1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
|
/*** File wcscon.c
*** March 21, 2001
*** Doug Mink, Harvard-Smithsonian Center for Astrophysics
*** Some subroutines are based on Starlink subroutines by Patrick Wallace
* Module: wcscon.c (World Coordinate System conversion)
* Purpose: Convert between various sky coordinate systems
* Subroutine: wcscon (sys1,sys2,eq1,eq2,theta,phi,epoch)
* convert between coordinate systems
* Subroutine: wcsconp (sys1,sys2,eq1,eq2,ep1,ep2,dtheta,dphi,ptheta,pphi)
* convert coordinates and proper motion between coordinate systems
* Subroutine: wcsconv (sys1,sys2,eq1,eq2,ep1,ep2,dtheta,dphi,ptheta,pphi,px,rv)
* convert coordinates and proper motion between coordinate systems
* Subroutine: wcscsys (cstring) returns code for coordinate system in string
* Subroutine: wcsceq (wcstring) returns equinox in years from system string
* Subroutine: wcscstr (sys,equinox,epoch) returns system string from equinox
* Subroutine: fk524 (ra,dec) Convert J2000(FK5) to B1950(FK4) coordinates
* Subroutine: fk524e (ra, dec, epoch) (more accurate for known position epoch)
* Subroutine: fk524m (ra,dec,rapm,decpm) exact
* Subroutine: fk524pv (ra,dec,rapm,decpm,parallax,rv) more exact
* Subroutine: fk425 (ra,dec) Convert B1950(FK4) to J2000(FK5) coordinates
* Subroutine: fk425e (ra, dec, epoch) (more accurate for known position epoch)
* Subroutine: fk425m (ra, dec, rapm, decpm) exact
* Subroutine: fk425pv (ra,dec,rapm,decpm,parallax,rv) more exact
* Subroutine: fk42gal (dtheta,dphi) Convert B1950(FK4) to galactic coordinates
* Subroutine: fk52gal (dtheta,dphi) Convert J2000(FK5) to galactic coordinates
* Subroutine: gal2fk4 (dtheta,dphi) Convert galactic coordinates to B1950(FK4)
* Subroutine: gal2fk5 (dtheta,dphi) Convert galactic coordinates to J2000<FK5)
* Subroutine: fk42ecl (dtheta,dphi,epoch) Convert B1950(FK4) to ecliptic coordinates
* Subroutine: fk52ecl (dtheta,dphi,epoch) Convert J2000(FK5) to ecliptic coordinates
* Subroutine: ecl2fk4 (dtheta,dphi,epoch) Convert ecliptic coordinates to B1950(FK4)
* Subroutine: ecl2fk5 (dtheta,dphi,epoch) Convert ecliptic coordinates to J2000<FK5)
* Subroutine: fk5prec (ep0, ep1, ra, dec) Precession ep0 to ep1, FK5 system
* Subroutine: fk4prec (ep0, ep1, ra, dec) Precession ep0 to ep1, FK4 system
*/
#include <math.h>
#ifndef VMS
#include <stdlib.h>
#endif
#include <stdio.h> /* for fprintf() and sprintf() */
#include <ctype.h>
#include <string.h>
#include "vimoswcs.h"
extern void slaDcs2c();
extern void slaDmxv();
extern void slaDimxv();
extern void slaDcc2s();
extern void slaDeuler();
extern double slaDranrm(), slaDrange();
void fk524(), fk524e(), fk524m(), fk524pv();
void fk425(), fk425e(), fk425m(), fk425pv();
void fk42gal(), fk52gal(), gal2fk4(), gal2fk5();
void fk42ecl(), fk52ecl(), ecl2fk4(), ecl2fk5();
/* Convert from coordinate system sys1 to coordinate system sys2, converting
proper motions, too, and adding them if an epoch is specified */
void
vimoswcsconp (sys1, sys2, eq1, eq2, ep1, ep2, dtheta, dphi, ptheta, pphi)
int sys1; /* Input coordinate system (J2000, B1950, ECLIPTIC, GALACTIC */
int sys2; /* Output coordinate system (J2000, B1950, ECLIPTIC, GALACTIC */
double eq1; /* Input equinox (default of sys1 if 0.0) */
double eq2; /* Output equinox (default of sys2 if 0.0) */
double ep1; /* Input Besselian epoch in years (for proper motion) */
double ep2; /* Output Besselian epoch in years (for proper motion) */
