1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
/*=============================================================================
*
* WCSLIB - an implementation of the FITS WCS proposal.
* Copyright (C) 1995-1999, Mark Calabretta
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Library General Public License as published
* by the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library
* General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Correspondence concerning WCSLIB may be directed to:
* Internet email: mcalabre@atnf.csiro.au
* Postal address: Dr. Mark Calabretta,
* Australia Telescope National Facility,
* P.O. Box 76,
* Epping, NSW, 2121,
* AUSTRALIA
*
*=============================================================================
*
* C routines which implement the FITS World Coordinate System (WCS)
* convention.
*
* Summary of routines
* -------------------
* These routines are provided as drivers for the lower level spherical
* coordinate transformation and projection routines. There are separate
* driver routines for the forward, celfwd(), and reverse, celrev(),
* transformations.
*
* An initialization routine, celset(), computes intermediate values from
* the transformation parameters but need not be called explicitly - see the
* explanation of cel.flag below.
*
*
* Initialization routine; celset()
* --------------------------------
* Initializes members of a celprm data structure which hold intermediate
* values. Note that this routine need not be called directly; it will be
* invoked by celfwd() and celrev() if the "flag" structure member is
* anything other than a predefined magic value.
*
* Given:
* pcode[4] const char
* WCS projection code (see below).
*
* Given and returned:
* cel celprm* Spherical coordinate transformation parameters
* (see below).
* prj prjprm* Projection parameters (usage is described in the
* prologue to "proj.c").
*
* Function return value:
* int Error status
* 0: Success.
* 1: Invalid coordinate transformation parameters.
* 2: Ill-conditioned coordinate transformation
* parameters.
*
* Forward transformation; celfwd()
* --------------------------------
* Compute (x,y) coordinates in the plane of projection from celestial
* coordinates (lng,lat).
*
* Given:
* pcode[4] const char
* WCS projection code (see below).
* lng,lat const double
* Celestial longitude and latitude of the projected
* point, in degrees.
*
* Given and returned:
* cel celprm* Spherical coordinate transformation parameters
* (see below).
*
* Returned:
* phi, double* Longitude and latitude in the native coordinate
* theta system of the projection, in degrees.
*
* Given and returned:
* prj prjprm* Projection parameters (usage is described in the
* prologue to "proj.c").
*
* Returned:
* x,y double* Projected coordinates, "degrees".
*
* Function return value:
* int Error status
* 0: Success.
* 1: Invalid coordinate transformation parameters.
* 2: Invalid projection parameters.
* 3: Invalid value of (lng,lat).
*
* Reverse transformation; celrev()
* --------------------------------
* Compute the celestial coordinates (lng,lat) of the point with projected
* coordinates (x,y).
*
* Given:
* pcode[4] const char
* WCS projection code (see below).
* x,y const double
* Projected coordinates, "degrees".
*
* Given and returned:
* prj prjprm* Projection parameters (usage is described in the
* prologue to "proj.c").
*
* Returned:
* phi, double* Longitude and latitude in the native coordinate
* theta system of the projection, in degrees.
*
* Given and returned:
* cel celprm* Spherical coordinate transformation parameters
* (see below).
*
* Returned:
* lng,lat double* Celestial longitude and latitude of the projected
* point, in degrees.
*
* Function return value:
* int Error status
* 0: Success.
* 1: Invalid coordinate transformation parameters.
* 2: Invalid projection parameters.
* 3: Invalid value of (x,y).
*
* Coordinate transformation parameters
* ------------------------------------
* The celprm struct consists of the following:
*
* int flag
* The celprm struct contains pointers to the forward and reverse
* projection routines as well as intermediaries computed from the
* reference coordinates (see below). Whenever the projection code
* (pcode) or any of ref[4] are set or changed then this flag must be
* set to zero to signal the initialization routine, celset(), to
* redetermine the function pointers and recompute intermediaries.
* Once this has been done pcode itself is ignored.
*
* double ref[4]
* The first pair of values should be set to the celestial longitude
* and latitude (usually right ascension and declination) of the
* reference point of the projection.
*
* The second pair of values are the native longitude and latitude of
* the pole of the celestial coordinate system and correspond to the
* FITS keywords LONGPOLE and LATPOLE.
*
* LONGPOLE defaults to 0 degrees if the celestial latitude of the
* reference point of the projection is greater than the native
* latitude, otherwise 180 degrees. (This is the condition for the
* celestial latitude to increase in the same direction as the native
* latitude at the reference point.) ref[2] may be set to 999.0 to
* indicate that the correct default should be substituted.
