (using FLT_MAX for this
double variable should allow enough space for other pixel's weights to be
added on top of this).
*/
/*---------------------------------------------------------------------------*/
static inline double
hdrl_resample_weight_function_linear(double r)
{
return r == 0 ? FLT_MAX : 1. / r;
} /* hdrl_resample_weight_function_linear() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Quadratic inverse distance weighting function.
@param r2 squared distance r^2
@return the weight
Set weight to high number in case of perfect match (using FLT_MAX for this
double variable should allow enough space for other pixel's weights to be
added on top of this).
*/
/*---------------------------------------------------------------------------*/
static inline double
hdrl_resample_weight_function_quadratic(double r2)
{
return r2 == 0 ? FLT_MAX : 1. / r2;
} /* hdrl_resample_weight_function_quadratic() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Normalized sinc distance weighting function.
@param r linear distance r
@return the weight
*/
/*---------------------------------------------------------------------------*/
static inline double
hdrl_resample_weight_function_sinc(double r)
{
return fabs(r) < DBL_EPSILON ? 1. : sin(CPL_MATH_PI * r) / (CPL_MATH_PI * r);
} /* hdrl_resample_weight_function_sinc() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Lanczos distance weighting function (restricted sinc).
@param dx linear distance in x direction (spatial)
@param dy linear distance in y direction (spatial)
@param dz linear distance in z direction (wavelength)
@param ld maximum radius in pixels
@param lks lanczos kernel size
@return the weight
*/
/*---------------------------------------------------------------------------*/
static inline double
hdrl_resample_weight_function_lanczos(double dx, double dy, double dz,
unsigned int ld, unsigned int lks)
{
/* Adding 0.5 as for a loop distance of 0 the weight should only drop to 0 if
* the distance is larger then half the pixel */
return (fabs(dx) >= (ld + 0.5) || fabs(dy) >= (ld + 0.5) || fabs(dz) > (ld + 0.5)) ? 0.
: hdrl_resample_weight_function_sinc(dx) * hdrl_resample_weight_function_sinc(dx / lks)
* hdrl_resample_weight_function_sinc(dy) * hdrl_resample_weight_function_sinc(dy / lks)
* hdrl_resample_weight_function_sinc(dz) * hdrl_resample_weight_function_sinc(dz / lks);
} /* hdrl_resample_weight_function_lanczos() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Do the resampling from pixel grid into 3D cube using a weighting
scheme.
@param aCube the hdrl_resample datacube to fill
@param ResTable the input pixel table
@param aGrid the input pixel grid
@param aParams_method the resampling method parameters
@param aParams_outputgrid the resampling outgrid parameters
@return CPL_ERROR_NONE on success, another cpl_error_code on failure
Loop through all grid points wavelength by wavelength and compute the final
values (of data/flux, dq, and stat) using a suitable weighting scheme on the
surrounding grid points.
All parameters are set in the aParams_outputgrid/method structures.
@error{set and return CPL_ERROR_NULL_INPUT,
aCube\, ResTable\, aGrid\, or aParams are NULL}
@error{override it and output warning, loop distance (aParams->ld) is <= 0}
*/
/*---------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_cube_weighted(hdrl_resample_result *aCube,
const cpl_table *ResTable,
hdrl_resample_pixgrid *aGrid,
hdrl_resample_method_parameter *aParams_method,
hdrl_resample_outgrid_parameter *aParams_outputgrid)
{
cpl_ensure_code(aCube && ResTable && aGrid && aParams_method &&
aParams_outputgrid, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(cpl_propertylist_has(aCube->header,"CRVAL3") == 1,
CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(cpl_propertylist_has(aCube->header,"CRPIX3") == 1,
CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(cpl_propertylist_has(aCube->header,"CD3_3") == 1,
CPL_ERROR_ILLEGAL_INPUT);
double crval3 = hdrl_resample_pfits_get_crval(aCube->header, 3),
crpix3 = hdrl_resample_pfits_get_crpix(aCube->header, 3),
cd33 = hdrl_resample_pfits_get_cd(aCube->header, 3, 3);
hdrl_resample_smallwcs *wcs = hdrl_resample_smallwcs_new(aCube->header);
cpl_wcs *wcscpl = cpl_wcs_new_from_propertylist(aCube->header);
const double *xpos = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_RA),
*ypos = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_DEC),
*lbda = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA),
*data = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_DATA),
*stat = cpl_table_get_data_double_const(ResTable, HDRL_RESAMPLE_TABLE_ERRORS);
const int *dq = cpl_table_get_data_int_const(ResTable, HDRL_RESAMPLE_TABLE_BPM);
/* If our data was astrometrically calibrated, we need to scale the *
* data units to the pixel size in all three dimensions so that the *
* radius computation works again. *
* Otherwise dx~5.6e-5deg won't contribute to the weighting at all. */
double xnorm = 1., ynorm = 1., znorm = 1. ;
hdrl_resample_wcs_get_scales(aParams_outputgrid, &xnorm, &ynorm);
xnorm = 1. / xnorm;
ynorm = 1. / ynorm;
//znorm = 1. / aParams_outputgrid->limits.cd33;
const cpl_matrix *cd = cpl_wcs_get_cd(aParams_outputgrid->wcs);
if (cpl_matrix_get_ncol(cd) == 3) {
znorm = 1. / cpl_matrix_get(cd, 2, 2);
}
/*
cpl_msg_debug(cpl_func, "Norm factors from wcs - xnorm: %g ynorm: %g znorm: %g",
xnorm, ynorm, znorm);
need to use the real coordinate offset for celestial spherical
// We are now working with the full astrometric solution
//ptxoff = hdrl_resample_pfits_get_crval(ResTable->header, 1);
//ptyoff = hdrl_resample_pfits_get_crval(ResTable->header, 2);
*/
/* scale the input critical radius by the voxel radius */
double renka_rc = aParams_method->renka_critical_radius /*beware of rotation! */
* sqrt((wcs->cd11*xnorm)*(wcs->cd11*xnorm)
+ (wcs->cd22*ynorm)*(wcs->cd22*ynorm)
+ (cd33*znorm)*(cd33*znorm));
/* loop distance (to take into account surrounding pixels) verification */
int ld = aParams_method->loop_distance;
if (ld < 0) {
ld = 0;
cpl_msg_debug(cpl_func, "Overriding loop distance ld=%d", ld);
}
/* Lankzos kernel size (lks) verification */
int lks = aParams_method->lanczos_kernel_size;
if (lks <= 0) {
lks = 1;
cpl_msg_debug(cpl_func, "Overriding lanczos kernel size lks=%d", lks);
}
/* Should 1/variance be used as an additional weight */
cpl_boolean wght = aParams_method->use_errorweights;
/* pixel sizes in all three directions, scaled by pixfrac, and *
* output pixel sizes (absolute values), as needed for drizzle */
double xsz = aParams_method->drizzle_pix_frac_x / xnorm,
ysz = aParams_method->drizzle_pix_frac_y / ynorm,
zsz = aParams_method->drizzle_pix_frac_lambda / znorm,
xout = fabs(wcs->cd11), yout = fabs(wcs->cd22), zout = fabs(cd33);
