File: response.cpp

package info (click to toggle)
cpl-plugin-vimos 3.2.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,188 kB
  • sloc: ansic: 169,153; cpp: 14,555; sh: 4,250; python: 1,423; makefile: 899; perl: 10
file content (390 lines) | stat: -rw-r--r-- 13,155 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*
 * This file is part of the FORS Data Reduction Pipeline
 * Copyright (C) 2002-2010 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * response.cpp
 *
 *  Created on: 2014 3 28
 *      Author: cgarcia
 */

#include <functional>
#include <response.h>
#include <vector_utils.h>

mosca::response::response() :
m_nknots_response(0), m_nknots_eff(0), m_degree_response(0), m_degree_eff(0),
m_start_valid_wave_tab(0.0), m_stop_valid_wave_tab(0.0)
{
}

mosca::response::~response()
{
}

void mosca::response::compute_response
(const mosca::spectrum& observed_spectrum, mosca::spec_std_star& std_star)
{
    std::vector<double> std_flux = std_star.flux();
    std::vector<double> std_wave = std_star.wave();
    std::vector<double> std_binsize = std_star.binsize();

    /* Reset all the outputs */
    m_ignored_waves.clear();
    m_wave_tab.clear();
    m_efficiency_raw.clear();
    m_efficiency_fit.clear();
    m_response_fit.clear();
    m_response_raw.clear();
    m_wave_tab.clear();
    m_flux_obs.clear();

    //The response and efficiency are computed in the bins of the
    //tabulated star spectrum
    for(size_t ibin = 0; ibin < std_flux.size() ; ++ibin)
    {
        //TODO: the 0.0026 [cm^2/(erg Angstrom)] is hardcoded, and depends on telescope area 
        //see moses.c  
        //Get the wavelength range
        double wave_bin_start = std_wave[ibin] - std_binsize[ibin] / 2.;
        double wave_bin_end   = std_wave[ibin] + std_binsize[ibin] / 2.;
        
        //Compute the integrated flux of the observed star in this wave range
        double obs_std_flux_bin =
            observed_spectrum.integrate(wave_bin_start, wave_bin_end, true, 0.5) /
               std_binsize[ibin];
        double wavelength = std_wave[ibin];
        double std_flux_bin_phys = std_flux[ibin] * 0.0026 * wavelength; //[photons/s]
        double efficiency = obs_std_flux_bin / std_flux_bin_phys;
        double respon;
        if(obs_std_flux_bin != 0)
            respon =  std_flux[ibin] / obs_std_flux_bin;
        else
            respon = 0;
        
        m_efficiency_raw.push_back(efficiency);
        m_response_raw.push_back(respon);
        m_wave_tab.push_back(wavelength);
        m_wave_tab_bin.push_back(std_binsize[ibin]);
        m_flux_obs.push_back(obs_std_flux_bin);
        m_flux_tab.push_back(std_flux[ibin]);
    }
    
    /* Get the wavelength values of the observed flux */ 
    m_wave_obs = observed_spectrum.wave();
}

void mosca::response::fit_response_spline
(size_t spline_knots,
 const std::vector<double>& waves_to_ignore,
 const std::vector<std::pair<double, double> >& wave_ranges_to_ignore)
{
    double threshold = 0.001;

    m_prepare_fit(waves_to_ignore, wave_ranges_to_ignore);
    
    /* Fitting a cubic spline */
    m_nknots_response = spline_knots;
    m_nknots_eff = spline_knots;
    mosca::vector_cubicspline splfit;
    
    /* Get the knots range */
    double min_x_knot = *std::min_element(m_wave_obs.begin(), m_wave_obs.end());
    double max_x_knot = *std::max_element(m_wave_obs.begin(), m_wave_obs.end());
    
    /* Fit response */
    
    /* Get the threshold in terms of the maximum */
    double max_value = *std::max_element(m_response_fit.begin(), m_response_fit.end());
    double thres_value = threshold * (double)max_value;
    
    /* Create a "mask" of pixels to use */ //TODO: Consolidate the creation of masks
    std::vector<bool> mask_resp;
    std::transform(m_response_fit.begin(), m_response_fit.end(), 
                   std::back_inserter(mask_resp), 
                   std::bind1st(std::less_equal<double>(),thres_value));

    splfit.fit(m_wave_tab, m_response_fit, mask_resp, m_nknots_response,
               min_x_knot, max_x_knot);
    
    /* Get the response fit at the observed binning */
    for(size_t i = 0; i < m_wave_obs.size(); i++)
        m_response_fit_obs.push_back(splfit.eval(m_wave_obs[i]));