*
* In some circumstances the latitude of the native pole may be
* determined by the first three values only to within a sign and
* LATPOLE is used to choose between the two solutions. LATPOLE is
* set in ref[3] and the solution closest to this value is used to
* reset ref[3]. It is therefore legitimate, for example, to set
* ref[3] to 999.0 to choose the more northerly solution - the default
* if the LATPOLE card is omitted from the FITS header. For the
* special case where the reference point of the projection is at
* native latitude zero, its celestial latitude is zero, and
* LONGPOLE = +/- 90 then the native latitude of the pole is not
* determined by the first three reference values and LATPOLE
* specifies it completely.
*
* The remaining members of the celprm struct are maintained by the
* initialization routines and should not be modified. This is done for the
* sake of efficiency and to allow an arbitrary number of contexts to be
* maintained simultaneously.
*
* double euler[5]
* Euler angles and associated intermediaries derived from the
* coordinate reference values.
* int (*prjfwd)()
* int (*prjrev)()
* Pointers to the forward and reverse projection routines.
*
*
* WCS projection codes
* --------------------
* Zenithals/azimuthals:
* AZP: zenithal/azimuthal perspective
* TAN: gnomonic
* SIN: synthesis (generalized orthographic)
* STG: stereographic
* ARC: zenithal/azimuthal equidistant
* ZPN: zenithal/azimuthal polynomial
* ZEA: zenithal/azimuthal equal area
* AIR: Airy
*
* Cylindricals:
* CYP: cylindrical perspective
* CAR: Cartesian
* MER: Mercator
* CEA: cylindrical equal area
*
* Conics:
* COP: conic perspective
* COD: conic equidistant
* COE: conic equal area
* COO: conic orthomorphic
*
* Polyconics:
* BON: Bonne
* PCO: polyconic
*
* Pseudo-cylindricals:
* GLS: Sanson-Flamsteed (global sinusoidal)
* PAR: parabolic
* MOL: Mollweide
*
* Conventional:
* AIT: Hammer-Aitoff
*
* Quad-cubes:
* CSC: COBE quadrilateralized spherical cube
* QSC: quadrilateralized spherical cube
* TSC: tangential spherical cube
*
* Author: Mark Calabretta, Australia Telescope National Facility
* $Id: cel.c,v 1.1.1.1 2008-10-21 09:10:12 cizzo Exp $
*===========================================================================*/
#include <math.h>
#include <string.h>
#include "vimoswcslib.h"
/* Map error number to error message for each function. */
const char *vimoscelset_errmsg[] = {
0,
"Invalid coordinate transformation parameters",
"Ill-conditioned coordinate transformation parameters"};
const char *celfwd_errmsg[] = {
0,
"Invalid coordinate transformation parameters",
"Invalid projection parameters",
"Invalid value of (lng,lat)"};
const char *celrev_errmsg[] = {
0,
"Invalid coordinate transformation parameters",
"Invalid projection parameters",
"Invalid value of (x,y)"};
int npcode = 25;
char pcodes[25][4] =
{"AZP", "TAN", "SIN", "STG", "ARC", "ZPN", "ZEA", "AIR", "CYP", "CAR",
"MER", "CEA", "COP", "COD", "COE", "COO", "BON", "PCO", "GLS", "PAR",
"AIT", "MOL", "CSC", "QSC", "TSC"};
int vimoscelset(pcode, cel, prj)
const char pcode[4];
struct celprm *cel;
struct prjprm *prj;
{
int dophip;
const double tol = 1.0e-10;
double clat0, cphip, cthe0, theta0, slat0, sphip, sthe0;
double latp, latp1, latp2;
