File: global_distortion.cpp

package info (click to toggle)
cpl-plugin-vimos 3.2.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,188 kB
  • sloc: ansic: 169,153; cpp: 14,555; sh: 4,250; python: 1,423; makefile: 899; perl: 10
file content (275 lines) | stat: -rw-r--r-- 9,034 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * This file is part of the FORS Data Reduction Pipeline
 * Copyright (C) 2002-2010 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * fiera_ccd.cpp
 *
 *  Created on: 2013 11 25
 *      Author: cgarcia
 */

#include <cpl.h>
#include <stdexcept>
#include <cmath>
#include "global_distortion.h"

namespace mosca 
{

global_distortion::global_distortion(cpl_table * global_dist) 
{
    if(cpl_table_get_nrow(global_dist) != 13)
        throw std::invalid_argument("Global distortion table must contain 13 rows");
    m_global_dist = cpl_table_duplicate(global_dist);
}

global_distortion::global_distortion() :
        m_global_dist(NULL)
{
}

global_distortion::global_distortion(global_distortion& rhs)
{
    m_global_dist = cpl_table_duplicate(rhs.m_global_dist);
}

global_distortion::~global_distortion()
{
    if(m_global_dist != NULL)
        cpl_table_delete(m_global_dist);
}

cpl_image * global_distortion::calibrate_spatial
(cpl_image * image, cpl_table *slits, double reference, 
 double start_wavelength, double end_wavelength, double dispersion)
{
    if (image == NULL) 
        return NULL;

    if (dispersion <= 0.0) 
        return NULL;

    if (end_wavelength - start_wavelength < dispersion) 
        return NULL;
    cpl_table * polytraces = m_create_curv_coeff_table(slits);
    
    
    cpl_image * spatial_calibrated;
    spatial_calibrated = m_calibrate_spatial
            (image, slits, polytraces, reference, 
             start_wavelength, end_wavelength, dispersion);

    cpl_table_delete(polytraces);

    return spatial_calibrated;
}


bool global_distortion::to_distorted(double spa_coord_undistorted, 
                                         double disp_coord,
                                         double &spa_coord_distorted,
                                         cpl_table *slits)
{
    cpl_table * polytraces = m_create_curv_coeff_table(slits);
    bool status = m_to_distorted(spa_coord_undistorted, disp_coord, 
            spa_coord_distorted,
            slits, polytraces);
    cpl_table_delete(polytraces);
    return status;
}

bool global_distortion::to_undistorted(double spa_coord_distorted, 
                                           double disp_coord,
                                           double &spa_coord_undistorted,
                                           cpl_table *slits)
{
    cpl_table * polytraces = m_create_curv_coeff_table(slits);
    bool status = m_to_undistorted(spa_coord_undistorted, disp_coord, 
            spa_coord_distorted,
            slits, polytraces);
    cpl_table_delete(polytraces);
    return status;
}


/**
 * @brief
 *   Build the curvature coefficients table from a global distortions table
 *
 * @param global      Global distortions table
 * @param maskslits   Table with slits positions on mask
 * @param slits       Table with slits positions on CCD
 *
 * @return Curvature coefficients table
 *
 * The output curvature coefficients table has the same structure of the
 * output of the function @c mos_poly_trace(). The column "slit_id" is 
 * obtained from the "slit_id" column of the input @em maskslits table.
 * The coefficients columns are obtained as
 * @code
 *               c0 = poly7(mx, my)
 *               c1 = poly8(mx, my)
 *               c2 = poly9(mx, my)
 * @endcode
 * where polyX is the polynomial obtained from row X
 * of the input global distortions table, and (mx, my) are the 
 * coordinates of the slits ends listed in the input @em maskslits 
 * table. The slits that are completely outside the CCD are excluded
 * from the table.
 */
cpl_table * global_distortion::m_create_curv_coeff_table(cpl_table *slits)
{
    const char     *clab[6] = {"c0", "c1", "c2", "c3", "c4", "c5"};
                                                 /* Max order is 5 */

    cpl_polynomial *crv[3];
    cpl_vector     *point;
    cpl_table      *polytraces;
    double         *dpoint;
    double         *xtop;
    double         *ytop;
    double         *xbottom;
    double         *ybottom;
    int            *slit_id;
    int            *valid_id;
    int             nslits, nvalid;
    int             found;
    int             i, j, k;