struct timeval tv1, tv2;
cpl_msg_debug(cpl_func,"Starting parallel loop in hdrl_resample_cube_weighted");
gettimeofday(&tv1, NULL);
#pragma omp parallel for default(none) /* as req. by Ralf */ \
shared(aCube, aParams_method, aParams_outputgrid, aGrid, ResTable, cd33, crpix3, crval3, data, \
dq, lbda, ld, lks, renka_rc, stat, \
stdout, wcs, wcscpl, wght, xnorm, xout, xpos, xsz, ynorm, yout,\
ypos, ysz, znorm, zout, zsz) collapse(2)
for (cpl_size l = 0; l < aGrid->nz; l++) {
for (cpl_size i = 0; i < aGrid->nx; i++) {
double *pdata = cpl_image_get_data_double(hdrl_image_get_image(hdrl_imagelist_get(aCube->himlist, l)));
double *pstat = cpl_image_get_data_double(hdrl_image_get_error(hdrl_imagelist_get(aCube->himlist, l)));
cpl_binary *pdq = cpl_mask_get_data(hdrl_image_get_mask(hdrl_imagelist_get(aCube->himlist, l)));
/* wavelength of center of current grid cell (l is index starting at 0) */
double lambda = (l + 1. - crpix3) * cd33 + crval3;
double zout2 = zout; /* correct the output pixel size for log-lambda */
for (cpl_size j = 0; j < aGrid->ny; j++) {
/* x and y position of center of current grid cell (i, j start at 0) */
double x, y;
// We are now working with the full astrometric solution
// hdrl_resample_wcs_celestial_from_pixel_fast(wcs, i + 1, j + 1, &x, &y);
hdrl_wcs_xy_to_radec(wcscpl, i + 1, j + 1, &x, &y);
//cpl_msg_debug(cpl_func,"case1 i %d j %d x %10.7f y %10.7f ",i+1,j+1,x,y);
double sumdata = 0, sumstat = 0, sumweight = 0;
double flux=0;
cpl_size npoints = 0;
/* loop through surrounding cells and their contained pixels */
cpl_size i2;
for (i2 = i - ld; i2 <= i + ld; i2++) {
cpl_size j2;
for (j2 = j - ld; j2 <= j + ld; j2++) {
cpl_size l2;
for (l2 = l - ld; l2 <= l + ld; l2++) {
cpl_size idx2 = hdrl_resample_pixgrid_get_index(aGrid, i2, j2, l2, CPL_FALSE);
if (idx2 < 0) continue;
cpl_size n_rows2 = hdrl_resample_pixgrid_get_count(aGrid, idx2);
const cpl_size *rows2 = hdrl_resample_pixgrid_get_rows(aGrid, idx2);
cpl_size n;
for (n = 0; n < n_rows2; n++) {
if (dq[rows2[n]]) { /* exclude all bad pixels */
continue;
}
double dx = fabs(x - (xpos[rows2[n]])),
dy = fabs(y - (ypos[rows2[n]])),
dlambda = fabs(lambda - lbda[rows2[n]]),
r2 = 0;
/* Since the distances of RA in degrees get larger the *
* closer we get to the celestial pole, we have to *
* compensate for that by multiplying the distance in *
* RA by cos(delta), to make it comparable to the *
* distances in pixels for the different kernels below. */
// We are now working with the full astrometric solution
dx *= cos(y * CPL_MATH_RAD_DEG);
if (aParams_method->method != HDRL_RESAMPLE_METHOD_DRIZZLE) {
dx *= xnorm;
dy *= ynorm;
dlambda *= znorm;
r2 = dx * dx + dy * dy + dlambda * dlambda;
//cpl_msg_debug(cpl_func,"n %lld dx %10.7f dy %10.7f dlambda %10.7f",n,dx,dy,dlambda);
}
double weight = 0.;
if (aParams_method->method == HDRL_RESAMPLE_METHOD_RENKA) {
weight = hdrl_resample_weight_function_renka(sqrt(r2), renka_rc);
} else if (aParams_method->method == HDRL_RESAMPLE_METHOD_DRIZZLE) {
weight = hdrl_resample_weight_function_drizzle(xsz, ysz, zsz,
xout, yout, zout2,
dx, dy, dlambda);
} else if (aParams_method->method == HDRL_RESAMPLE_METHOD_LINEAR) {
weight = hdrl_resample_weight_function_linear(sqrt(r2));
//cpl_msg_debug(cpl_func,"r2=%10.7f weight=%10.7f",r2,weight);
} else if (aParams_method->method == HDRL_RESAMPLE_METHOD_QUADRATIC) {
weight = hdrl_resample_weight_function_quadratic(r2);
} else if (aParams_method->method == HDRL_RESAMPLE_METHOD_LANCZOS) {
weight = hdrl_resample_weight_function_lanczos(dx, dy,
dlambda, ld, lks);
}
if (wght && stat[rows2[n]] > 0.) { /* User wants to weight by 1/variance */
/* apply it on top of the weight computed here */
weight /= (stat[rows2[n]] * stat[rows2[n]]);
}
sumweight += weight;
sumdata += data[rows2[n]] * weight;
flux += data[rows2[n]];
sumstat += stat[rows2[n]] * stat[rows2[n]] * weight * weight;
npoints++;
} /* for n (all pixels in grid cell) */
} /* for l2 (lambda direction) */
} /* for j2 (y direction) */
} /* for i2 (x direction) */
/* if no points were found, we cannot divide by the summed weight *
* and don't need to set the output pixel value (it's 0 already), *
* only set the relevant Euro3D bad pixel flag
* In some cases only sumweight * sumweight is really zero so this
* check was additionally added for the error propagation part*/
if (!npoints || !isnormal(sumweight) || !isnormal(sumweight * sumweight)) {
pdq[i + j * aGrid->nx] = CPL_BINARY_1;
continue;
}
/* divide results by weight of summed pixels */
sumdata /= sumweight;
sumstat /= sumweight * sumweight;
pdata[i + j * aGrid->nx] = sumdata;
/* Going back from variance to errors */
pstat[i + j * aGrid->nx] = sqrt(sumstat);
pdq[i + j * aGrid->nx] = CPL_BINARY_0; /* now we can mark it as good */
} /* for j (y direction) */
} /* for i (x direction) */
} /* for l (wavelength planes) */
gettimeofday(&tv2, NULL);
cpl_msg_debug(cpl_func, "Wall time for hdrl_resample_cube_weighted was %f seconds\n",
(double) (tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double) (tv2.tv_sec - tv1.tv_sec));
/* Make sure that the bpm of the image and the error are in sinc as we are
* working with pointers */
cpl_size size = hdrl_imagelist_get_size(aCube->himlist);
for(cpl_size i = 0; i < size; i++){
/* sync image and error bpm ignoring what is in error before */
cpl_image_reject_from_mask(hdrl_image_get_error(hdrl_imagelist_get(aCube->himlist, i)),
hdrl_image_get_mask(hdrl_imagelist_get(aCube->himlist, i) ));
}
cpl_free(wcs);
cpl_wcs_delete(wcscpl);
return CPL_ERROR_NONE;
} /* hdrl_resample_cube_weighted() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief set the output grid parameters
@param xsize the output grid X size
@param ysize the output grid Y size
@param zsize the output grid Z size
@param cube the input pixel table
@param aParams_outputgrid the resampling outgrid parameters
@return CPL_ERROR_NONE on success, another cpl_error_code on failure
Set relevant FITS header WCS FITS keywords based on the information provided
by the aParams_outputgrid structure.
CRPIX1 = (xsize + 1) / 2.
CRPIX2 = (ysize + 1) / 2.
CRPIX3 = 1.
*/
/*---------------------------------------------------------------------------*/
static cpl_error_code hdrl_resampling_set_outputgrid (
int xsize, int ysize, int zsize, hdrl_resample_result *cube,
hdrl_resample_outgrid_parameter *aParams_outputgrid)
{
cpl_ensure_code(xsize > 0, CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(ysize > 0,CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(zsize >= 0, CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(cube && aParams_outputgrid, CPL_ERROR_NULL_INPUT);
/* TODO: cube->header may be already allocated. In this case why a new and
* not an over-write of the content?
