1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/*
* This file is part of the FORS Data Reduction Pipeline
* Copyright (C) 2002-2010 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* response.cpp
*
* Created on: 2014 3 28
* Author: cgarcia
*/
#include <functional>
#include <response.h>
#include <vector_utils.h>
mosca::response::response() :
m_nknots_response(0), m_nknots_eff(0), m_degree_response(0), m_degree_eff(0),
m_start_valid_wave_tab(0.0), m_stop_valid_wave_tab(0.0)
{
}
mosca::response::~response()
{
}
void mosca::response::compute_response
(const mosca::spectrum& observed_spectrum, mosca::spec_std_star& std_star)
{
std::vector<double> std_flux = std_star.flux();
std::vector<double> std_wave = std_star.wave();
std::vector<double> std_binsize = std_star.binsize();
/* Reset all the outputs */
m_ignored_waves.clear();
m_wave_tab.clear();
m_efficiency_raw.clear();
m_efficiency_fit.clear();
m_response_fit.clear();
m_response_raw.clear();
m_wave_tab.clear();
m_flux_obs.clear();
//The response and efficiency are computed in the bins of the
//tabulated star spectrum
for(size_t ibin = 0; ibin < std_flux.size() ; ++ibin)
{
//TODO: the 0.0026 [cm^2/(erg Angstrom)] is hardcoded, and depends on telescope area
//see moses.c
//Get the wavelength range
double wave_bin_start = std_wave[ibin] - std_binsize[ibin] / 2.;
double wave_bin_end = std_wave[ibin] + std_binsize[ibin] / 2.;
//Compute the integrated flux of the observed star in this wave range
double obs_std_flux_bin =
observed_spectrum.integrate(wave_bin_start, wave_bin_end, true, 0.5) /
std_binsize[ibin];
double wavelength = std_wave[ibin];
double std_flux_bin_phys = std_flux[ibin] * 0.0026 * wavelength; //[photons/s]
double efficiency = obs_std_flux_bin / std_flux_bin_phys;
double respon;
if(obs_std_flux_bin != 0)
respon = std_flux[ibin] / obs_std_flux_bin;
else
respon = 0;
m_efficiency_raw.push_back(efficiency);
m_response_raw.push_back(respon);
m_wave_tab.push_back(wavelength);
m_wave_tab_bin.push_back(std_binsize[ibin]);
m_flux_obs.push_back(obs_std_flux_bin);
m_flux_tab.push_back(std_flux[ibin]);
}
/* Get the wavelength values of the observed flux */
m_wave_obs = observed_spectrum.wave();
}
void mosca::response::fit_response_spline
(size_t spline_knots,
const std::vector<double>& waves_to_ignore,
const std::vector<std::pair<double, double> >& wave_ranges_to_ignore)
{
double threshold = 0.001;
m_prepare_fit(waves_to_ignore, wave_ranges_to_ignore);
/* Fitting a cubic spline */
m_nknots_response = spline_knots;
m_nknots_eff = spline_knots;
mosca::vector_cubicspline splfit;
/* Get the knots range */
double min_x_knot = *std::min_element(m_wave_obs.begin(), m_wave_obs.end());
double max_x_knot = *std::max_element(m_wave_obs.begin(), m_wave_obs.end());
/* Fit response */
/* Get the threshold in terms of the maximum */
double max_value = *std::max_element(m_response_fit.begin(), m_response_fit.end());
double thres_value = threshold * (double)max_value;
/* Create a "mask" of pixels to use */ //TODO: Consolidate the creation of masks
std::vector<bool> mask_resp;
std::transform(m_response_fit.begin(), m_response_fit.end(),
std::back_inserter(mask_resp),
std::bind1st(std::less_equal<double>(),thres_value));
splfit.fit(m_wave_tab, m_response_fit, mask_resp, m_nknots_response,
min_x_knot, max_x_knot);
/* Get the response fit at the observed binning */
for(size_t i = 0; i < m_wave_obs.size(); i++)
m_response_fit_obs.push_back(splfit.eval(m_wave_obs[i]));
/* Get the response fit at the observed binning,
* removing the bins outside the response fit*/
for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
m_response_fit_obs_response_valid.push_back(splfit.eval(m_wave_obs_response_valid[i]));