double *dtheta; /* Longitude or right ascension in degrees
Input in sys1, returned in sys2 */
double *dphi; /* Latitude or declination in degrees
Input in sys1, returned in sys2 */
double *ptheta; /* Longitude or right ascension proper motion in degrees/year
Input in sys1, returned in sys2 */
double *pphi; /* Latitude or declination proper motion in degrees/year
Input in sys1, returned in sys2 */
{
void fk5prec(), fk4prec();
/* Set equinoxes if 0.0 */
if (eq1 == 0.0) {
if (sys1 == VIMOSWCS_B1950)
eq1 = 1950.0;
else
eq1 = 2000.0;
}
if (eq2 == 0.0) {
if (sys2 == VIMOSWCS_B1950)
eq2 = 1950.0;
else
eq2 = 2000.0;
}
/* Set epochs if 0.0 */
if (ep1 == 0.0) {
if (sys1 == VIMOSWCS_B1950)
ep1 = 1950.0;
else
ep1 = 2000.0;
}
if (ep2 == 0.0) {
if (sys2 == VIMOSWCS_B1950)
ep2 = 1950.0;
else
ep2 = 2000.0;
}
/* If systems and equinoxes are the same, add proper motion and return */
if (sys2 == sys1 && eq1 == eq2) {
if (ep1 != ep2) {
if (sys1 == VIMOSWCS_J2000) {
*dtheta = *dtheta + ((ep2 - ep1) * *ptheta);
*dphi = *dphi + ((ep2 - ep1) * *pphi);
}
else if (sys1 == VIMOSWCS_B1950) {
*dtheta = *dtheta + ((ep2 - ep1) * *ptheta);
*dphi = *dphi + ((ep2 - ep1) * *pphi);
}
}
if (eq1 != eq2) {
if (sys1 == VIMOSWCS_B1950)
fk4prec (eq1, eq2, dtheta, dphi);
if (sys1 == VIMOSWCS_J2000)
fk5prec (eq1, 2000.0, dtheta, dphi);
}
return;
}
/* Precess from input equinox to input system equinox, if necessary */
if (sys1 == VIMOSWCS_B1950 && eq1 != 1950.0)
fk4prec (eq1, 1950.0, dtheta, dphi);
if (sys1 == VIMOSWCS_J2000 && eq1 != 2000.0)
fk5prec (eq1, 2000.0, dtheta, dphi);
/* Convert to B1950 FK4 */
if (sys2 == VIMOSWCS_B1950) {
if (sys1 == VIMOSWCS_J2000) {
if (*ptheta != 0.0 || *pphi != 0.0) {
fk524m (dtheta, dphi, ptheta, pphi);
if (ep1 == 2000.0)
ep1 = 1950.0;
if (ep2 != 1950.0) {
*dtheta = *dtheta + ((ep2 - 1950.0) * *ptheta);
*dphi = *dphi + ((ep2 - 1950.0) * *pphi);
}
}
else if (ep2 != 1950.0)
fk524e (dtheta, dphi, ep2);
else
fk524 (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_GALACTIC)
gal2fk4 (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC)
ecl2fk4 (dtheta, dphi, ep2);
}
else if (sys2 == VIMOSWCS_J2000) {
if (sys1 == VIMOSWCS_B1950) {
if (*ptheta != 0.0 || *pphi != 0.0) {
fk425m (dtheta, dphi, ptheta, pphi);
if (ep2 != 2000.0) {
*dtheta = *dtheta + ((ep2 - 2000.0) * *ptheta);
*dphi = *dphi + ((ep2 - 2000.0) * *pphi);
}
}
else if (ep2 > 0.0)
fk425e (dtheta, dphi, ep2);
else
fk425 (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_GALACTIC)
gal2fk5 (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC)
ecl2fk5 (dtheta, dphi, ep2);
}
else if (sys2 == VIMOSWCS_GALACTIC) {
if (sys1 == VIMOSWCS_B1950) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
fk42gal (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_J2000) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
fk52gal (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_ECLIPTIC) {
ecl2fk5 (dtheta, dphi, ep2);
fk52gal (dtheta, dphi);
}
}
else if (sys2 == VIMOSWCS_ECLIPTIC) {
if (sys1 == VIMOSWCS_B1950) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
if (ep2 > 0.0)
fk42ecl (dtheta, dphi, ep2);
else
fk42ecl (dtheta, dphi, 1950.0);
}
else if (sys1 == VIMOSWCS_J2000) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
fk52ecl (dtheta, dphi, ep2);
}
else if (sys1 == VIMOSWCS_GALACTIC) {
gal2fk5 (dtheta, dphi);
fk52ecl (dtheta, dphi, ep2);
}
}
/* Precess to desired equinox, if necessary */