*/
cube->header = cpl_propertylist_new ();
hdrl_wcs_to_propertylist (aParams_outputgrid->wcs, cube->header,
FALSE);
cpl_propertylist_update_string (cube->header, "CTYPE1", "RA---TAN");
cpl_propertylist_update_string (cube->header, "CTYPE2", "DEC--TAN");
cpl_propertylist_set_comment(cube->header, "CTYPE1", "Gnomonic projection");
cpl_propertylist_set_comment(cube->header, "CTYPE2", "Gnomonic projection");
/* set NAXIS for later handling of the WCS */
cpl_propertylist_update_int (cube->header, "NAXIS", 3);
cpl_propertylist_update_int (cube->header, "NAXIS1", xsize);
cpl_propertylist_update_int (cube->header, "NAXIS2", ysize);
cpl_propertylist_update_int (cube->header, "NAXIS3", zsize);
/* if pixel table was astrometrically calibrated, use its WCS headers *
* Axis 1: x or RA, axis 2: y or DEC, axis 3: lambda
*
* */
cpl_propertylist_update_double (cube->header, "CD1_1",
-aParams_outputgrid->delta_ra);
cpl_propertylist_update_double (cube->header, "CD2_2",
aParams_outputgrid->delta_dec);
cpl_propertylist_update_double (cube->header, "CD1_2", 0.);
cpl_propertylist_update_double (cube->header, "CD2_1", 0.);
double ramin = aParams_outputgrid->ra_min;
double ramax = aParams_outputgrid->ra_max;
double decmin = aParams_outputgrid->dec_min;
double decmax = aParams_outputgrid->dec_max;
/* Following swarp we put CRPIX and CRVAL to the center of the field */
cpl_propertylist_update_double(cube->header, "CRPIX1", (double)((xsize + 1) / 2.));
cpl_propertylist_update_double(cube->header, "CRPIX2", (double)((ysize + 1) / 2.));
if(ramax - ramin < 180) {
/* To be checked: Both values are in 0 - 180 or 180 - 360 */
cpl_propertylist_update_double(cube->header, "CRVAL1", (ramin + ramax) / 2.);
} else {
double diff1 = 360. - ramax;
double diff2 = ramin - 0.;
if (diff1 < diff2) {
cpl_propertylist_update_double(cube->header, "CRVAL1", ramin - (diff1 + diff2) / 2);
} else {
cpl_propertylist_update_double(cube->header, "CRVAL1", ramax + (diff1 + diff2) / 2.);
}
}
cpl_propertylist_update_double(cube->header, "CRVAL2", (decmin + decmax) / 2.);
cpl_propertylist_update_double (cube->header, "CD3_3",
aParams_outputgrid->delta_lambda);
cpl_propertylist_update_double (cube->header, "CRPIX3", 1.);
cpl_propertylist_update_double (cube->header, "CRVAL3",
aParams_outputgrid->lambda_min);
/* fill in empty cross-terms of the CDi_j matrix */
cpl_propertylist_update_double (cube->header, "CD1_3", 0.);
cpl_propertylist_update_double (cube->header, "CD2_3", 0.);
cpl_propertylist_update_double (cube->header, "CD3_1", 0.);
cpl_propertylist_update_double (cube->header, "CD3_2", 0.);
return cpl_error_get_code();
}
/*---------------------------------------------------------------------------*/
/**
@brief Resample a pixel table onto a regular grid structure representing
a FITS NAXIS=3 datacube.
@param ResTable the hdrl_resample pixel table to resample
@param aParams_method the resampling method parameters
@param aParams_outputgrid the resampling output grid parameters
@param aGrid if not NULL, use it to store the pixel grid pointer
@return A hdrl_resample_datacube * for the output FITS datacube (and its bad pixels,
error and headers) or NULL on error.
This function implements the resampling scheme discussed in Sect. 2.2 of the
DRLDesign document:
First, convert the input pixel table into a regular grid of cells, storing
the input pixels in their nearest cell. To resample, then loop through all
cells, sampling surrounding pixels depending on the requested method. Values
that rise aHSigma above the surrounding values, i.e. cosmic rays, are removed
at this stage. Store the output pixels (their values, bad pixel status, and
error) in a hdrl_resample_datacube structure to be used to store 3xFITS_NAXIS=3
files.
@note This function changes some of the components of aParams. Specifically,
dx, dy, and dlambda may be changed after calling this function!
@qa Using the INM, different astronomical scenes can be created to be
used for quality checks.
When creating a scene with a few well separated point sources, one knows
the flux of each source at each wavelength. If this function works
correctly, the flux should be conserved and can be compared to the
expected value (using some tolerance).
If using a scene with sky emission lines, one can measure the wavelengths
and dispersions in a few of the sky lines. They should be at the same
wavelength for all spaxels and this position should agree with the
position determined from the INM-created data.
Additionally, a (visual) comparison of monochromatic maps created from
INM input frames can be compared to maps derived from output cubes created
by this routine. If all intermediate calibrations were derived correctly,
both should look similar.
@error{set CPL_ERROR_NULL_INPUT\, return NULL,
the input pixel table or input param structure are NULL}
@error{set CPL_ERROR_ILLEGAL_INPUT\, return NULL,
the input pixel table does not contain full geometry information}
@error{set CPL_ERROR_UNSUPPORTED_MODE\, return NULL,
the WCS in the pixel table is neither in pixels nor degrees}
@error{set CPL_ERROR_ILLEGAL_OUTPUT\, return NULL,
computed output size in at least one coordinate is not positive}
@error{set CPL_ERROR_DATA_NOT_FOUND\, fill aGrid with NULL\, and return NULL,
could not create pixel grid for the cube}
@error{just create empty datacube and possibly return pixel grid,
given method is HDRL_RESAMPLE_METHOD_NONE}
@error{set CPL_ERROR_UNSUPPORTED_MODE\, return NULL, given method is unknown}
@error{return NULL\, propagate error code, resampling fails}
*/
/*---------------------------------------------------------------------------*/
static hdrl_resample_result *
hdrl_resample_cube(const cpl_table *ResTable,
hdrl_resample_method_parameter *aParams_method,
hdrl_resample_outgrid_parameter *aParams_outputgrid,
hdrl_resample_pixgrid **aGrid)
{
cpl_ensure(ResTable && aParams_method && aParams_outputgrid && aGrid,
CPL_ERROR_NULL_INPUT, NULL);
/* compute or set the size of the output grid depending on *
* the inputs and the data available in the pixel table */
/* compute output sizes; wavelength is different in that it is *
* more useful to contain partly empty areas within the field *
* for the extreme ends, so use ceil() */
int xsize = 0, ysize = 0, zsize = 0;
hdrl_resample_compute_size(aParams_outputgrid, &xsize, &ysize, &zsize);
/* Following swarp for x and y : Add a margin in field size */
xsize *= (100. + aParams_outputgrid->fieldmargin)/100.;
ysize *= (100. + aParams_outputgrid->fieldmargin)/100.;
cpl_ensure(xsize > 0 && ysize > 0 && zsize > 0, CPL_ERROR_ILLEGAL_OUTPUT,
NULL);
double time = cpl_test_get_walltime();
/* create the structure for the output datacube */
hdrl_resample_result *cube = cpl_calloc(1, sizeof(hdrl_resample_result));
hdrl_resampling_set_outputgrid (xsize, ysize, zsize, cube, aParams_outputgrid);
if (aParams_method->method < HDRL_RESAMPLE_METHOD_NONE) {
/* fill the cube for the data */
cube->himlist = hdrl_imagelist_new();