/* Fit efficiency */
/* Get the threshold in terms of the maximum */
max_value = *std::max_element(m_efficiency_fit.begin(), m_efficiency_fit.end());
thres_value = threshold * (double)max_value;
/* Create a "mask" of pixels to use */
std::vector<bool> mask_eff;
std::transform(m_efficiency_fit.begin(), m_efficiency_fit.end(),
std::back_inserter(mask_eff),
std::bind1st(std::less_equal<double>(),thres_value));
splfit.fit(m_wave_tab, m_efficiency_fit, mask_eff, m_nknots_eff ,
min_x_knot, max_x_knot);
/* Get the efficiency fit at the observed binning */
for(size_t i = 0; i < m_wave_obs.size(); i++)
m_efficiency_fit_obs.push_back(splfit.eval(m_wave_obs[i]));
/* Get the efficiency fit at the observed binning,
* removing the bins outside the response fit*/
for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
m_efficiency_fit_obs_response_valid.push_back(splfit.eval(m_wave_obs_response_valid[i]));
}
void mosca::response::fit_response_pol
(size_t pol_degree,
const std::vector<double>& waves_to_ignore,
const std::vector<std::pair<double, double> >& wave_ranges_to_ignore)
{
double threshold = 0.001;
m_prepare_fit(waves_to_ignore, wave_ranges_to_ignore);
/* Fitting a polynomial */
m_degree_response = pol_degree;
m_degree_eff = pol_degree;
mosca::vector_polynomial polfit;
/* Fit response */
/* Get the threshold in terms of the maximum */
double max_value = *std::max_element(m_response_fit.begin(), m_response_fit.end());
double thres_value = threshold * (double)max_value;
/* Create a "mask" of pixels to use */
std::vector<bool> mask_resp;
std::transform(m_response_fit.begin(), m_response_fit.end(),
std::back_inserter(mask_resp),
std::bind1st(std::less_equal<double>(),thres_value));
polfit.fit(m_wave_tab, m_response_fit, mask_resp, m_degree_response);
/* Get the response fit at the observed binning */
for(size_t i = 0; i < m_wave_obs.size(); i++)
m_response_fit_obs.push_back(polfit.eval(m_wave_obs[i]));
/* Get the response fit at the observed binning,
* removing the bins outside the response fit*/
for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
m_response_fit_obs_response_valid.push_back(polfit.eval(m_wave_obs_response_valid[i]));
/* Fit efficiency */
/* Get the threshold in terms of the maximum */
max_value = *std::max_element(m_efficiency_fit.begin(), m_efficiency_fit.end());
thres_value = threshold * (double)max_value;
/* Create a "mask" of pixels to use */
std::vector<bool> mask_eff;
std::transform(m_response_fit.begin(), m_response_fit.end(),
std::back_inserter(mask_eff),
std::bind1st(std::less_equal<double>(),thres_value));
polfit.fit(m_wave_tab, m_efficiency_fit, mask_eff, m_degree_eff);
/* Get the efficiency fit at the observed binning */
for(size_t i = 0; i < m_wave_obs.size(); i++)
m_efficiency_fit_obs.push_back(polfit.eval(m_wave_obs[i]));
/* Get the efficiency fit at the observed binning,
* removing the bins outside the response fit*/
for(size_t i = 0; i < m_wave_obs_response_valid.size(); i++)
m_efficiency_fit_obs_response_valid.push_back(polfit.eval(m_wave_obs_response_valid[i]));
}
void mosca::response::m_prepare_fit
(const std::vector<double>& waves_to_ignore,
const std::vector<std::pair<double, double> >& wave_ranges_to_ignore)
{
/* Filling the data to fit with the proper data */
m_response_fit = m_response_raw;
m_efficiency_fit = m_efficiency_raw;
std::vector<bool> valid_bins(m_response_raw.size(), true);
for(size_t ibin = 0; ibin < m_response_raw.size() ; ++ibin)
{
//Get the wavelength range
double wave_bin_start = m_wave_tab[ibin] - m_wave_tab_bin[ibin] / 2.;
double wave_bin_end = m_wave_tab[ibin] + m_wave_tab_bin[ibin] / 2.;
//Check whether this bin should be ignored or not
bool ignore = false;
//Is this bin affected by the ignored lines?