    /* Get the response fit at the observed binning, 
     * removing the bins outside the response fit*/
    for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
        m_response_fit_obs_response_valid.push_back(splfit.eval(m_wave_obs_response_valid[i]));
    
    /* Fit efficiency */

    /* Get the threshold in terms of the maximum */
    max_value = *std::max_element(m_efficiency_fit.begin(), m_efficiency_fit.end());
    thres_value = threshold * (double)max_value;
    
    /* Create a "mask" of pixels to use */
    std::vector<bool> mask_eff;
    std::transform(m_efficiency_fit.begin(), m_efficiency_fit.end(), 
                   std::back_inserter(mask_eff), 
                   std::bind1st(std::less_equal<double>(),thres_value));
    splfit.fit(m_wave_tab, m_efficiency_fit, mask_eff, m_nknots_eff ,
               min_x_knot, max_x_knot);
    /* Get the efficiency fit at the observed binning */
    for(size_t i = 0; i < m_wave_obs.size(); i++)
        m_efficiency_fit_obs.push_back(splfit.eval(m_wave_obs[i]));
    
    /* Get the efficiency fit at the observed binning, 
     * removing the bins outside the response fit*/
    for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
        m_efficiency_fit_obs_response_valid.push_back(splfit.eval(m_wave_obs_response_valid[i]));
}

void mosca::response::fit_response_pol
(size_t pol_degree,
 const std::vector<double>& waves_to_ignore,
 const std::vector<std::pair<double, double> >& wave_ranges_to_ignore)
{
    double threshold = 0.001;

    m_prepare_fit(waves_to_ignore, wave_ranges_to_ignore);

    /* Fitting a polynomial */
    m_degree_response = pol_degree;
    m_degree_eff = pol_degree;
    mosca::vector_polynomial polfit;
    
    /* Fit response */
    /* Get the threshold in terms of the maximum */
    double max_value = *std::max_element(m_response_fit.begin(), m_response_fit.end());
    double thres_value = threshold * (double)max_value;

    /* Create a "mask" of pixels to use */
    std::vector<bool> mask_resp;
    std::transform(m_response_fit.begin(), m_response_fit.end(), 
                   std::back_inserter(mask_resp), 
                   std::bind1st(std::less_equal<double>(),thres_value));
    polfit.fit(m_wave_tab, m_response_fit, mask_resp, m_degree_response);

    /* Get the response fit at the observed binning */
    for(size_t i = 0; i < m_wave_obs.size(); i++)
        m_response_fit_obs.push_back(polfit.eval(m_wave_obs[i]));

    /* Get the response fit at the observed binning, 
     * removing the bins outside the response fit*/
    for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
        m_response_fit_obs_response_valid.push_back(polfit.eval(m_wave_obs_response_valid[i]));

    /* Fit efficiency */

    /* Get the threshold in terms of the maximum */
    max_value = *std::max_element(m_efficiency_fit.begin(), m_efficiency_fit.end());
    thres_value = threshold * (double)max_value;

    /* Create a "mask" of pixels to use */
    std::vector<bool> mask_eff;
    std::transform(m_response_fit.begin(), m_response_fit.end(), 
                   std::back_inserter(mask_eff), 
                   std::bind1st(std::less_equal<double>(),thres_value));
    polfit.fit(m_wave_tab, m_efficiency_fit, mask_eff, m_degree_eff);

    /* Get the efficiency fit at the observed binning */
    for(size_t i = 0; i < m_wave_obs.size(); i++)
        m_efficiency_fit_obs.push_back(polfit.eval(m_wave_obs[i]));

    /* Get the efficiency fit at the observed binning, 
     * removing the bins outside the response fit*/
    for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
        m_efficiency_fit_obs_response_valid.push_back(polfit.eval(m_wave_obs_response_valid[i]));
}

void mosca::response::m_prepare_fit
(const std::vector<double>& waves_to_ignore,
 const std::vector<std::pair<double, double> >& wave_ranges_to_ignore)
{
    /* Filling the data to fit with the proper data */
    m_response_fit = m_response_raw;
    m_efficiency_fit = m_efficiency_raw;
    std::vector<bool> valid_bins(m_response_raw.size(), true);
    for(size_t ibin = 0; ibin < m_response_raw.size() ; ++ibin)
    {
        //Get the wavelength range
        double wave_bin_start = m_wave_tab[ibin] - m_wave_tab_bin[ibin] / 2.;
        double wave_bin_end   = m_wave_tab[ibin] + m_wave_tab_bin[ibin] / 2.;