for (cpl_size i = 0; i < zsize; i++) {
hdrl_image * image = hdrl_image_new(xsize, ysize);
/* Set all pixels a priori to bad - do not use pointers to keep the
* bpm of the data and error image in sync*/
for (cpl_size j = 1; j <= xsize; j++) {
for (cpl_size k = 1; k <= ysize; k++) {
hdrl_image_reject(image, j, k);
}
}
hdrl_imagelist_set(cube->himlist, image, i);
} /* for i (all wavelength planes) */
} /* if method not HDRL_RESAMPLE_METHOD_NONE */
/* convert the pixel table into a pixel grid */
hdrl_resample_pixgrid *grid = hdrl_resample_pixgrid_create(ResTable, cube->header,
xsize, ysize, zsize);
if (!grid) {
hdrl_resample_result_delete(cube);
cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND, "Could not create"
" pixel grid!");
if (aGrid) {
*aGrid = NULL;
}
return NULL;
} /* if not grid */
double timeinit = cpl_test_get_walltime(),
cpuinit = cpl_test_get_cputime();
/* do the resampling */
cpl_error_code rc = CPL_ERROR_NONE;
switch (aParams_method->method) {
case HDRL_RESAMPLE_METHOD_NEAREST:
cpl_msg_debug(cpl_func, "Starting resampling, using method \"nearest\"");
rc = hdrl_resample_cube_nearest(cube, ResTable, grid, aParams_outputgrid);
break;
case HDRL_RESAMPLE_METHOD_RENKA:
cpl_msg_debug(cpl_func, "Starting resampling, using method \"renka\" "
"(critical radius rc=%f, loop distance ld=%d)",
aParams_method->renka_critical_radius,
aParams_method->loop_distance);
rc = hdrl_resample_cube_weighted(cube, ResTable, grid, aParams_method,
aParams_outputgrid);
break;
case HDRL_RESAMPLE_METHOD_LINEAR:
case HDRL_RESAMPLE_METHOD_QUADRATIC:
case HDRL_RESAMPLE_METHOD_LANCZOS:
cpl_msg_debug(cpl_func, "Starting resampling, using method \"%s\" (loop "
"distance ld=%d)",
aParams_method->method == HDRL_RESAMPLE_METHOD_LINEAR
? "linear"
: (aParams_method->method == HDRL_RESAMPLE_METHOD_QUADRATIC
? "quadratic"
: "lanczos"),
aParams_method->loop_distance);
rc = hdrl_resample_cube_weighted(cube, ResTable, grid, aParams_method,
aParams_outputgrid);
break;
case HDRL_RESAMPLE_METHOD_DRIZZLE:
cpl_msg_debug(cpl_func, "Starting resampling, using method \"drizzle\" "
"(pixfrac f=%.3f,%.3f,%.3f, loop distance ld=%d)",
aParams_method->drizzle_pix_frac_x,
aParams_method->drizzle_pix_frac_y,
aParams_method->drizzle_pix_frac_lambda,
aParams_method->loop_distance);
rc = hdrl_resample_cube_weighted(cube, ResTable, grid,
aParams_method,
aParams_outputgrid);
break;
case HDRL_RESAMPLE_METHOD_NONE:
/* cpl_msg_debug(cpl_func, "Method %d (no resampling)", aParams_method->method); */
break;
default:
cpl_msg_error(cpl_func, "Don't know this resampling method: %d",
aParams_method->method);
cpl_error_set(cpl_func, CPL_ERROR_UNSUPPORTED_MODE);
rc = CPL_ERROR_UNSUPPORTED_MODE;
}
double timefini = cpl_test_get_walltime(),
cpufini = cpl_test_get_cputime();
/* now that we have resampled we can either remove the pixel grid or save it */
if (aGrid) {
*aGrid = grid;
} else {
hdrl_resample_pixgrid_delete(grid);
}
cpl_msg_debug(cpl_func, "resampling took %.3fs (wall-clock) and %.3fs "
"(%.3fs CPU, %d CPUs) for hdrl_resample_cube*() alone",
timefini - time, timefini - timeinit, cpufini - cpuinit,
omp_get_max_threads());
if (rc != CPL_ERROR_NONE) {
cpl_msg_error(cpl_func, "resampling failed: %s", cpl_error_get_message());
hdrl_resample_result_delete(cube);
return NULL;
}
return cube;
} /* hdrl_resample_cube() */
/*---------------------------------------------------------------------------*/
/**
@private
@brief Write WCS properties in a cpl propertylist.
@param wcs cpl_wcs structure containing the wcs information
@param header output header informations
@param only2d if TRUE save only the 2D part of the wcs structure
@return CPL_ERROR_NONE on non-critical failure or success, another CPL error
code otherwise.
*/
/*---------------------------------------------------------------------------*/
cpl_error_code
hdrl_wcs_to_propertylist(const cpl_wcs * wcs, cpl_propertylist * header,
cpl_boolean only2d)
{
cpl_ensure_code(wcs && header, CPL_ERROR_NULL_INPUT);
int err = 0;
const cpl_array *crval = cpl_wcs_get_crval(wcs);
const cpl_array *crpix = cpl_wcs_get_crpix(wcs);
const cpl_array *ctype = cpl_wcs_get_ctype(wcs);
const cpl_array *cunit = cpl_wcs_get_cunit(wcs);
const cpl_matrix *cd = cpl_wcs_get_cd(wcs);
const cpl_array *dims = cpl_wcs_get_image_dims(wcs);
int naxis = cpl_wcs_get_image_naxis(wcs);
/* Check NAXIS */
for (cpl_size i = 0; i < naxis; i++) {
if (i == 0) {
cpl_propertylist_update_int(header, "NAXIS", naxis);
}
char * buf = cpl_sprintf("NAXIS%lld", i + 1);
cpl_propertylist_update_int(header, buf,
cpl_array_get_int(dims, i, &err));
cpl_free(buf);
}
/* Make sure to have the right NAXIS keywords if 2D is forced */
if (only2d == TRUE) {
cpl_propertylist_update_int(header, "NAXIS", 2);
if(cpl_propertylist_has(header, "NAXIS3")){
cpl_propertylist_erase(header, "NAXIS3");
}
}
/* for 2D images */
if (crval) {
cpl_propertylist_update_double(header, "CRVAL1",
cpl_array_get_double(crval, 0, &err));
cpl_propertylist_update_double(header, "CRVAL2",
cpl_array_get_double(crval, 1, &err));
}
if (crpix) {
cpl_propertylist_update_double(header, "CRPIX1",
cpl_array_get_double(crpix, 0, &err));
cpl_propertylist_update_double(header, "CRPIX2",
cpl_array_get_double(crpix, 1, &err));
}
if (ctype) {
cpl_propertylist_update_string(header, "CTYPE1",
cpl_array_get_string(ctype, 0));
cpl_propertylist_update_string(header, "CTYPE2",
cpl_array_get_string(ctype, 1));
}
if (cunit) {
cpl_propertylist_update_string(header, "CUNIT1",
cpl_array_get_string(cunit, 0));
cpl_propertylist_update_string(header, "CUNIT2",
cpl_array_get_string(cunit, 1));
}
if (cd) {
double cd11 = cpl_matrix_get(cd, 0, 0);
double cd12 = cpl_matrix_get(cd, 0, 1);
double cd21 = cpl_matrix_get(cd, 1, 0);
double cd22 = cpl_matrix_get(cd, 1, 1);
cpl_propertylist_update_double(header, "CD1_1", cd11);
cpl_propertylist_update_double(header, "CD1_2", cd12);
cpl_propertylist_update_double(header, "CD2_1", cd21);
cpl_propertylist_update_double(header, "CD2_2", cd22);
}
/* for 3D cubes */
if (only2d == FALSE && cpl_array_get_size(crval) > 2) {
if (crval) {
cpl_propertylist_update_double(header, "CRVAL3",
cpl_array_get_double(crval, 2, &err));
}
if (crpix) {
cpl_propertylist_update_double(header, "CRPIX3",
cpl_array_get_double(crpix, 2, &err));
}
if (ctype) {
cpl_propertylist_update_string(header, "CTYPE3",
cpl_array_get_string(ctype, 2));
}
if (cunit) {
cpl_propertylist_update_string(header, "CUNIT3",
cpl_array_get_string(cunit, 2));
}
if (cd) {
double cd13 = cpl_matrix_get(cd, 0, 2);
double cd23 = cpl_matrix_get(cd, 1, 2);
double cd31 = cpl_matrix_get(cd, 2, 0);
double cd32 = cpl_matrix_get(cd, 2, 1);
double cd33 = cpl_matrix_get(cd, 2, 2);
cpl_propertylist_update_double(header, "CD1_3", cd13);
cpl_propertylist_update_double(header, "CD2_3", cd23);
cpl_propertylist_update_double(header, "CD3_1", cd31);
cpl_propertylist_update_double(header, "CD3_2", cd32);
cpl_propertylist_update_double(header, "CD3_3", cd33);
}
} /* if 3D */
return CPL_ERROR_NONE;
}
