File: image_normalisation.tcc

package info (click to toggle)
cpl-plugin-vimos 3.2.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,188 kB
  • sloc: ansic: 169,153; cpp: 14,555; sh: 4,250; python: 1,423; makefile: 899; perl: 10
file content (180 lines) | stat: -rw-r--r-- 7,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
 * This file is part of the FORS Data Reduction Pipeline
 * Copyright (C) 2002-2010 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * image_normalisation.cpp
 *
 *  Created on: 2014 3 28
 *      Author: cgarcia
 */

#include <cpl.h>
#include <vector>
#include <iostream>
#include <iterator>
#include <numeric>
#include <exception>
#include "image_normalisation.h"
#include "vector_utils.h"

const char* mosca::no_flux_exception::what() const throw()
{
    const char* ret =
            "The sum of all the flux contributions for the provided slit "
            "is zero, making normalisation not possible";
    return ret;
}

template<typename  T>
mosca::image mosca::image_normalise
(mosca::image& slit_image,
 mosca::image& slit_image_weight,
 int spa_smooth_radius, int disp_smooth_radius, 
 int spa_fit_polyorder, int disp_fit_nknots, double fit_threshold,
 std::vector<T>& slit_spa_norm_profile, std::vector<T>& slit_disp_norm_profile)
{
    //TODO: Check dispersion axis are the same
    if(slit_image.size_x() != slit_image_weight.size_x() ||
       slit_image.size_y() != slit_image_weight.size_y())
        throw std::invalid_argument("image and weight sizes do not match");

    //TODO: Use size_disp rather than size_x in the relevant places
    mosca::image slit_weighted = slit_image;
    std::transform (slit_image.get_data<T>(),
                    slit_image.get_data<T>() + slit_image.size_x() * slit_image.size_y(),
                    slit_image_weight.get_data<T>(),
                    slit_weighted.get_data<T>(), std::multiplies<T>());

    //Collapsing the data to get the profiles in each direction
    std::vector<T> slit_spa_profile = 
            slit_weighted.collapse<T>(mosca::DISPERSION_AXIS);
    std::vector<T> slit_disp_profile = 
            slit_weighted.collapse<T>(mosca::SPATIAL_AXIS);

    //Collapsing the weights 
    std::vector<T> weight_spa_profile = 
            slit_image_weight.collapse<T>(mosca::DISPERSION_AXIS);
    std::vector<T> weight_disp_profile = 
            slit_image_weight.collapse<T>(mosca::SPATIAL_AXIS);

    //Getting the profiles properly weighted
    std::vector<T> slit_spa_profile_w;
    std::transform (slit_spa_profile.begin(), slit_spa_profile.end(),
                    weight_spa_profile.begin(), std::back_inserter(slit_spa_profile_w),
                    std::divides<T>());
    std::vector<T> slit_disp_profile_w;
    std::transform (slit_disp_profile.begin(), slit_disp_profile.end(),
                    weight_disp_profile.begin(), std::back_inserter(slit_disp_profile_w),
                    std::divides<T>());

    T * p_ima = slit_weighted.get_data<T>();
    T total_flux = 
         std::accumulate(p_ima, p_ima + slit_image.size_x() * slit_image.size_y(), T(0));
    T * p_weight = slit_image_weight.get_data<T>();
    T total_weight = 
         std::accumulate(p_weight, p_weight + slit_image.size_x() * slit_image.size_y(), T(0));

    
    if(total_flux == T(0) || total_weight == T(0))
	{
        slit_spa_norm_profile = slit_spa_profile;
        slit_disp_norm_profile = slit_disp_profile;
    	return slit_image;
	}
    //If we are doing any fitting/smoothing in that direction, 
    //initialise it to the current profile, if not initialise it to a constant
    if (spa_smooth_radius > 0 || spa_fit_polyorder > 0)
        slit_spa_norm_profile = slit_spa_profile_w;
    else 
        slit_spa_norm_profile = std::vector<T>(slit_spa_profile_w.size(), 
                T(total_flux / total_weight));
    
    if (disp_smooth_radius > 0 || disp_fit_nknots > 0)
        slit_disp_norm_profile = slit_disp_profile_w;
    else 
        slit_disp_norm_profile = std::vector<T>(slit_disp_profile_w.size(), 
                T(total_flux / total_weight));

    if (spa_smooth_radius > 0)
    {
        std::vector<bool> mask;
        std::transform(weight_spa_profile.begin(), weight_spa_profile.end(), 
                       std::back_inserter(mask), std::bind1st(std::not_equal_to<T>(), T(0)));
        mosca::vector_smooth<T>(slit_spa_norm_profile, mask, spa_smooth_radius);
    }

    if (spa_fit_polyorder > 0)
    {
        std::vector<bool> mask;
        const double max_el = *std::max_element(slit_spa_norm_profile.begin(), slit_spa_norm_profile.end());
        const double th_this = fit_threshold * max_el;
        std::transform(slit_spa_norm_profile.begin(), slit_spa_norm_profile.end(),
                       std::back_inserter(mask), std::bind2nd(std::greater_equal<T>(), th_this));

        size_t used_spa_fit_polyorder = spa_fit_polyorder;  
        mosca::vector_polynomial polfit;
        polfit.fit<T>(slit_spa_norm_profile, mask, used_spa_fit_polyorder);
    }
    
    if (disp_smooth_radius > 0)
    {
        std::vector<bool> mask;
        std::transform(weight_disp_profile.begin(), weight_disp_profile.end(), 
                       std::back_inserter(mask), std::bind1st(std::not_equal_to<T>(), T(0)));
        mosca::vector_smooth<T>(slit_disp_norm_profile, mask, disp_smooth_radius);
    }

    if (disp_fit_nknots > 0)
    {
        std::vector<bool> mask;
        std::transform(weight_disp_profile.begin(), weight_disp_profile.end(), 
                       std::back_inserter(mask), std::bind1st(std::not_equal_to<T>(), T(0)));
        size_t used_disp_fit_nknots = disp_fit_nknots;  
        mosca::vector_cubicspline splfit;
        splfit.fit<T>(slit_disp_norm_profile, mask, 
                      used_disp_fit_nknots);
    }
    
    cpl_size nx = slit_image.size_x();
    cpl_size ny = slit_image.size_y();
    mosca::image result(nx, ny, mosca::type_trait<T>::cpl_eq_type,
                        slit_image.dispersion_axis());
    T * p_res = result.get_data<T>();
    p_weight = slit_image_weight.get_data<T>();
    for (cpl_size j = 0; j< ny; ++j)
    {
        for (cpl_size i = 0; i< nx; ++i, ++p_res, ++p_weight)
        {
            if(*p_weight != 0)
            {
                if(slit_image.dispersion_axis() == mosca::X_AXIS)
                    *p_res = slit_spa_norm_profile[j] * slit_disp_norm_profile[i] / 
                    total_flux * total_weight;
                else
                    *p_res = slit_spa_norm_profile[i] * slit_disp_norm_profile[j] / 
                    total_flux * total_weight;
            }
            else
                *p_res = 1;
                
        }
    }

    return result;
}