    nslits  = cpl_table_get_nrow(slits);
    slit_id = cpl_table_get_data_int(slits, "slit_id");
    xtop    = cpl_table_get_data_double(slits, "xtop");
    ytop    = cpl_table_get_data_double(slits, "ytop");
    xbottom = cpl_table_get_data_double(slits, "xbottom");
    ybottom = cpl_table_get_data_double(slits, "ybottom");

    polytraces = cpl_table_new(2*nslits);
    cpl_table_new_column(polytraces, "slit_id", CPL_TYPE_INT);
    for (i = 0; i < 3; i++)
        cpl_table_new_column(polytraces, clab[i], CPL_TYPE_DOUBLE);

    crv[0] = m_read_polynomial_row(10);
    crv[1] = m_read_polynomial_row(11);
    crv[2] = m_read_polynomial_row(12);

    point = cpl_vector_new(2);
    dpoint = cpl_vector_get_data(point);

    for (i = 0; i < nslits; i++) {
        for (j = 0; j < 2; j++) {  /* For top and bottom trace of each slit */

            cpl_table_set_int(polytraces, "slit_id", 2*i+j, slit_id[i]);

            if (j) {
                dpoint[0] = xbottom[i];
                dpoint[1] = ybottom[i];                
            }
            else {
                dpoint[0] = xtop[i];
                dpoint[1] = ytop[i];                
            }

            for (k = 0; k < 3; k++)
                if (crv[j])
                {
                    cpl_table_set_double(polytraces, clab[k], 2*i+j,
                                         cpl_polynomial_eval(crv[k], point));
                }
        }
    }

    cpl_vector_delete(point);
    for (j = 0; j < 3; j++)
        cpl_polynomial_delete(crv[j]);

    /*
     * Eliminate slits which are _entirely_ outside the CCD
     */
 
    nvalid  = cpl_table_get_nrow(slits);
    valid_id = cpl_table_get_data_int(slits, "slit_id");
    cpl_table_unselect_all(polytraces);
    for (i = 0; i < nslits; i++) {
        found = 0;
        for (j = 0; j < nvalid; j++) {
            if (slit_id[i] == valid_id[j]) {
                found = 1;
                break;
            }
        }
        if (!found) {
            cpl_table_select_row(polytraces, 2*i);
            cpl_table_select_row(polytraces, 2*i + 1);
        }
    }
    cpl_table_erase_selected(polytraces);
 
    nslits = cpl_table_get_nrow(polytraces);

    return polytraces;
}

/*
 * The following two static functions are used to read and write from the 
 * global distortion table the different model components. Conventionally
 * the table consists of 6 columns and 10 rows. Each row is just ordered 
 * storage for model coefficients, and these functions guarantee that the
 * coefficients are read in and written out correctly, independent on their
 * physical meaning. The first 6 table rows are a description of the IDS
 * coefficients, followed by a row containing only the used reference 
 * wavelength. The remaining 3 are a description of the spectral curvature.
 * The first row is a description of coefficient c0, the second of coefficient
 * c1, etc., of the IDS. The 8th row is a description of coefficient c0,
 * the 9th of coefficient c1, etc., of the spectral curvature. All are
 * bivariate polynomialx on x,y mask coordinates. If the input table
 * to the write routine is NULL, it is allocated and initialised. Also
 * the input polynomial could be NULL, and nothing would be written to 
 * the table. If both pointers are NULL the function is basically a
 * constructor of the global distortion table.
 */
#define MAX_COLNAME      (80)
cpl_polynomial *global_distortion::m_read_polynomial_row(cpl_size row)
{
    cpl_polynomial *poly = NULL;
    cpl_size        p[2];
    cpl_size        degree = 2;
    int             null;
    double          coeff;

    char   name[MAX_COLNAME];


    for (p[0] = 0; p[0] <= degree; p[0]++) {
        for (p[1] = 0; p[1] <= degree - p[0]; p[1]++) {
            snprintf(name, MAX_COLNAME, "a%" CPL_SIZE_FORMAT"%" CPL_SIZE_FORMAT"", p[0], p[1]);
            coeff = cpl_table_get_double(m_global_dist, name, row, &null);
            if (null)
                continue;
            if (poly == NULL)
                poly = cpl_polynomial_new(2);
            cpl_polynomial_set_coeff(poly, p, coeff);
        }
    }

    return poly;
}

} /* namespace mosca */