/*----------------------------------------------------------------------------*/
/**
@brief generates a table collecting data to be resampled changed
@param tab table to be filled
@parm size size of table
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_create_table(cpl_table** tab, const cpl_size size)
{
cpl_ensure_code(tab, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(size > 0 , CPL_ERROR_ILLEGAL_INPUT);
*tab = cpl_table_new(size);
/*
* MUSE_PIXTABLE_XPOS "xpos" *< x-position column of a MUSE pixel table
* MUSE_PIXTABLE_YPOS "ypos" *< y-position column of a MUSE pixel table
* MUSE_PIXTABLE_LAMBDA "lambda" *< wavelength column of a MUSE pixel table
* MUSE_PIXTABLE_DATA "data" *< data column of a MUSE pixel table
* MUSE_PIXTABLE_DQ "dq" *< data quality column of a MUSE pixel table
* MUSE_PIXTABLE_STAT "stat" *< error column of a MUSE pixel table
*/
cpl_table_new_column(*tab,
HDRL_RESAMPLE_TABLE_RA, HDRL_RESAMPLE_TABLE_RA_TYPE);
cpl_table_new_column(*tab,
HDRL_RESAMPLE_TABLE_DEC, HDRL_RESAMPLE_TABLE_DEC_TYPE);
cpl_table_new_column(*tab,
HDRL_RESAMPLE_TABLE_LAMBDA, HDRL_RESAMPLE_TABLE_LAMBDA_TYPE);
cpl_table_new_column(*tab,
HDRL_RESAMPLE_TABLE_DATA, HDRL_RESAMPLE_TABLE_DATA_TYPE);
cpl_table_new_column(*tab,
HDRL_RESAMPLE_TABLE_BPM, HDRL_RESAMPLE_TABLE_BPM_TYPE);
cpl_table_new_column(*tab,
HDRL_RESAMPLE_TABLE_ERRORS, HDRL_RESAMPLE_TABLE_ERRORS_TYPE);
/* init column values */
cpl_table_fill_column_window_double(*tab, HDRL_RESAMPLE_TABLE_RA, 0, size, 0.);
cpl_table_fill_column_window_double(*tab, HDRL_RESAMPLE_TABLE_DEC, 0, size, 0.);
cpl_table_fill_column_window_double(*tab, HDRL_RESAMPLE_TABLE_LAMBDA,0, size, 0.);
cpl_table_fill_column_window_double(*tab, HDRL_RESAMPLE_TABLE_DATA, 0, size, 0.);
cpl_table_fill_column_window_int(*tab, HDRL_RESAMPLE_TABLE_BPM, 0, size, 0);
cpl_table_fill_column_window_double(*tab, HDRL_RESAMPLE_TABLE_ERRORS,0, size, 0.);
return cpl_error_get_code();
}
/*----------------------------------------------------------------------------*/
/**
@brief Convert a hdrl image into a cpl table that can be given as input to
hdrl_resample_compute()
@param hima hdrl_image containing the data/error/bpm
@param wcs The world coordinate system used for the conversion
@return cpl_table that is used by the hdrl_resample_compute() function
*/
/*----------------------------------------------------------------------------*/
cpl_table*
hdrl_resample_image_to_table(const hdrl_image * hima, const cpl_wcs* wcs)
{
cpl_ensure(hima, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(wcs, CPL_ERROR_NULL_INPUT, NULL);
cpl_msg_debug(cpl_func, "Converting Data to table");
hdrl_imagelist* ilist = NULL;
cpl_table* tab;
ilist = hdrl_imagelist_new();
hdrl_imagelist_set(ilist, (hdrl_image *)hima, 0);
tab = hdrl_resample_imagelist_to_table(ilist, wcs);
/* cleanup memory */
hdrl_imagelist_unset(ilist, 0);
hdrl_imagelist_delete(ilist);
return tab;
}
/*----------------------------------------------------------------------------*/
/**
@brief Convert a hdrl imagelist into a cpl table that can be given as input to
hdrl_resample_compute().
@param himlist hdrl_imagelist containing the data/error/bpm
@param wcs The world coordinate system used for the conversion
@return cpl_table that is used by the hdrl_resample_compute() function
*/
/*----------------------------------------------------------------------------*/
cpl_table*
hdrl_resample_imagelist_to_table(const hdrl_imagelist* himlist,
const cpl_wcs* wcs)
{
cpl_ensure(himlist, CPL_ERROR_NULL_INPUT, NULL);
cpl_ensure(wcs, CPL_ERROR_NULL_INPUT, NULL);
cpl_msg_debug(cpl_func, "Converting Dataset to table");
cpl_size naxis1 = hdrl_imagelist_get_size_x(himlist);
cpl_size naxis2 = hdrl_imagelist_get_size_y(himlist);
cpl_size naxis3 = hdrl_imagelist_get_size(himlist);
cpl_msg_debug(cpl_func,"Dataset dimentions (x, y, l): (%lld, %lld, %lld)",
naxis1, naxis2, naxis3);
const cpl_array *crval = cpl_wcs_get_crval(wcs);
const cpl_array *crpix = cpl_wcs_get_crpix(wcs);
const cpl_matrix *cd = cpl_wcs_get_cd(wcs);
int testerr = 0;
double crpix3 = 0.;
double crval3 = 0.;
double cdelt3 = 0.;
if (naxis3 > 1) { /* We have a cube */
crpix3 = cpl_array_get_double(crpix, 2, &testerr);
crval3 = cpl_array_get_double(crval, 2, &testerr);
cdelt3 = cpl_matrix_get(cd, 2, 2); /* CD3_3 */
/*
cpl_msg_debug(cpl_func,"crpix3: %g crval3: %g cdelt3: %g", crpix3,
crval3, cdelt3);
*/
}
cpl_size tab_size = naxis1 * naxis2 * naxis3;
cpl_table* tab = NULL;
/* Prefill the full table */
hdrl_resample_create_table(&tab, tab_size);
double* ptabxpos = cpl_table_get_data_double(tab, HDRL_RESAMPLE_TABLE_RA);
double* ptabypos = cpl_table_get_data_double(tab, HDRL_RESAMPLE_TABLE_DEC);
double* ptablambda = cpl_table_get_data_double(tab, HDRL_RESAMPLE_TABLE_LAMBDA);
double* ptabdata = cpl_table_get_data_double(tab, HDRL_RESAMPLE_TABLE_DATA);
int* ptabbpm = cpl_table_get_data_int(tab, HDRL_RESAMPLE_TABLE_BPM);
double* ptaberr = cpl_table_get_data_double(tab, HDRL_RESAMPLE_TABLE_ERRORS);
struct timeval tv1, tv2;
cpl_msg_debug(cpl_func,"Starting parallel loop in hdrl_imagelist_to_table");
gettimeofday(&tv1, NULL);
HDRL_OMP(omp parallel for collapse(2))
for(cpl_size k = 0; k < naxis3; k++) {
for(cpl_size j = 0; j < naxis2; j++) {
const double* pimaerr = NULL;
const cpl_binary * pimabpm = NULL;
/* Fill the data */
const hdrl_image* hima = hdrl_imagelist_get_const(himlist, k);
const cpl_image* imadata = hdrl_image_get_image_const(hima);
const cpl_image* imaerrs = hdrl_image_get_error_const(hima);
const cpl_mask* imamask = hdrl_image_get_mask_const(hima);
const double* pimadata = cpl_image_get_data_double_const(imadata);
if (imaerrs) { /* Fill the errors */
pimaerr = cpl_image_get_data_double_const(imaerrs);
}
if (imamask) { /* Fill the bpm */
pimabpm = cpl_mask_get_data_const(imamask);
}
cpl_size k_naxis1_naxis2 = naxis1 * naxis2 * k;
cpl_size j_naxis1 = j * naxis1;
for(cpl_size i = 0; i < naxis1; i++) {
cpl_size raw = k_naxis1_naxis2 + j_naxis1 + i;
hdrl_wcs_xy_to_radec(wcs, i+1 , j+1 , &ptabxpos[raw],
&ptabypos[raw]);
ptabdata[raw] = pimadata[j_naxis1 + i];
if (naxis3 > 1) ptablambda[raw] = crval3 + cdelt3 * (k - crpix3 + 1.);
if (imaerrs) ptaberr[raw] = pimaerr[j_naxis1 + i];
if (imamask) ptabbpm[raw] = pimabpm[j_naxis1 + i];
/* Insert only good pixels */
if (!isfinite(pimadata[j_naxis1 + i]) ||
ptabbpm[raw] != CPL_BINARY_0 ){
ptabbpm[raw] = CPL_BINARY_1;
}
}
}
}
gettimeofday(&tv2, NULL);
cpl_msg_debug(cpl_func, "Wall time for hdrl_imagelist_to_table was %f seconds\n",
(double) (tv2.tv_usec - tv1.tv_usec) / 1000000 +
(double) (tv2.tv_sec - tv1.tv_sec));
return tab;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_outgrid
@brief Creates a resample_outgrid hdrl parameter object for a 2 dimensional
interpolation, i.e HDRL_RESAMPLE_OUTGRID_2D. Only two values can be
set by the caller. The remaining values (see
hdrl_resample_parameter_create_outgrid2D_userdef() for all values)
are derived from the data itself by the hdrl_resample_compute()
function.
