1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/* File slasubs.c
*** Starlink subroutines by Patrick Wallace used by wcscon.c subroutines
*** April 13, 1998
*/
#include <math.h>
#include <string.h>
/* slaDcs2c (a, b, v): Spherical coordinates to direction cosines.
* slaDcc2s (v, a, b): Direction cosines to spherical coordinates.
* slaDmxv (dm, va, vb): vector vb = matrix dm * vector va
* slaImxv (rm, va, vb): vector vb = (inverse of matrix rm) * vector va
* slaDranrm (angle): Normalize angle into range 0-2 pi.
* slaDrange (angle): Normalize angle into range +/- pi.
* slaDeuler (order, phi, theta, psi, rmat)
* Form a rotation matrix from the Euler angles - three successive
* rotations about specified Cartesian axes.
*/
void
slaDcs2c (a, b, v)
double a; /* Right ascension in radians */
double b; /* Declination in radians */
double *v; /* x,y,z unit vector (returned) */
/*
** slaDcs2c: Spherical coordinates to direction cosines.
**
** The spherical coordinates are longitude (+ve anticlockwise
** looking from the +ve latitude pole) and latitude. The
** Cartesian coordinates are right handed, with the x axis
** at zero longitude and latitude, and the z axis at the
** +ve latitude pole.
**
** P.T.Wallace Starlink 31 October 1993
*/
{
double cosb;
cosb = cos ( b );
v[0] = cos ( a ) * cosb;
v[1] = sin ( a ) * cosb;
v[2] = sin ( b );
}
void
slaDcc2s (v, a, b)
double *v; /* x,y,z vector */
double *a; /* Right ascension in radians */
double *b; /* Declination in radians */
/*
** slaDcc2s:
** Direction cosines to spherical coordinates.
**
** Returned:
** *a,*b double spherical coordinates in radians
**
** The spherical coordinates are longitude (+ve anticlockwise
** looking from the +ve latitude pole) and latitude. The
** Cartesian coordinates are right handed, with the x axis
** at zero longitude and latitude, and the z axis at the
** +ve latitude pole.
**
** If v is null, zero a and b are returned.
** At either pole, zero a is returned.
**
** P.T.Wallace Starlink 31 October 1993
*/
{
double x, y, z, r;
x = v[0];
y = v[1];
z = v[2];
r = sqrt ( x * x + y * y );
*a = ( r != 0.0 ) ? atan2 ( y, x ) : 0.0;
*b = ( z != 0.0 ) ? atan2 ( z, r ) : 0.0;
}
void
slaDmxv (dm, va, vb)
double (*dm)[3]; /* 3x3 Matrix */
double *va; /* Vector */
double *vb; /* Result vector (returned) */
/*
** slaDmxv:
** Performs the 3-d forward unitary transformation:
** vector vb = matrix dm * vector va
**
** P.T.Wallace Starlink 31 October 1993
*/
{
int i, j;
double w, vw[3];
/* Matrix dm * vector va -> vector vw */
for ( j = 0; j < 3; j++ ) {
w = 0.0;
for ( i = 0; i < 3; i++ ) {
w += dm[j][i] * va[i];
}
vw[j] = w;
}
/* Vector vw -> vector vb */
for ( j = 0; j < 3; j++ ) {
vb[j] = vw[j];
}
}
void slaDimxv (dm, va, vb)
double (*dm)[3];
double *va;
double *vb;
/*
** - - - - - - - - -
** s l a D i m x v
** - - - - - - - - -
**
** Performs the 3-d backward unitary transformation:
**
** vector vb = (inverse of matrix dm) * vector va
**
** (double precision)
**
** (n.b. The matrix must be unitary, as this routine assumes that
** the inverse and transpose are identical)
**
**
** Given:
** dm double[3][3] matrix
** va double[3] vector
**
** Returned:
** vb double[3] result vector
**
** P.T.Wallace Starlink 31 October 1993
*/
{
long i, j;
double w, vw[3];
/* Inverse of matrix dm * vector va -> vector vw */
for ( j = 0; j < 3; j++ ) {
w = 0.0;
for ( i = 0; i < 3; i++ ) {
w += dm[i][j] * va[i];
}
vw[j] = w;
}
/* Vector vw -> vector vb */
for ( j = 0; j < 3; j++ ) {
vb[j] = vw[j];
}
}
/* 2pi */
#define D2PI 6.2831853071795864769252867665590057683943387987502
/* pi */
#define DPI 3.1415926535897932384626433832795028841971693993751
double slaDranrm (angle)