double u, v, x, y, z;
/* Set pointers to the forward and reverse projection routines. */
if (strcmp(pcode, "AZP") == 0) {
cel->prjfwd = azpfwd;
cel->prjrev = azprev;
theta0 = 90.0;
} else if (strcmp(pcode, "TAN") == 0) {
cel->prjfwd = tanfwd;
cel->prjrev = tanrev;
theta0 = 90.0;
} else if (strcmp(pcode, "SIN") == 0) {
cel->prjfwd = sinfwd;
cel->prjrev = sinrev;
theta0 = 90.0;
} else if (strcmp(pcode, "STG") == 0) {
cel->prjfwd = stgfwd;
cel->prjrev = stgrev;
theta0 = 90.0;
} else if (strcmp(pcode, "ARC") == 0) {
cel->prjfwd = arcfwd;
cel->prjrev = arcrev;
theta0 = 90.0;
} else if (strcmp(pcode, "ZPN") == 0) {
cel->prjfwd = zpnfwd;
cel->prjrev = zpnrev;
theta0 = 90.0;
} else if (strcmp(pcode, "ZEA") == 0) {
cel->prjfwd = zeafwd;
cel->prjrev = zearev;
theta0 = 90.0;
} else if (strcmp(pcode, "AIR") == 0) {
cel->prjfwd = airfwd;
cel->prjrev = airrev;
theta0 = 90.0;
} else if (strcmp(pcode, "CYP") == 0) {
cel->prjfwd = cypfwd;
cel->prjrev = cyprev;
theta0 = 0.0;
} else if (strcmp(pcode, "CAR") == 0) {
cel->prjfwd = carfwd;
cel->prjrev = carrev;
theta0 = 0.0;
} else if (strcmp(pcode, "MER") == 0) {
cel->prjfwd = merfwd;
cel->prjrev = merrev;
theta0 = 0.0;
} else if (strcmp(pcode, "CEA") == 0) {
cel->prjfwd = ceafwd;
cel->prjrev = cearev;
theta0 = 0.0;
} else if (strcmp(pcode, "COP") == 0) {
cel->prjfwd = copfwd;
cel->prjrev = coprev;
theta0 = prj->p[1];
} else if (strcmp(pcode, "COD") == 0) {
cel->prjfwd = codfwd;
cel->prjrev = codrev;
theta0 = prj->p[1];
} else if (strcmp(pcode, "COE") == 0) {
cel->prjfwd = coefwd;
cel->prjrev = coerev;
theta0 = prj->p[1];
} else if (strcmp(pcode, "COO") == 0) {
cel->prjfwd = coofwd;
cel->prjrev = coorev;
theta0 = prj->p[1];
} else if (strcmp(pcode, "BON") == 0) {
cel->prjfwd = bonfwd;
cel->prjrev = bonrev;
theta0 = 0.0;
} else if (strcmp(pcode, "PCO") == 0) {
cel->prjfwd = pcofwd;
cel->prjrev = pcorev;
theta0 = 0.0;
} else if (strcmp(pcode, "GLS") == 0) {
cel->prjfwd = glsfwd;
cel->prjrev = glsrev;
theta0 = 0.0;
} else if (strcmp(pcode, "PAR") == 0) {
cel->prjfwd = parfwd;
cel->prjrev = parrev;
theta0 = 0.0;
} else if (strcmp(pcode, "AIT") == 0) {
cel->prjfwd = aitfwd;
cel->prjrev = aitrev;
theta0 = 0.0;
} else if (strcmp(pcode, "MOL") == 0) {
cel->prjfwd = molfwd;
cel->prjrev = molrev;
theta0 = 0.0;
} else if (strcmp(pcode, "CSC") == 0) {
cel->prjfwd = cscfwd;
cel->prjrev = cscrev;
theta0 = 0.0;
} else if (strcmp(pcode, "QSC") == 0) {
cel->prjfwd = qscfwd;
cel->prjrev = qscrev;
theta0 = 0.0;
} else if (strcmp(pcode, "TSC") == 0) {
cel->prjfwd = tscfwd;
cel->prjrev = tscrev;
theta0 = 0.0;
} else {
/* Unrecognized projection code. */
return 1;
}
/* Set default for native longitude of the celestial pole? */
dophip = (cel->ref[2] == 999.0);
/* Compute celestial coordinates of the native pole. */
if (theta0 == 90.0) {
/* Reference point is at the native pole. */
if (dophip) {
/* Set default for longitude of the celestial pole. */
cel->ref[2] = 180.0;
}
latp = cel->ref[1];
cel->ref[3] = latp;
cel->euler[0] = cel->ref[0];
cel->euler[1] = 90.0 - latp;
} else {
/* Reference point away from the native pole. */
/* Set default for longitude of the celestial pole. */
if (dophip) {
cel->ref[2] = (cel->ref[1] < theta0) ? 180.0 : 0.0;
}
clat0 = cosdeg (cel->ref[1]);
