1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/* $Id: vector_utils.tcc,v 1.1 2013-07-24 07:44:56 cgarcia Exp $
*
* This file is part of the MOSCA library
* Copyright (C) 2013 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* $Author: cgarcia $
* $Date: 2013-07-24 07:44:56 $
* $Revision: 1.1 $
* $Name: not supported by cvs2svn $
*/
#ifndef VECTOR_UTILS_TCC
#define VECTOR_UTILS_TCC
#include <stdexcept>
#include <algorithm>
#include "vector_utils.h"
#include "gsl/gsl_multifit.h"
#include "cpl_vector.h"
/**
* @brief
* Collapse a list of images in a container with median
*
* @return The mean image
*
*/
template<typename T>
void mosca::vector_divide(std::vector<T>& input,
std::vector<T>& input_err,
const std::vector<int>& dividend)
{
if((input.size() != input_err.size()) || (input.size() != dividend.size()))
throw std::invalid_argument("Vector sizes do not match");
for(size_t i = 0 ; i < input.size(); ++i)
{
input[i] = input[i] / dividend[i];
input_err[i] = input_err[i] / dividend[i];
}
}
/* TODO: It is wrong, it uses only the forward elements.
* Use some cpl stuff here
*/
template<typename T>
void mosca::vector_smooth(std::vector<T>& input,
std::vector<T>& input_err,
size_t smooth_size)
{
if(input.size() != input_err.size())
throw std::invalid_argument("Vector sizes do not match");
mosca::vector_smooth(input, smooth_size);
mosca::vector_smooth(input_err, smooth_size);
}
template<typename T>
void mosca::vector_smooth(std::vector<T>& input,
size_t smooth_size)
{
std::vector<bool> mask(input.size(), true);
mosca::vector_smooth(input, mask, smooth_size);
}
/* TODO: It is wrong, it uses only the forward elements.
* Use some cpl stuff here
*/
template<typename T>
void mosca::vector_smooth(std::vector<T>& input,
const std::vector<bool>& mask,
size_t smooth_size)
{
if(smooth_size >= input.size())
throw std::invalid_argument("Smooth size too large");
if(mask.size() != input.size())
throw std::invalid_argument("Vector and mask size mismatch");
cpl_vector * line = cpl_vector_new(input.size());
cpl_size n_unmasked = 0;
for(size_t i = 0; i<input.size(); i++)
{
if(mask[i])
{
cpl_vector_set(line, n_unmasked, input[i]);
n_unmasked++;
}
}
cpl_vector_set_size(line, n_unmasked);
//We smooth the line-image
cpl_vector * smooth_line =
cpl_vector_filter_median_create(line, smooth_size);
int i_unmasked = 0;
for(size_t i = 0; i<input.size(); i++)
{
if(mask[i])
{
input[i] = T(cpl_vector_get(smooth_line, i_unmasked));
i_unmasked++;
}
}
//Cleanup
cpl_vector_delete(smooth_line);
cpl_vector_delete(line);
}
template<typename T>
void mosca::vector_cubicspline::fit(std::vector<T>& yval,
size_t& nknots)
{
std::vector<T> xval;
for (size_t i = 0; i < yval.size(); ++i)
xval.push_back(T(i));
m_x_min_knot = 0;
m_x_max_knot = yval.size() - 1;
std::vector<bool> mask(yval.size(), true);
fit(xval, yval, mask, nknots);
}
template<typename T>
void mosca::vector_cubicspline::fit(std::vector<T>& yval,
const std::vector<bool>& mask,
size_t& nknots)
{
std::vector<T> xval;
for (size_t i = 0; i < yval.size(); ++i)
xval.push_back(T(i));
m_x_min_knot = 0;
m_x_max_knot = yval.size() - 1;
fit(xval, yval, mask, nknots);
}
template<typename T>
void mosca::vector_cubicspline::fit(const std::vector<T>& xval, std::vector<T>& yval,
const std::vector<bool>& mask,
size_t& nknots,
double x_min_knot, double x_max_knot)
{
if(xval.size() != yval.size())
throw std::invalid_argument("xval and yval sizes do not match");
if(nknots <= 1)
throw std::invalid_argument("number of knots must be at least 2");
//Allocate result
size_t nval = yval.size();
//This is valid for cubic splines, if not nbreak = ncoeffs + 2 - k,
//where k is the degree of the spline
int ncoeffs = nknots + 2;
//Get the nknots range
if(x_min_knot == x_max_knot)
{
m_x_min_knot = *std::min_element(xval.begin(), xval.end());
m_x_max_knot = *std::max_element(xval.begin(), xval.end());
}
else
{
m_x_min_knot = x_min_knot;
m_x_max_knot = x_max_knot;
}
/* Create a "mask" of pixels not to use by combining the input mask */
std::vector<bool> input_mask(mask);
for (size_t i = 0; i < nval; ++i)
if(xval[i] < m_x_min_knot || xval[i] > m_x_max_knot)
input_mask[i] = false;
int nfit = std::count(mask.begin(), mask.end(), true);