@param delta_ra step size in right ascension [deg]
@param delta_dec step size in declination [deg]
@return The HDRL_RESAMPLE_OUTGRID_2D parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
This function creates a hdrl_resample_parameter_outgrid object
HDRL_RESAMPLE_OUTGRID_2D
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_outgrid2D(const double delta_ra,
const double delta_dec)
{
hdrl_resample_outgrid_parameter * p = (hdrl_resample_outgrid_parameter *)
hdrl_parameter_new(&hdrl_resample_outgrid_parameter_type);
p->method = HDRL_RESAMPLE_OUTGRID_2D;
p->delta_ra = delta_ra;
p->delta_dec = delta_dec;
p->recalc_limits = CPL_TRUE;
/* This function asks to recalculate the limits in the hdrl_resample_compute
* function - therefore we put dummy values for the moment. */
p->dec_min = 0.1;
p->dec_max = 0.2;
p->ra_min = 0.1;
p->ra_max = 0.2;
/* in case of 2D sets some defaults dummy values for 3rd dimension */
p->lambda_min = 0;
p->lambda_max = 0;
p->delta_lambda = 1;
/* Default field margin in percent taken from swarp. */
p->fieldmargin = FIELDMARGIN;
p->wcs = NULL;
if (hdrl_resample_parameter_outgrid_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter *)p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_outgrid
@brief Creates a resample_outgrid hdrl parameter object for a 3 dimensional
interpolation, i.e HDRL_RESAMPLE_OUTGRID_3D. Only three values can
be set by the caller. The remaining values (see
hdrl_resample_parameter_create_outgrid3D_userdef() for all values)
are derived from the data itself by the hdrl_resample_compute()
function.
@param delta_ra step size in right ascension [deg]
@param delta_dec step size in declination [deg]
@param delta_lambda step size in wavelength direction [m]
@return The HDRL_RESAMPLE_OUTGRID_3D parameters object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
This function creates a hdrl_resample_parameter_outgrid object
HDRL_RESAMPLE_OUTGRID_3D
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_outgrid3D(const double delta_ra,
const double delta_dec, const double delta_lambda)
{
hdrl_resample_outgrid_parameter * p = (hdrl_resample_outgrid_parameter *)
hdrl_parameter_new(&hdrl_resample_outgrid_parameter_type);
p->method = HDRL_RESAMPLE_OUTGRID_3D;
p->delta_ra = delta_ra;
p->delta_dec = delta_dec;
p->delta_lambda = delta_lambda;
p->recalc_limits = CPL_TRUE;
/* This function asks to recalculate the limits in the hdrl_resample_compute
* function - therefore we put dummy values for the moment. */
p->dec_min = 0.1;
p->dec_max = 0.2;
p->ra_min = 0.1;
p->ra_max = 0.2;
p->lambda_min = 0.;
p->lambda_max = 0.;
/* Default field margin in percent taken from swarp. */
p->fieldmargin = FIELDMARGIN;
p->wcs = NULL;
if (hdrl_resample_parameter_outgrid_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter *)p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_outgrid
@brief Creates a resample_outgrid hdrl parameter object for a 2 dimensional
interpolation, i.e HDRL_RESAMPLE_OUTGRID_2D. All values must be set
by the caller (see also hdrl_resample_parameter_create_outgrid2D()) .
@param delta_ra step size in right ascension [deg]
@param delta_dec step size in declination [deg]
@param ra_min minimum right ascension [deg]
@param ra_max maximum right ascension [deg]
@param dec_min minimum declination [deg]
@param dec_max maximum declination [deg]
@param fieldmargin additional field margin [percent]
@return The HDRL_RESAMPLE_OUTGRID_2D parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
This function creates a hdrl_resample_parameter_outgrid object
HDRL_RESAMPLE_OUTGRID_2D
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_outgrid2D_userdef(const double delta_ra,
const double delta_dec,
const double ra_min,
const double ra_max,
const double dec_min,
const double dec_max,
const double fieldmargin)
{
hdrl_resample_outgrid_parameter * p = (hdrl_resample_outgrid_parameter *)
hdrl_parameter_new(&hdrl_resample_outgrid_parameter_type);
p->method = HDRL_RESAMPLE_OUTGRID_2D;
p->delta_ra = delta_ra;
p->delta_dec = delta_dec;
p->recalc_limits = CPL_FALSE; /*This function takes the limits from the user*/
p->dec_min = dec_min;
p->dec_max = dec_max;
p->ra_min = ra_min;
p->ra_max = ra_max;
/* in case of 2D sets some defaults dummy values for 3rd dimension */
p->lambda_min = 0.;
p->lambda_max = 0.;
p->delta_lambda = 1.;
p->fieldmargin = fieldmargin;
p->wcs = NULL;
if (hdrl_resample_parameter_outgrid_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter *)p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_outgrid
@brief Creates a resample_outgrid hdrl parameter object for a 3 dimensional
interpolation, i.e HDRL_RESAMPLE_OUTGRID_3D. All values must be set
by the caller (see also hdrl_resample_parameter_create_outgrid3D()).
@param delta_ra step size in right ascension [deg]
@param delta_dec step size in declination [deg]
@param delta_lambda step size in wavelength direction [m]
@param ra_min minimum right ascension [deg]
@param ra_max maximum right ascension [deg]
@param dec_min minimum declination [deg]
@param dec_max maximum declination [deg]
@param lambda_min step size in right ascension [m]
@param lambda_max step size in declination [m]
@param fieldmargin additional field margin [percent]
@return The HDRL_RESAMPLE_OUTGRID_3D parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
This function creates a hdrl_resample_parameter_outgrid object
HDRL_RESAMPLE_OUTGRID_3D
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_outgrid3D_userdef(const double delta_ra,
const double delta_dec,
const double delta_lambda,
const double ra_min,
const double ra_max,
const double dec_min,
const double dec_max,
const double lambda_min,
const double lambda_max,
const double fieldmargin)
{
hdrl_resample_outgrid_parameter * p = (hdrl_resample_outgrid_parameter *)
hdrl_parameter_new(&hdrl_resample_outgrid_parameter_type);
p->method = HDRL_RESAMPLE_OUTGRID_3D;
p->delta_ra = delta_ra;
p->delta_dec = delta_dec;
p->delta_lambda = delta_lambda;
p->recalc_limits = CPL_FALSE; /*This function takes the limits from the user*/
p->dec_min = dec_min;
p->dec_max = dec_max;
p->ra_min = ra_min;
p->ra_max = ra_max;
p->lambda_min = lambda_min;
p->lambda_max = lambda_max;
p->fieldmargin = fieldmargin;
p->wcs = NULL;
if (hdrl_resample_parameter_outgrid_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter *)p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief Creates a resample renka hdrl parameter object. The algorithm uses a
modified Shepard-like distance weighting function following Renka
for the interpolation.
