File: vector_utils.h

package info (click to toggle)
cpl-plugin-vimos 3.2.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,188 kB
  • sloc: ansic: 169,153; cpp: 14,555; sh: 4,250; python: 1,423; makefile: 899; perl: 10
file content (180 lines) | stat: -rw-r--r-- 5,700 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* $Id: vector_utils.h,v 1.1 2013-07-24 07:44:56 cgarcia Exp $
 *
 * This file is part of the MOSCA library
 * Copyright (C) 2013 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*
 * $Author: cgarcia $
 * $Date: 2013-07-24 07:44:56 $
 * $Revision: 1.1 $
 * $Name: not supported by cvs2svn $
 */

#ifndef VECTOR_UTILS_H
#define VECTOR_UTILS_H

#include <vector>
#include "cpl_polynomial.h"
#include "gsl/gsl_bspline.h"

namespace mosca
{
template<typename T>
void vector_divide(std::vector<T>& input, 
                   std::vector<T>& input_err,
                   const std::vector<int>& dividend);

template<typename T>
void vector_smooth(std::vector<T>& input, 
                   std::vector<T>& input_err,
                   size_t smooth_size);

template<typename T>
void vector_smooth(std::vector<T>& input, 
                   size_t smooth_size);

//TODO: Document that smooth_size is actually half the size
template<typename T>
void vector_smooth(std::vector<T>& input, 
                   const std::vector<bool>& mask,
                   size_t smooth_size);

//TODO: Generalize this to cubicspline_fit. Fit X vs Y. Currently it is a particular
//case in which the X points are asumed to equispaced.
class vector_cubicspline
{
public:
    
    vector_cubicspline();
    
    ~vector_cubicspline();

    /* This will fit a spline fit to the points in X,Y space given by:
     * X: a regular spaced vector from 0 to input.size() -1
     * Y: the values in parameter input
     * This won't work if the input values represent a non-linear trend.
     * It modifies the yval vector with the fit.
     */
    template<typename T>
    void fit(std::vector<T>& yval, size_t& nknots);
    
    /* This will fit a spline fit to the points in X,Y space given by:
     * X: a regular spaced vector from 0 to input.size() -1
     * Y: the values in parameter input
     * This won't work if the input values represent a non-linear trend.
     * It modifies the yval vector with the fit.
     */
    template<typename T>
    void fit(std::vector<T>& yval, const std::vector<bool>& mask, size_t& nknots);
    
    /* This will fit a spline fit to the points in X,Y space given by
     * xval, yval. 
     * It modifies the yval vector with the fit.
     * The nknots are set uniformly in the x_min_knot, x_max_knot range.
     * If they are the same, the minimum and maximum values of xval are used.
     * The fit cannot be evaluated outside the knots range. 
     * If xval has values outside the knots range, yval is set to 0 
     * The mask specifies which vector values are valid (mask == 1)
     */
    template<typename T>
    void fit(const std::vector<T>& xval, std::vector<T>& yval,
             const std::vector<bool>& mask, 
             size_t& nknots,
             double x_min_knot = 0, double x_max_knot = 0);

    /* This evaluates the fitting at point xi. Take into account that if
     * the fit version with just an yval vector is used, then this xi is
     * in the scale of 0 to input.size() -1
     */
    double eval(double xi) const;
    
private:
    
    void m_clear_fit();
    
    gsl_bspline_workspace * m_bspline_workspace;

    gsl_matrix * m_covar;

    gsl_vector *m_spline_coeffs;
    
    gsl_vector *m_basis;
    
    double m_x_min_knot;

    double m_x_max_knot;

};

class vector_polynomial
{
public:

    vector_polynomial();
    
    ~vector_polynomial();
    
    /* This will fit a polynomial fit to the points in X,Y space given by:
     * X: a regular spaced vector from 0 to yval.size() -1
     * Y: the values in parameter input
     * This won't work if the input values represent a non-linear trend
     * It modifies the yval vector with the fit.
     */
    template<typename T>
    void fit(std::vector<T>& yval, size_t& polyorder);

    /* This will fit a polynomial fit to the points in X,Y space given by:
     * X: a regular spaced vector from 0 to yval.size() -1
     * Y: the values in parameter input
     * This won't work if the input values represent a non-linear trend
     * It modifies the yval vector with the fit.
     * The points where mask is not true are excluded.
     */
    template<typename T>
    void fit(std::vector<T>& yval, 
             const std::vector<bool>& mask, size_t& polyorder);

    /* This will fit a polynomial fit to the points in X,Y space given by
     * xval, yval. 
     * It modifies the yval vector with the fit.
     * TODO: Document that polyorder is modified
     */
    template<typename T>
    void fit(const std::vector<T>& xval, std::vector<T>& yval, 
             const std::vector<bool>& mask, 
             size_t& polyorder);

    /* This evaluates the fitting at point xi. Take into account that if
     * the fit version with just an yval vector is used, then this xi is
     * in the scale of 0 to input.size() -1
     */
    double eval(double xi) const;
    
private:
    
    void m_clear_fit();

    cpl_polynomial * m_pol_fit;

};
}


#include "vector_utils.tcc"

#endif