/* Throw if the fit is going to fail */
if(nfit < ncoeffs)
{
ncoeffs = nfit;
nknots = ncoeffs - 2;
}
if(nfit < 3)
throw std::length_error("Number of fitting points too small");
/* Deallocate fit if not empty */
if(m_bspline_workspace != NULL)
m_clear_fit();
/* allocate a cubic bspline workspace (k = 4) */
gsl_matrix * X;
m_bspline_workspace = gsl_bspline_alloc(4, nknots);
m_basis = gsl_vector_alloc(ncoeffs);
X = gsl_matrix_alloc(nfit, ncoeffs);
/* allocate objects for the fitting */
gsl_vector * y_fit;
gsl_vector * weigth;
gsl_multifit_linear_workspace * mfit_wspc;
double chisq;
y_fit = gsl_vector_alloc(nfit);
weigth = gsl_vector_alloc(nfit);
mfit_wspc = gsl_multifit_linear_alloc(nfit, ncoeffs);
m_spline_coeffs = gsl_vector_alloc(ncoeffs);
m_covar = gsl_matrix_alloc(ncoeffs, ncoeffs);
/* use uniform breakpoints on x_min, x_max, which is the range of fitting */
gsl_bspline_knots_uniform(m_x_min_knot, m_x_max_knot,
m_bspline_workspace);
/* construct the fit matrix X */
for (size_t i = 0, ifit = 0; i < nval; ++i)
{
double xi = xval[i];
double yi = yval[i];
if(input_mask[i])
{
/* Fill the vector to fit */
gsl_vector_set(y_fit, ifit, yi);
gsl_vector_set(weigth, ifit, 1.);
/* compute B_j(xi) for all j */
gsl_bspline_eval(xi, m_basis, m_bspline_workspace);
/* fill in row i of X */
for (int j = 0; j < ncoeffs; ++j)
{
double Bj = gsl_vector_get(m_basis, j);
gsl_matrix_set(X, ifit, j, Bj);
}
ifit++;
}
}
/* do the fit */
gsl_multifit_wlinear(X, weigth, y_fit, m_spline_coeffs, m_covar, &chisq, mfit_wspc);
/* output the fit */
for(size_t i = 0; i < nval; i++)
{
double yi, yerr;
if(xval[i] >= m_x_min_knot && xval[i] <= m_x_max_knot)
{
gsl_bspline_eval(xval[i], m_basis, m_bspline_workspace);
gsl_multifit_linear_est(m_basis, m_spline_coeffs, m_covar, &yi, &yerr);
yval[i] = T(yi);
}
else
yval[i] = 0;
}
gsl_vector_free(y_fit);
gsl_vector_free(weigth);
gsl_multifit_linear_free(mfit_wspc);
}
template<typename T>
void mosca::vector_polynomial::fit(std::vector<T>& yval, size_t& polyorder)
{
std::vector<T> xval;
for (size_t i = 0; i < yval.size(); ++i)
xval.push_back(T(i));
std::vector<bool> mask(yval.size(), true);
fit(xval, yval, mask, polyorder);
}
template<typename T>
void mosca::vector_polynomial::fit(std::vector<T>& yval,
const std::vector<bool>& mask,
size_t& polyorder)
{
std::vector<T> xval;
for (size_t i = 0; i < yval.size(); ++i)
xval.push_back(T(i));
fit(xval, yval, mask, polyorder);
}
/**
* Smooth a vector fitting a polynomial
* @param input Vector to be smoothed
* @param polyorder the order of the polynomial to fit
*
* This function will smooth a MOS image in the dispersion direction
* (here assumed to be the X axis) fitting each row with a polynomial.
* TODO: merge this with image_smooth_fit_1d_pol_spa() and place it in MOSCA.
* TODO: It is named image_smooth_fit_1d_pol but it is not yet generalized
* to any direction, only to spatial.
*/
template<typename T>
void mosca::vector_polynomial::fit(const std::vector<T>& xval, std::vector<T>& yval,
const std::vector<bool>& mask,
size_t& polyorder)
{
if(xval.size() != yval.size() ||
xval.size() != mask.size())
throw std::invalid_argument("xval, yval and mask sizes do not match");
//Allocate result
size_t nval = yval.size();
int nfit = std::count(mask.begin(), mask.end(), true);
cpl_vector * filtered_values = cpl_vector_new(nfit);
cpl_vector * xpos = cpl_vector_new(nfit);
for (size_t i = 0, ifit = 0; i < nval; ++i)
{
if(mask[i])
{
cpl_vector_set(filtered_values, (cpl_size)ifit, yval[i]);
cpl_vector_set(xpos, ifit, xval[i]);
ifit++;
}
}
/* Throw if the fit is going to fail */
if(cpl_vector_get_size(xpos) < polyorder + 1)
polyorder = cpl_vector_get_size(xpos) - 1;
if(cpl_vector_get_size(xpos) < 1)
throw std::length_error("Number of fitting points too small");
/* Deallocate fit if not empty */
if(m_pol_fit != NULL)
m_clear_fit();
/* Allocate fit */
m_pol_fit = cpl_polynomial_fit_1d_create
(xpos, filtered_values, polyorder, NULL);
if (m_pol_fit)
{
for(size_t i = 0; i < nval; i++)
yval[i] = T(cpl_polynomial_eval_1d(m_pol_fit, xval[i], NULL));
}
else //TODO: Should this throw an exception instead?
std::fill(yval.begin(), yval.end(), T());
cpl_vector_delete(filtered_values);
cpl_vector_delete(xpos);
}
#endif
|