1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
/*
* This file is part of the FORS Data Reduction Pipeline
* Copyright (C) 2002-2010 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* fiera_ccd.cpp
*
* Created on: 2013 11 25
* Author: cgarcia
*/
#include <cpl.h>
#include <stdexcept>
#include <cmath>
#include "spatial_distortion.h"
namespace mosca
{
spatial_distortion::spatial_distortion()
{
}
spatial_distortion::~spatial_distortion()
{
}
/**
*
* @param image
* @param slits
* @param polytraces
* @param reference
* @param start_wavelength
* @param end_wavelength
* @param dispersion
* @return
*
* It assumes flux conservation
*/
#define STRETCH_FACTOR (1.20)
cpl_image * spatial_distortion::m_calibrate_spatial
(cpl_image * image, cpl_table * slits, cpl_table * polytraces,
double reference, double start_wavelength, double end_wavelength,
double dispersion)
{
/* Max order is 5 */
cpl_polynomial *polytop;
cpl_polynomial *polybot;
cpl_image **exslit;
cpl_image *resampled;
float *sdata;
float *xdata;
double vtop, vbot, value;
double top, bot;
double ypos, yfra;
double factor;
int yint, ysize;
int nslits;
int npseudo;
cpl_size nx, ny;
//int order;
int i, j;
cpl_size k;
int pixel_above, pixel_below, refpixel, start_pixel, end_pixel;
nx = cpl_image_get_size_x(image);
ny = cpl_image_get_size_y(image);
sdata = (float*)cpl_image_get_data(image);
nslits = cpl_table_get_nrow(slits);
//order = cpl_table_get_ncol(polytraces) - 2;
/*
* The spatial resampling is performed for a certain number of
* pixels above and below the position of the reference wavelength:
*/
pixel_above = STRETCH_FACTOR * (end_wavelength - reference) / dispersion;
pixel_below = STRETCH_FACTOR * (reference - start_wavelength) / dispersion;
exslit = (cpl_image**)cpl_calloc(nslits, sizeof(cpl_image *));
for (i = 0; i < nslits; i++)
{
/*
* Note that the x coordinate of the reference pixels on the CCD
* is taken arbitrarily at the top end of each slit. This wouldn't
* be entirely correct in case of curved slits, or in presence of
* heavy distortions: in such cases the spatial resampling is
* really performed across a wide range of wavelengths. But
* the lag between top and bottom spectral curvature models
* would introduce even in such cases negligible effects on
* the spectral spatial resampling.
*/
refpixel = cpl_table_get_double(slits, "xtop", i, NULL);
start_pixel = refpixel - pixel_below;
if (start_pixel < 0)
start_pixel = 0;
end_pixel = refpixel + pixel_above;
if (end_pixel > nx)
end_pixel = nx;
/*
* Recover from the table of spectral curvature coefficients
* the curvature polynomials.
*/
polytop = cpl_polynomial_new(1);
polybot = cpl_polynomial_new(1);
if(!m_get_curv_polynomials(polytraces, slits, i, polytop, polybot))
return NULL;
/*
* Allocate image for current extracted slit
*/
//We base the size of the corrected slit on the detected size of the slit
double ytop = cpl_table_get_double(slits, "ytop", i, NULL);
double ybot = cpl_table_get_double(slits, "ybottom", i, NULL);
npseudo = std::ceil(ytop-ybot);
if (npseudo < 1) {
cpl_polynomial_delete(polytop);
cpl_polynomial_delete(polybot);
continue;
}
exslit[i] = cpl_image_new(nx, npseudo+1, CPL_TYPE_FLOAT);
xdata = (float*)cpl_image_get_data(exslit[i]);
/*
* Write interpolated values to slit image.
*/
for (j = start_pixel; j < end_pixel; j++)
{
top = cpl_polynomial_eval_1d(polytop, j, NULL);
bot = cpl_polynomial_eval_1d(polybot, j, NULL);
factor = (top-bot)/npseudo;
for (k = 0; k <= npseudo; k++) {
ypos = top - k*factor;
yint = std::floor(ypos);
yfra = ypos - yint;
if (yint >= 0 && yint < ny-1) {
vtop = sdata[j + nx*yint];
vbot = sdata[j + nx*(yint+1)];
//This means that the top and bottom traces are crossing,
//which is physically impossible, so let's set it to 0.
if(factor <= 0 )
value = 0;
else if(vtop == FLT_MAX || vbot == FLT_MAX)
value = FLT_MAX;
else
{
value = vtop*(1-yfra) + vbot*yfra;
value *= factor;
}
xdata[j + nx*(npseudo-k)] = value;
}
}
}
cpl_polynomial_delete(polytop);
cpl_polynomial_delete(polybot);
}
/*
* Now all the slits images are copied to a single image
*/
ysize = 0;
for (i = 0; i < nslits; i++)
if (exslit[i])
ysize += cpl_image_get_size_y(exslit[i]);
resampled = cpl_image_new(nx, ysize, CPL_TYPE_FLOAT);
yint = -1;
for (i = 0; i < nslits; i++) {
if (exslit[i]) {
yint += cpl_image_get_size_y(exslit[i]);
cpl_image_copy(resampled, exslit[i], 1, ysize - yint);
cpl_image_delete(exslit[i]);
}
}
cpl_free(exslit);
return resampled;
}
bool spatial_distortion::m_to_undistorted
(double spa_coord_distorted,
double disp_coord,
double &spa_coord_undistorted,
cpl_table *slits, cpl_table * polytraces)
{
/* Max order is 5 */
cpl_polynomial *polytop;
cpl_polynomial *polybot;
int npseudo;
int i_slit = -1;
/*
* The spatial resampling is performed for a certain number of
* pixels above and below the position of the reference wavelength:
*/
int slit_start;
for (int i = 0; i < cpl_table_get_nrow(slits); i++)
{
double ytop = cpl_table_get_double(slits, "ytop", i_slit, NULL);
double ybot = cpl_table_get_double(slits, "ybottom", i_slit, NULL);
slit_start = cpl_table_get_int(slits, "position", i, NULL);
if(spa_coord_distorted > ybot && spa_coord_distorted < ytop)
{
i_slit = i;
break;
}
}
if (i_slit == -1)
return false;
/*
* Recover from the table of spectral curvature coefficients
* the curvature polynomials.