@param loop_distance loop distance to take into account surrounding
pixels when interpolating on the final
grid [pixel]
@param use_errorweights use additional weights based on 1/err^2 when
interpolating [TRUE/FALSE]
@param critical_radius critical radius beyond which the weight
function returns 0 [pixel]
@note in general a pixel is a voxel
@return The hdrl parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_renka(const int loop_distance,
cpl_boolean use_errorweights,
const double critical_radius)
{
hdrl_resample_method_parameter * p = (hdrl_resample_method_parameter *)
hdrl_parameter_new(&hdrl_resample_method_parameter_type);
p->method = HDRL_RESAMPLE_METHOD_RENKA;
p->loop_distance = loop_distance;
p->use_errorweights = use_errorweights;
p->renka_critical_radius = critical_radius;
/* fill rest with dummy input */
p->drizzle_pix_frac_x = 0.1;
p->drizzle_pix_frac_y = 0.1;
p->drizzle_pix_frac_lambda = 0.1;
p->lanczos_kernel_size = 2;
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter*) p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief Creates a resample linear hdrl parameter object. The algorithm uses
a linear inverse distance weighting function for the interpolation.
@param loop_distance loop distance to take into account surrounding
pixels when interpolating on the final
grid [pixel]
@param use_errorweights use additional weights based on 1/err^2 when
interpolating [TRUE/FALSE]
@note in general a pixel is a voxel
@return The hdrl parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_linear(const int loop_distance,
cpl_boolean use_errorweights)
{
hdrl_resample_method_parameter * p = (hdrl_resample_method_parameter *)
hdrl_parameter_new(&hdrl_resample_method_parameter_type);
p->method = HDRL_RESAMPLE_METHOD_LINEAR;
p->loop_distance = loop_distance;
p->use_errorweights = use_errorweights;
/* fill rest with dummy input */
p->renka_critical_radius = 0.1;
p->drizzle_pix_frac_x = 0.1;
p->drizzle_pix_frac_y = 0.1;
p->drizzle_pix_frac_lambda = 0.1;
p->lanczos_kernel_size = 2;
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter*) p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief Creates a resample quadratic hdrl parameter object. The algorithm
uses a quadratic inverse distance weighting function for the
interpolation.
@param loop_distance loop distance to take into account surrounding
pixels when interpolating on the final
grid [pixel]
@param use_errorweights use additional weights based on 1/err^2 when
interpolating [TRUE/FALSE]
@note in general a pixel is a voxel
@return The hdrl parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_quadratic(const int loop_distance,
cpl_boolean use_errorweights)
{
hdrl_resample_method_parameter * p = (hdrl_resample_method_parameter *)
hdrl_parameter_new(&hdrl_resample_method_parameter_type);
p->method = HDRL_RESAMPLE_METHOD_QUADRATIC;
p->loop_distance = loop_distance;
p->use_errorweights = use_errorweights;
/* fill rest with dummy input */
p->renka_critical_radius = 0.1;
p->drizzle_pix_frac_x = 0.1;
p->drizzle_pix_frac_y = 0.1;
p->drizzle_pix_frac_lambda = 0.1;
p->lanczos_kernel_size = 2;
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter*) p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief Creates a resample nearest neighbor hdrl parameter object.
The algorithm does not use any weighting functions but the nearest
neighbor inside a voxel for the "interpolation". If there is no nearest
neighbor inside the voxel but only outside, the voxel is marked as bad.
@return The hdrl parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_nearest(void)
{
hdrl_resample_method_parameter * p = (hdrl_resample_method_parameter *)
hdrl_parameter_new(&hdrl_resample_method_parameter_type);
p->method = HDRL_RESAMPLE_METHOD_NEAREST;
p->loop_distance = 0;
p->use_errorweights = CPL_FALSE;
/* fill rest with dummy input */
p->renka_critical_radius = 0.1;
p->drizzle_pix_frac_x = 0.1;
p->drizzle_pix_frac_y = 0.1;
p->drizzle_pix_frac_lambda = 0.1;
p->lanczos_kernel_size = 2;
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter*) p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief Creates a resample Lanczos hdrl parameter object. The algorithm
uses a restricted SINC distance weighting function for the
interpolation.
@param loop_distance loop distance to take into account surrounding
pixels when interpolating on the final
grid [pixel]
@param use_errorweights use additional weights based on 1/err^2 when
interpolating [TRUE/FALSE]
@param kernel_size kernel size of the sinc() function [pixel]
@note in general a pixel is a voxel
@return The hdrl parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_lanczos(const int loop_distance,
cpl_boolean use_errorweights,
const int kernel_size)
{
hdrl_resample_method_parameter * p = (hdrl_resample_method_parameter *)
hdrl_parameter_new(&hdrl_resample_method_parameter_type);
p->method = HDRL_RESAMPLE_METHOD_LANCZOS;
p->loop_distance = loop_distance;
p->use_errorweights = use_errorweights;
p->lanczos_kernel_size = kernel_size;
/* fill rest with dummy input */
p->renka_critical_radius = 0.1;
p->drizzle_pix_frac_x = 0.1;
p->drizzle_pix_frac_y = 0.1;
p->drizzle_pix_frac_lambda = 0.1;
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter*) p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief Creates a resample drizzle hdrl parameter object. The algorithm
uses a drizzle-like distance weighting function for the
interpolation.
@param loop_distance loop distance to take into account surrounding
pixels when interpolating on the final
grid [pixel]
@param use_errorweights use additional weights based on 1/err^2 when
interpolating [TRUE/FALSE]
@param pix_frac_x pixfrac-scaled input pixel size in x direction
[pixel]
@param pix_frac_y pixfrac-scaled input pixel size in y direction
[pixel]
@param pix_frac_lambda pixfrac-scaled input pixel size in
wavelength direction [pixel]
@note in general a pixel is a voxel
@return The hdrl parameter object or NULL on error.
It needs to be deallocated with hdrl_parameter_delete().
