File: spectrum.cpp

package info (click to toggle)
cpl-plugin-vimos 3.2.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,188 kB
  • sloc: ansic: 169,153; cpp: 14,555; sh: 4,250; python: 1,423; makefile: 899; perl: 10
file content (177 lines) | stat: -rw-r--r-- 5,245 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * This file is part of the FORS Data Reduction Pipeline
 * Copyright (C) 2002-2010 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * spectrum.cpp
 *
 *  Created on: 2014 3 28
 *      Author: cgarcia
 */

#include <spectrum.h>
#include <cmath>
#include <stdexcept>

mosca::spectrum::spectrum(const cpl_image * spec, double start_wave,
                          double step_wave) :
 m_gsl_acc(NULL), m_gsl_interp(NULL)
{
    if(cpl_image_get_size_y(spec) != 1)
        throw std::invalid_argument("Only images with NY=1 supported");
    
    cpl_image * spec_double = cpl_image_cast(spec, CPL_TYPE_DOUBLE);
    cpl_size spec_size = cpl_image_get_size_x(spec);
    m_flux.insert(m_flux.end(), cpl_image_get_data_double(spec_double), 
                  cpl_image_get_data_double(spec_double) + spec_size);
    
    for(size_t i = 0; i< m_flux.size(); ++i)
        m_wave.push_back(start_wave + i * step_wave);

    cpl_image_delete(spec_double);
}

mosca::spectrum::spectrum(std::vector<double>& flux_vec, 
                          std::vector<double>& wave_vec) :
  m_flux(flux_vec), m_wave(wave_vec), m_gsl_acc(NULL), m_gsl_interp(NULL)
{
    if(flux_vec.size() != wave_vec.size())
        throw std::invalid_argument("Vectors do not have the same size");
}

mosca::spectrum::spectrum(const spectrum& other) :
m_flux(other.m_flux), m_wave(other.m_wave), m_gsl_acc(NULL), m_gsl_interp(NULL)
{
}

//TODO: Create a copy operator (destructor is not trivial)

mosca::spectrum::spectrum() :
m_flux(), m_wave(), m_gsl_acc(NULL), m_gsl_interp(NULL)
{
}

mosca::spectrum::~spectrum()
{
    if(m_gsl_interp != NULL)
    {
        gsl_interp_free (m_gsl_interp);
        gsl_interp_accel_free (m_gsl_acc);
    }
}

std::vector<double> mosca::spectrum::flux() const
{
    return m_flux;
}

std::vector<double> mosca::spectrum::wave() const
{
    return m_wave;
}

double mosca::spectrum::integrate
(double start_wave, double end_wave, bool ignore_neg_flux, 
 float ignore_threshold) const
{
    //Get only the positive flux if requested (and not done before)
    if(ignore_neg_flux && m_wave_nonzero.size() == 0)
        m_create_filtered_flux();
        
    //Get the pointers
    cpl_size npts;
    const double * wave_p;
    const double * flux_p;
    if(ignore_neg_flux)
    {
        wave_p = &(m_wave_nonzero[0]);
        flux_p = &(m_flux_nonzero[0]);
        npts = m_flux_nonzero.size();
    }
    else
    {
        wave_p = &(m_wave[0]);
        flux_p = &(m_flux[0]);
        npts = m_flux.size();
    }

    //Get the integration limits
    double start_int = std::max(start_wave, wave_p[0]);
    double end_int   = std::min(end_wave, wave_p[npts-1]);

    if(start_int >= end_int)
        return 0;

    //If the final integration range is less than ignore_threshold then ignore it
    if(ignore_neg_flux)
        if((end_int - start_int)/ (end_wave - start_wave) < ignore_threshold)
            return 0;
                    
    if(m_gsl_interp == NULL)
    {
        m_gsl_acc
            = gsl_interp_accel_alloc ();
        m_gsl_interp
            = gsl_interp_alloc (gsl_interp_linear, npts);
        gsl_interp_init (m_gsl_interp, wave_p, flux_p, npts);
    }
    
    double integrated_flux = 
            gsl_interp_eval_integ(m_gsl_interp, wave_p, flux_p, 
                                  start_int, end_int, m_gsl_acc);
    
    //Correct for the integration interval
    if(ignore_neg_flux)
        integrated_flux *= (end_wave - start_wave) / (end_int - start_int);
    return integrated_flux;
}

void mosca::spectrum::m_create_filtered_flux() const
{
    m_wave_nonzero.resize(m_wave.size());
    m_flux_nonzero.resize(m_wave.size());
    size_t i_nonzero = 0;
    for(size_t i_bin = 0; i_bin < m_wave.size(); ++i_bin)
    {
        if(m_flux[i_bin] > 0)
        {
            m_wave_nonzero[i_nonzero] = m_wave[i_bin];
            m_flux_nonzero[i_nonzero] = m_flux[i_bin];
            i_nonzero++;
        }
    }
    m_wave_nonzero.resize(i_nonzero);
    m_flux_nonzero.resize(i_nonzero);
}

mosca::spectrum mosca::spectrum::rebin
(double start_wave, double end_wave, double step_wave)
{
    //create regular step in wavelength
    std::vector<double> wave_rebinned;
    size_t nwave = std::floor((end_wave - start_wave) / step_wave);
    
    for(size_t i = 0; i< nwave; ++i)
        wave_rebinned.push_back(start_wave + i * step_wave);

    //TODO: This has to be fixed
    std::vector<double> flux_rebinned(m_flux); 
    
    spectrum spec_rebinned(flux_rebinned, wave_rebinned);
    return spec_rebinned;
}