slat0 = sindeg (cel->ref[1]);
cphip = cosdeg (cel->ref[2]);
sphip = sindeg (cel->ref[2]);
cthe0 = cosdeg (theta0);
sthe0 = sindeg (theta0);
x = cthe0*cphip;
y = sthe0;
z = sqrt(x*x + y*y);
if (z == 0.0) {
if (slat0 != 0.0) {
return 1;
}
/* latp determined by LATPOLE in this case. */
latp = cel->ref[3];
} else {
if (fabs(slat0/z) > 1.0) {
return 1;
}
u = atan2deg (y,x);
v = acosdeg (slat0/z);
latp1 = u + v;
if (latp1 > 180.0) {
latp1 -= 360.0;
} else if (latp1 < -180.0) {
latp1 += 360.0;
}
latp2 = u - v;
if (latp2 > 180.0) {
latp2 -= 360.0;
} else if (latp2 < -180.0) {
latp2 += 360.0;
}
if (fabs(cel->ref[3]-latp1) < fabs(cel->ref[3]-latp2)) {
if (fabs(latp1) < 90.0+tol) {
latp = latp1;
} else {
latp = latp2;
}
} else {
if (fabs(latp2) < 90.0+tol) {
latp = latp2;
} else {
latp = latp1;
}
}
cel->ref[3] = latp;
}
cel->euler[1] = 90.0 - latp;
z = cosdeg (latp)*clat0;
if (fabs(z) < tol) {
if (fabs(clat0) < tol) {
/* Celestial pole at the reference point. */
cel->euler[0] = cel->ref[0];
cel->euler[1] = 90.0 - theta0;
} else if (latp > 0.0) {
/* Celestial pole at the native north pole.*/
cel->euler[0] = cel->ref[0] + cel->ref[2] - 180.0;
cel->euler[1] = 0.0;
} else if (latp < 0.0) {
/* Celestial pole at the native south pole. */
cel->euler[0] = cel->ref[0] - cel->ref[2];
cel->euler[1] = 180.0;
}
} else {
x = (sthe0 - sindeg (latp)*slat0)/z;
y = sphip*cthe0/clat0;
if (x == 0.0 && y == 0.0) {
return 1;
}
cel->euler[0] = cel->ref[0] - atan2deg (y,x);
}
/* Make euler[0] the same sign as ref[0]. */
if (cel->ref[0] >= 0.0) {
if (cel->euler[0] < 0.0) cel->euler[0] += 360.0;
} else {
if (cel->euler[0] > 0.0) cel->euler[0] -= 360.0;
}
}
cel->euler[2] = cel->ref[2];
cel->euler[3] = cosdeg (cel->euler[1]);
cel->euler[4] = sindeg (cel->euler[1]);
cel->flag = CELSET;
/* Check for ill-conditioned parameters. */
if (fabs(latp) > 90.0+tol) {
return 2;
}
return 0;
}
/*--------------------------------------------------------------------------*/
int celfwd(pcode, lng, lat, cel, phi, theta, prj, x, y)
const char pcode[4];
const double lng, lat;
struct celprm *cel;
double *phi, *theta;
struct prjprm *prj;
double *x, *y;
{
int err;
if (cel->flag != CELSET) {
if (vimoscelset(pcode, cel, prj)) return 1;
}
/* Compute native coordinates. */
sphfwd(lng, lat, cel->euler, phi, theta);
/* Apply forward projection. */
if ((err = cel->prjfwd(*phi, *theta, prj, x, y))) {
return err == 1 ? 2 : 3;
}
return 0;
}
/*--------------------------------------------------------------------------*/
int celrev(pcode, x, y, prj, phi, theta, cel, lng, lat)
const char pcode[4];
const double x, y;
struct prjprm *prj;
double *phi, *theta;
struct celprm *cel;
double *lng, *lat;
{
int err;
if (cel->flag != CELSET) {
if(vimoscelset(pcode, cel, prj)) return 1;
}
/* Apply reverse projection. */
if ((err = cel->prjrev(x, y, prj, phi, theta))) {
return err == 1 ? 2 : 3;
}
/* Compute native coordinates. */
sphrev(*phi, *theta, cel->euler, lng, lat);
return 0;
}
/* Dec 20 1999 Doug Mink -Change cosd() and sind() to cosdeg() and sindeg()
* Dec 20 1999 Doug Mink -Include vimoswcslib.h, which includes vimoswcsmath.h and cel.h
* Dec 18 2000 Doug Mink - Include string.h for strcmp()
*
* Mar 20 2001 Doug Mink - Add () around err assignments in if statements
*/
|