*/
polytop = cpl_polynomial_new(1);
polybot = cpl_polynomial_new(1);
if(!m_get_curv_polynomials(polytraces, slits, i_slit, polytop, polybot))
return false;
//We base the size of the corrected slit on the detected size of the slit
double ytop = cpl_table_get_double(slits, "ytop", i_slit, NULL);
double ybot = cpl_table_get_double(slits, "ybottom", i_slit, NULL);
npseudo = std::ceil(ytop-ybot);
if (npseudo < 1) {
return false;
}
double spa_slit_top =
cpl_polynomial_eval_1d(polytop, disp_coord, NULL);
double spa_slit_bot =
cpl_polynomial_eval_1d(polybot, disp_coord, NULL);
double spa_factor = (spa_slit_top-spa_slit_bot)/npseudo;
double ydiff = spa_coord_distorted - spa_slit_bot;
spa_coord_undistorted = ydiff / spa_factor + slit_start;
//Cleanup
cpl_polynomial_delete(polytop);
cpl_polynomial_delete(polybot);
return true;
}
bool spatial_distortion::m_to_distorted
(double spa_coord_undistorted,
double disp_coord,
double &spa_coord_distorted,
cpl_table *slits, cpl_table * polytraces)
{
cpl_polynomial *polytop;
cpl_polynomial *polybot;
int npseudo;
cpl_size i_slit = -1;
/*
* The spatial resampling is performed for a certain number of
* pixels above and below the position of the reference wavelength:
*/
int slit_start = 0;
for (int i = 0; i < cpl_table_get_nrow(slits); i++)
{
slit_start = cpl_table_get_int(slits, "position", i, NULL);
if(std::floor(spa_coord_undistorted) >= slit_start)
{
i_slit = i;
break;
}
}
/*
* Recover from the table of spectral curvature coefficients
* the curvature polynomials.
*/
polytop = cpl_polynomial_new(1);
polybot = cpl_polynomial_new(1);
if(!m_get_curv_polynomials(polytraces, slits, i_slit, polytop, polybot))
return false;
//We base the size of the corrected slit on the detected size of the slit
double ytop = cpl_table_get_double(slits, "ytop", i_slit, NULL);
double ybot = cpl_table_get_double(slits, "ybottom", i_slit, NULL);
npseudo = std::ceil(ytop-ybot);
if (npseudo < 1) {
return false;
}
double spa_slit_top =
cpl_polynomial_eval_1d(polytop, disp_coord, NULL);
double spa_slit_bot =
cpl_polynomial_eval_1d(polybot, disp_coord, NULL);
double spa_factor = (spa_slit_top-spa_slit_bot)/npseudo;
double ydiff = spa_coord_undistorted - slit_start;
spa_coord_distorted = ydiff * spa_factor + spa_slit_bot;
//Cleanup
cpl_polynomial_delete(polytop);
cpl_polynomial_delete(polybot);
return true;
}
bool spatial_distortion::m_get_curv_polynomials(cpl_table * polytraces,
cpl_table * slits,
cpl_size i_slit,
cpl_polynomial * polytop,
cpl_polynomial * polybot)
{
const char *clab[6] = {"c0", "c1", "c2", "c3", "c4", "c5"};
int missing_top, missing_bot;
cpl_size k;
int null;
double coeff;
int order;
order = cpl_table_get_ncol(polytraces) - 2;
missing_top = 0;
for (k = 0; k <= order; k++) {
coeff = cpl_table_get_double(polytraces, clab[k], 2*i_slit, &null);
if (null) {
cpl_polynomial_delete(polytop);
missing_top = 1;
break;
}
cpl_polynomial_set_coeff(polytop, &k, coeff);
}
missing_bot = 0;
for (k = 0; k <= order; k++) {
coeff = cpl_table_get_double(polytraces, clab[k], 2*i_slit+1, &null);
if (null) {
cpl_polynomial_delete(polybot);
missing_bot = 1;
break;
}
cpl_polynomial_set_coeff(polybot, &k, coeff);
}
if (missing_top && missing_bot)
return false;
/*
* In case just one of the two edges was not traced, the other
* edge curvature model is duplicated and shifted to the other
* end of the slit: better than nothing!
* TODO: This probably should be done in the tracing class, rather than here
*/
if (missing_top) {
polytop = cpl_polynomial_duplicate(polybot);
double ytop = cpl_table_get_double(slits, "ytop", i_slit, NULL);
double ybot = cpl_table_get_double(slits, "ybottom", i_slit, NULL);
k = 0;
coeff = cpl_polynomial_get_coeff(polybot, &k);
coeff += ytop - ybot;
cpl_polynomial_set_coeff(polytop, &k, coeff);
}
if (missing_bot) {
polybot = cpl_polynomial_duplicate(polytop);
double ytop = cpl_table_get_double(slits, "ytop", i_slit, NULL);
double ybot = cpl_table_get_double(slits, "ybottom", i_slit, NULL);
k = 0;
coeff = cpl_polynomial_get_coeff(polytop, &k);
coeff -= ytop - ybot;
cpl_polynomial_set_coeff(polybot, &k, coeff);
}
return true;
}
} /* namespace mosca */
|