        //Check whether this bin should be ignored or not
        bool ignore = false;
        //Is this bin affected by the ignored lines?
        for(size_t iline=0; iline < waves_to_ignore.size(); iline++)
            if(waves_to_ignore[iline]>= wave_bin_start && 
               waves_to_ignore[iline]<= wave_bin_end)
                ignore = true;
        //Is this bin affected by the ignored ranges?
        for(size_t irange=0; irange < wave_ranges_to_ignore.size(); irange++)
        {
            double range_min = std::min(wave_ranges_to_ignore[irange].first,
                                        wave_ranges_to_ignore[irange].second);
            double range_max = std::max(wave_ranges_to_ignore[irange].first,
                                        wave_ranges_to_ignore[irange].second);
            
            if(wave_bin_start <= range_max && wave_bin_end >= range_min)
            {
                ignore = true;
                break;
            }
        }
        //If there is no flux from the standard star, ignore also this bin
        if(m_flux_obs[ibin] == 0)
            ignore = true;
        
        if(ignore)
        {
            m_response_fit[ibin] = 0;
            m_efficiency_fit[ibin] = 0;
            m_ignored_waves.push_back(m_wave_tab[ibin]);
            valid_bins[ibin] = false;
        }
    }

    //Copy the range without extrapolation into m_wave_obs_response_valid 
    std::vector<bool>::iterator first_valid = 
            std::find(valid_bins.begin(), valid_bins.end(), true);
    std::vector<bool>::reverse_iterator last_valid = 
            std::find(valid_bins.rbegin(), valid_bins.rend(), true);
    m_start_valid_wave_tab =
            *(m_wave_tab.begin()+std::distance(valid_bins.begin(),first_valid));
    m_stop_valid_wave_tab =
            *(m_wave_tab.begin()+std::distance(valid_bins.begin(),--last_valid.base()));
    
    for(size_t i = 0; i < m_wave_obs.size(); i++)
        if(m_wave_obs[i] >= m_start_valid_wave_tab &&
           m_wave_obs[i] <= m_stop_valid_wave_tab)
            m_wave_obs_response_valid.push_back(m_wave_obs[i]);
    
}

std::vector<double>& mosca::response::wave_tab()
{
    return m_wave_tab;
}

const std::vector<double>& mosca::response::wave_tab() const
{
    return m_wave_tab;
}


std::vector<double>& mosca::response::efficiency_raw()
{
    return m_efficiency_raw;
}

std::vector<double>& mosca::response::efficiency_fit()
{
    return m_efficiency_fit;
}

std::vector<double>& mosca::response::response_fit()
{
    return m_response_fit;
}

std::vector<double>& mosca::response::response_raw()
{
    return m_response_raw;
}

std::vector<double>& mosca::response::flux_obs()
{
    return m_flux_obs;
}

std::vector<double>& mosca::response::flux_tab()
{
    return m_flux_tab;
}

const std::vector<double>& mosca::response::flux_obs() const
{
	return m_flux_obs;
}

const std::vector<double>& mosca::response::flux_tab() const
{
	return m_flux_tab;
}


std::vector<double>& mosca::response::wave_obs(bool include_extrapolation)
{
    if(include_extrapolation)
        return m_wave_obs;
    else 
        return m_wave_obs_response_valid;
}

std::vector<double>& mosca::response::response_fit_obs(bool include_extrapolation)
{
    if(include_extrapolation)
        return m_response_fit_obs;
    else 
        return m_response_fit_obs_response_valid;
}

std::vector<double>& mosca::response::efficiency_fit_obs(bool include_extrapolation)
{
    if(include_extrapolation)
        return m_efficiency_fit_obs;
    else 
        return m_efficiency_fit_obs_response_valid;
}

std::vector<double>& mosca::response::ignored_waves()
{
    return m_ignored_waves;
}

size_t mosca::response::nknots_used_response() const
{
    return m_nknots_response;
}

size_t mosca::response::nknots_used_efficiency() const
{
    return m_nknots_eff;
}

size_t mosca::response::degree_used_response() const
{
    return m_degree_response;
}

size_t mosca::response::degree_used_efficiency() const
{
    return m_degree_eff;
}

double mosca::response::start_valid_wave_tab() const
{
    return m_start_valid_wave_tab;
}

double mosca::response::stop_valid_wave_tab() const
{
    return m_stop_valid_wave_tab;
}