@see hdrl_parameter_delete()
@see hdrl_resample_compute()
*/
/*----------------------------------------------------------------------------*/
hdrl_parameter*
hdrl_resample_parameter_create_drizzle(const int loop_distance,
cpl_boolean use_errorweights,
const double pix_frac_x,
const double pix_frac_y,
const double pix_frac_lambda)
{
hdrl_resample_method_parameter * p = (hdrl_resample_method_parameter *)
hdrl_parameter_new(&hdrl_resample_method_parameter_type);
p->method = HDRL_RESAMPLE_METHOD_DRIZZLE;
p->loop_distance = loop_distance;
p->use_errorweights = use_errorweights;
p->drizzle_pix_frac_x = pix_frac_x;
p->drizzle_pix_frac_y = pix_frac_y;
p->drizzle_pix_frac_lambda = pix_frac_lambda;
/* fill rest with dummy input */
p->renka_critical_radius = 0.1;
p->lanczos_kernel_size = 2;
if (hdrl_resample_parameter_method_verify((hdrl_parameter*)p) != CPL_ERROR_NONE) {
cpl_free(p);
return NULL;
}
return (hdrl_parameter*) p;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_outgrid
@brief verify parameters have proper values
@param hp hdrl_parameter
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
cpl_error_code
hdrl_resample_parameter_outgrid_verify(const hdrl_parameter * hp){
const hdrl_resample_outgrid_parameter * param_loc =
(const hdrl_resample_outgrid_parameter *)hp ;
cpl_error_ensure(hp != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");
cpl_error_ensure(hdrl_resample_parameter_outgrid_check(hp),
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Here we expect a resample outgrid parameter") ;
cpl_error_ensure(
param_loc->recalc_limits == CPL_TRUE ||
param_loc->recalc_limits == CPL_FALSE,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Unsupported resample recalc_limits value");
/*
* The wcs is filled later on by the compute function so it can not be checked
* at this stage
*
cpl_error_ensure(param_loc->wcs != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "WCS must be defined");
*/
cpl_error_ensure(param_loc->delta_ra > 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "right ascension "
"stepsize must be > 0");
cpl_error_ensure(param_loc->delta_dec > 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "declination stepsize "
"must be > 0");
cpl_error_ensure(param_loc->delta_lambda > 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "wavelength stepsize "
"must be > 0");
cpl_error_ensure(param_loc->ra_min >= 0,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Minimum right ascension must be >= 0");
cpl_error_ensure(param_loc->ra_max >= 0,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Maximum right ascension must be >= 0");
cpl_error_ensure(param_loc->lambda_min >= 0,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Minimum wavelength must be >= 0");
cpl_error_ensure(param_loc->lambda_max >= 0,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Maximum wavelength must be >= 0");
cpl_error_ensure(param_loc->fieldmargin >= 0., CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "The field margin must"
" be >= 0.");
cpl_error_ensure(param_loc->ra_max >= param_loc->ra_min ,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"The maximum right ascension must be >= "
"the minimum right ascension");
cpl_error_ensure(param_loc->dec_max >= param_loc->dec_min ,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"The maximum declination must be >= "
"the minimum declination");
cpl_error_ensure(param_loc->lambda_max >= param_loc->lambda_min ,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"The maximum wavelength must be >= "
"the minimum wavelength");
return CPL_ERROR_NONE ;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief verify parameters have proper values
@param hp hdrl_parameter
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
cpl_error_code
hdrl_resample_parameter_method_verify(const hdrl_parameter * hp){
const hdrl_resample_method_parameter * param_loc =
(const hdrl_resample_method_parameter *)hp ;
cpl_error_ensure(hp != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "NULL Input Parameters");
cpl_error_ensure(hdrl_resample_parameter_method_check(hp),
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Here we expect a resample method parameter") ;
/* checks on parameter methods */
cpl_error_ensure(
param_loc->method == HDRL_RESAMPLE_METHOD_NEAREST ||
param_loc->method == HDRL_RESAMPLE_METHOD_LINEAR ||
param_loc->method == HDRL_RESAMPLE_METHOD_QUADRATIC ||
param_loc->method == HDRL_RESAMPLE_METHOD_LANCZOS ||
param_loc->method == HDRL_RESAMPLE_METHOD_DRIZZLE ||
param_loc->method == HDRL_RESAMPLE_METHOD_RENKA,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Unsupported resample method");
/* checks on common parameter elements */
cpl_error_ensure(param_loc->loop_distance >= 0, CPL_ERROR_ILLEGAL_INPUT,
return CPL_ERROR_ILLEGAL_INPUT, "The loop distance must "
"be >=0");
cpl_error_ensure(param_loc->use_errorweights == CPL_TRUE ||
param_loc->use_errorweights == CPL_FALSE,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Unsupported resample use_errorweights value");
switch (param_loc->method) {
case HDRL_RESAMPLE_METHOD_NEAREST:
case HDRL_RESAMPLE_METHOD_LINEAR:
case HDRL_RESAMPLE_METHOD_QUADRATIC:
case HDRL_RESAMPLE_METHOD_NONE:
break;
case HDRL_RESAMPLE_METHOD_RENKA:
/* checks on peculiar parameter elements */
cpl_error_ensure(param_loc->renka_critical_radius > 0.,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Critical radius of the Renka method must be > 0");
break ;
case HDRL_RESAMPLE_METHOD_DRIZZLE:
/* checks on peculiar parameter elements */
cpl_error_ensure(param_loc->drizzle_pix_frac_x > 0.,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Drizzle down-scaling factor in x direction "
"must be > 0");
cpl_error_ensure(param_loc->drizzle_pix_frac_y > 0.,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Drizzle down-scaling factor in y direction "
"must be > 0");
cpl_error_ensure(param_loc->drizzle_pix_frac_lambda > 0.,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"Drizzle down-scaling factor in z/lambda direction "
"must be > 0");
break;
case HDRL_RESAMPLE_METHOD_LANCZOS:
/* checks on peculiar parameter elements */
cpl_error_ensure(param_loc->lanczos_kernel_size > 0,
CPL_ERROR_ILLEGAL_INPUT, return CPL_ERROR_ILLEGAL_INPUT,
"The kernel size of the Lanczos method must be > 0");
break;
}
return CPL_ERROR_NONE ;
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_outgrid
@brief check method is of proper type
@param self hdrl_parameter
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
int
hdrl_resample_parameter_outgrid_check(const hdrl_parameter * self){
/* Check if the method is of proper type */
cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);
return hdrl_parameter_check_type(self, &hdrl_resample_outgrid_parameter_type);
}
/*----------------------------------------------------------------------------*/
/**
@ingroup hdrl_resample_parameter_method
@brief check method is of proper type
@param self hdrl_parameter
@return cpl_error_code
*/
/*----------------------------------------------------------------------------*/
int
hdrl_resample_parameter_method_check(const hdrl_parameter * self){
/* Check if the method is of proper type */
cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);
return hdrl_parameter_check_type(self, &hdrl_resample_method_parameter_type);
}
/*----------------------------------------------------------------------------*/
/**
@brief Verifies the existence and format of the resampling table columns
@param ResTable Resampling table passed to hdrl_resample_compute()
@return The cpl error code
*/
/*----------------------------------------------------------------------------*/
static cpl_error_code
hdrl_resample_inputtable_verify(const cpl_table *ResTable){
cpl_error_ensure(ResTable != NULL, CPL_ERROR_NULL_INPUT,
return CPL_ERROR_NULL_INPUT, "No Table as input");
/* Check the existence of all columns */
cpl_error_ensure(cpl_table_has_column(ResTable, HDRL_RESAMPLE_TABLE_DATA )
== 1, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Missing data table column");
cpl_error_ensure(cpl_table_has_column(ResTable, HDRL_RESAMPLE_TABLE_BPM )
== 1, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Missing bpm table column");
cpl_error_ensure(cpl_table_has_column(ResTable, HDRL_RESAMPLE_TABLE_ERRORS)
== 1, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Missing error table column");
cpl_error_ensure(cpl_table_has_column(ResTable, HDRL_RESAMPLE_TABLE_RA )
== 1, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Missing right ascension table column");
cpl_error_ensure(cpl_table_has_column(ResTable, HDRL_RESAMPLE_TABLE_DEC )
== 1, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Missing declination table column");
cpl_error_ensure(cpl_table_has_column(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA)
== 1, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Missing wavelength table column");
/* Check the format of all columns */
cpl_error_ensure(cpl_table_get_column_type(ResTable, HDRL_RESAMPLE_TABLE_DATA )
== HDRL_RESAMPLE_TABLE_DATA_TYPE, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Data table column has wrong format");
cpl_error_ensure(cpl_table_get_column_type(ResTable, HDRL_RESAMPLE_TABLE_BPM )
== HDRL_RESAMPLE_TABLE_BPM_TYPE, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Bpm table column has wrong format");
cpl_error_ensure(cpl_table_get_column_type(ResTable, HDRL_RESAMPLE_TABLE_ERRORS)
== HDRL_RESAMPLE_TABLE_ERRORS_TYPE, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Error table column has wrong format");
cpl_error_ensure(cpl_table_get_column_type(ResTable, HDRL_RESAMPLE_TABLE_RA )
== HDRL_RESAMPLE_TABLE_RA_TYPE, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Right ascension table column has wrong format");
cpl_error_ensure(cpl_table_get_column_type(ResTable, HDRL_RESAMPLE_TABLE_DEC )
== HDRL_RESAMPLE_TABLE_DEC_TYPE, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Declination table column has wrong format");
cpl_error_ensure(cpl_table_get_column_type(ResTable, HDRL_RESAMPLE_TABLE_LAMBDA)
== HDRL_RESAMPLE_TABLE_LAMBDA_TYPE, CPL_ERROR_INCOMPATIBLE_INPUT,
return CPL_ERROR_INCOMPATIBLE_INPUT,
"Wavelength table column has wrong format");
return cpl_error_get_code();
}
/**@} */
/* EOF */
|