double angle; /* angle in radians */
/*
** slaDranrm:
** Normalize angle into range 0-2 pi.
** The result is angle expressed in the range 0-2 pi (double).
** Defined in slamac.h: D2PI
**
** P.T.Wallace Starlink 30 October 1993
*/
{
double w;
w = fmod ( angle, D2PI );
return ( w >= 0.0 ) ? w : w + D2PI;
}
#ifndef dsign
#define dsign(A,B) ((B)<0.0?-(A):(A))
#endif
double
slaDrange (angle)
double angle;
/*
** - - - - - - - - - -
** s l a D r a n g e
** - - - - - - - - - -
**
** Normalize angle into range +/- pi.
**
** (double precision)
**
** Given:
** angle double the angle in radians
**
** The result is angle expressed in the +/- pi (double precision).
**
** Defined in slamac.h: DPI, D2PI
**
** P.T.Wallace Starlink 31 October 1993
*/
{
double w;
w = fmod ( angle, D2PI );
return ( fabs ( w ) < DPI ) ? w : w - dsign ( D2PI, angle );
}
void
slaDeuler (order, phi, theta, psi, rmat)
char *order; /* specifies about which axes the rotations occur */
double phi; /* 1st rotation (radians) */
double theta; /* 2nd rotation (radians) */
double psi; /* 3rd rotation (radians) */
double (*rmat)[3]; /* 3x3 Rotation matrix (returned) */
/*
** slaDeuler:
** Form a rotation matrix from the Euler angles - three successive
** rotations about specified Cartesian axes.
**
** A rotation is positive when the reference frame rotates
** anticlockwise as seen looking towards the origin from the
** positive region of the specified axis.
**
** The characters of order define which axes the three successive
** rotations are about. A typical value is 'zxz', indicating that
** rmat is to become the direction cosine matrix corresponding to
** rotations of the reference frame through phi radians about the
** old z-axis, followed by theta radians about the resulting x-axis,
** then psi radians about the resulting z-axis.
**
** The axis names can be any of the following, in any order or
** combination: x, y, z, uppercase or lowercase, 1, 2, 3. Normal
** axis labelling/numbering conventions apply; the xyz (=123)
** triad is right-handed. Thus, the 'zxz' example given above
** could be written 'zxz' or '313' (or even 'zxz' or '3xz'). Order
** is terminated by length or by the first unrecognised character.
**
** Fewer than three rotations are acceptable, in which case the later
** angle arguments are ignored. Zero rotations produces a unit rmat.
**
** P.T.Wallace Starlink 17 November 1993
*/
{
int j, i, l, n, k;
double result[3][3], rotn[3][3], angle, s, c , w, wm[3][3];
char axis;
/* Initialize result matrix */
for ( j = 0; j < 3; j++ ) {
for ( i = 0; i < 3; i++ ) {
result[i][j] = ( i == j ) ? 1.0 : 0.0;
}
}
/* Establish length of axis string */
l = strlen ( order );
/* Look at each character of axis string until finished */
for ( n = 0; n < 3; n++ ) {
if ( n <= l ) {
/* Initialize rotation matrix for the current rotation */
for ( j = 0; j < 3; j++ ) {
for ( i = 0; i < 3; i++ ) {
rotn[i][j] = ( i == j ) ? 1.0 : 0.0;
}
}
/* Pick up the appropriate Euler angle and take sine & cosine */
switch ( n ) {
case 0 :
angle = phi;
break;
case 1 :
angle = theta;
break;
case 2 :
angle = psi;
break;
}
s = sin ( angle );
c = cos ( angle );
/* Identify the axis */
axis = order[n];
if ( ( axis == 'X' ) || ( axis == 'x' ) || ( axis == '1' ) ) {
/* Matrix for x-rotation */
rotn[1][1] = c;
rotn[1][2] = s;
rotn[2][1] = -s;
rotn[2][2] = c;
}
else if ( ( axis == 'Y' ) || ( axis == 'y' ) || ( axis == '2' ) ) {
/* Matrix for y-rotation */
rotn[0][0] = c;
rotn[0][2] = -s;
rotn[2][0] = s;
rotn[2][2] = c;
}
else if ( ( axis == 'Z' ) || ( axis == 'z' ) || ( axis == '3' ) ) {
/* Matrix for z-rotation */
rotn[0][0] = c;
rotn[0][1] = s;
rotn[1][0] = -s;
rotn[1][1] = c;
} else {
/* Unrecognized character - fake end of string */
l = 0;
}
/* Apply the current rotation (matrix rotn x matrix result) */
for ( i = 0; i < 3; i++ ) {
for ( j = 0; j < 3; j++ ) {
w = 0.0;
for ( k = 0; k < 3; k++ ) {
w += rotn[i][k] * result[k][j];
}
wm[i][j] = w;
}
}
for ( j = 0; j < 3; j++ ) {
for ( i= 0; i < 3; i++ ) {
result[i][j] = wm[i][j];
}
}
}
}
/* Copy the result */
for ( j = 0; j < 3; j++ ) {
for ( i = 0; i < 3; i++ ) {
rmat[i][j] = result[i][j];
}
}
}
/*
* Nov 4 1996 New file
*
* Apr 13 1998 Add list of subroutines to start of file
*/
|