for(size_t iline=0; iline < waves_to_ignore.size(); iline++)
if(waves_to_ignore[iline]>= wave_bin_start &&
waves_to_ignore[iline]<= wave_bin_end)
ignore = true;
//Is this bin affected by the ignored ranges?
for(size_t irange=0; irange < wave_ranges_to_ignore.size(); irange++)
{
double range_min = std::min(wave_ranges_to_ignore[irange].first,
wave_ranges_to_ignore[irange].second);
double range_max = std::max(wave_ranges_to_ignore[irange].first,
wave_ranges_to_ignore[irange].second);
if(wave_bin_start <= range_max && wave_bin_end >= range_min)
{
ignore = true;
break;
}
}
//If there is no flux from the standard star, ignore also this bin
if(m_flux_obs[ibin] == 0)
ignore = true;
if(ignore)
{
m_response_fit[ibin] = 0;
m_efficiency_fit[ibin] = 0;
m_ignored_waves.push_back(m_wave_tab[ibin]);
valid_bins[ibin] = false;
}
}
//Copy the range without extrapolation into m_wave_obs_response_valid
std::vector<bool>::iterator first_valid =
std::find(valid_bins.begin(), valid_bins.end(), true);
std::vector<bool>::reverse_iterator last_valid =
std::find(valid_bins.rbegin(), valid_bins.rend(), true);
m_start_valid_wave_tab =
*(m_wave_tab.begin()+std::distance(valid_bins.begin(),first_valid));
m_stop_valid_wave_tab =
*(m_wave_tab.begin()+std::distance(valid_bins.begin(),--last_valid.base()));
for(size_t i = 0; i < m_wave_obs.size(); i++)
if(m_wave_obs[i] >= m_start_valid_wave_tab &&
m_wave_obs[i] <= m_stop_valid_wave_tab)
m_wave_obs_response_valid.push_back(m_wave_obs[i]);
}
std::vector<double>& mosca::response::wave_tab()
{
return m_wave_tab;
}
const std::vector<double>& mosca::response::wave_tab() const
{
return m_wave_tab;
}
std::vector<double>& mosca::response::efficiency_raw()
{
return m_efficiency_raw;
}
std::vector<double>& mosca::response::efficiency_fit()
{
return m_efficiency_fit;
}
std::vector<double>& mosca::response::response_fit()
{
return m_response_fit;
}
std::vector<double>& mosca::response::response_raw()
{
return m_response_raw;
}
std::vector<double>& mosca::response::flux_obs()
{
return m_flux_obs;
}
std::vector<double>& mosca::response::flux_tab()
{
return m_flux_tab;
}
const std::vector<double>& mosca::response::flux_obs() const
{
return m_flux_obs;
}
const std::vector<double>& mosca::response::flux_tab() const
{
return m_flux_tab;
}
std::vector<double>& mosca::response::wave_obs(bool include_extrapolation)
{
if(include_extrapolation)
return m_wave_obs;
else
return m_wave_obs_response_valid;
}
std::vector<double>& mosca::response::response_fit_obs(bool include_extrapolation)
{
if(include_extrapolation)
return m_response_fit_obs;
else
return m_response_fit_obs_response_valid;
}
std::vector<double>& mosca::response::efficiency_fit_obs(bool include_extrapolation)
{
if(include_extrapolation)
return m_efficiency_fit_obs;
else
return m_efficiency_fit_obs_response_valid;
}
std::vector<double>& mosca::response::ignored_waves()
{
return m_ignored_waves;
}
size_t mosca::response::nknots_used_response() const
{
return m_nknots_response;
}
size_t mosca::response::nknots_used_efficiency() const
{
return m_nknots_eff;
}
size_t mosca::response::degree_used_response() const
{
return m_degree_response;
}
size_t mosca::response::degree_used_efficiency() const
{
return m_degree_eff;
}
double mosca::response::start_valid_wave_tab() const
{
return m_start_valid_wave_tab;
}
double mosca::response::stop_valid_wave_tab() const
{
return m_stop_valid_wave_tab;
}
|