if (sys2 == VIMOSWCS_B1950 && eq2 != 1950.0)
fk4prec (1950.0, eq2, dtheta, dphi);
if (sys2 == VIMOSWCS_J2000 && eq2 != 2000.0)
fk5prec (2000.0, eq2, dtheta, dphi);
/* Keep latitude/declination between +90 and -90 degrees */
if (*dphi > 90.0) {
*dphi = 180.0 - *dphi;
*dtheta = *dtheta + 180.0;
}
else if (*dphi < -90.0) {
*dphi = -180.0 - *dphi;
*dtheta = *dtheta + 180.0;
}
/* Keep longitude/right ascension between 0 and 360 degrees */
if (*dtheta > 360.0)
*dtheta = *dtheta - 360.0;
else if (*dtheta < 0.0)
*dtheta = *dtheta + 360.0;
return;
}
/* Convert from coordinate system sys1 to coordinate system sys2, converting
proper motions, too, and adding them if an epoch is specified */
void
vimoswcsconv (sys1, sys2, eq1, eq2, ep1, ep2, dtheta, dphi, ptheta, pphi, px, rv)
int sys1; /* Input coordinate system (J2000, B1950, ECLIPTIC, GALACTIC */
int sys2; /* Output coordinate system (J2000, B1950, ECLIPTIC, GALACTIC */
double eq1; /* Input equinox (default of sys1 if 0.0) */
double eq2; /* Output equinox (default of sys2 if 0.0) */
double ep1; /* Input Besselian epoch in years (for proper motion) */
double ep2; /* Output Besselian epoch in years (for proper motion) */
double *dtheta; /* Longitude or right ascension in degrees
Input in sys1, returned in sys2 */
double *dphi; /* Latitude or declination in degrees
Input in sys1, returned in sys2 */
double *ptheta; /* Longitude or right ascension proper motion in degrees/year
Input in sys1, returned in sys2 */
double *pphi; /* Latitude or declination proper motion in degrees/year
Input in sys1, returned in sys2 */
double *px; /* Parallax in arcseconds */
double *rv; /* Radial velocity in km/sec */
{
void fk5prec(), fk4prec();
/* Set equinoxes if 0.0 */
if (eq1 == 0.0) {
if (sys1 == VIMOSWCS_B1950)
eq1 = 1950.0;
else
eq1 = 2000.0;
}
if (eq2 == 0.0) {
if (sys2 == VIMOSWCS_B1950)
eq2 = 1950.0;
else
eq2 = 2000.0;
}
/* Set epochs if 0.0 */
if (ep1 == 0.0) {
if (sys1 == VIMOSWCS_B1950)
ep1 = 1950.0;
else
ep1 = 2000.0;
}
if (ep2 == 0.0) {
if (sys2 == VIMOSWCS_B1950)
ep2 = 1950.0;
else
ep2 = 2000.0;
}
/* If systems and equinoxes are the same, add proper motion and return */
if (sys2 == sys1 && eq1 == eq2) {
if (ep1 != ep2) {
if (sys1 == VIMOSWCS_J2000) {
*dtheta = *dtheta + ((ep2 - ep1) * *ptheta);
*dphi = *dphi + ((ep2 - ep1) * *pphi);
}
else if (sys1 == VIMOSWCS_B1950) {
*dtheta = *dtheta + ((ep2 - ep1) * *ptheta);
*dphi = *dphi + ((ep2 - ep1) * *pphi);
}
}
return;
}
/* Precess from input equinox to input system equinox, if necessary */
if (eq1 != eq2) {
if (sys1 == VIMOSWCS_B1950 && eq1 != 1950.0)
fk4prec (eq1, 1950.0, dtheta, dphi);
if (sys1 == VIMOSWCS_J2000 && eq1 != 2000.0)
fk5prec (eq1, 2000.0, dtheta, dphi);
}
/* Convert to B1950 FK4 */
if (sys2 == VIMOSWCS_B1950) {
if (sys1 == VIMOSWCS_J2000) {
if (*ptheta != 0.0 || *pphi != 0.0) {
if (*px != 0.0 || *rv != 0.0)
fk524pv (dtheta, dphi, ptheta, pphi, px, rv);
else
fk524m (dtheta, dphi, ptheta, pphi);
if (ep1 == 2000.0)
ep1 = 1950.0;
if (ep2 != 1950.0) {
*dtheta = *dtheta + ((ep2 - 1950.0) * *ptheta);
*dphi = *dphi + ((ep2 - 1950.0) * *pphi);
}
}
else if (ep2 != 1950.0)
fk524e (dtheta, dphi, ep2);
else
fk524 (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_GALACTIC)
gal2fk4 (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC)
ecl2fk4 (dtheta, dphi, ep2);
}
else if (sys2 == VIMOSWCS_J2000) {
if (sys1 == VIMOSWCS_B1950) {
if (*ptheta != 0.0 || *pphi != 0.0) {
if (*px != 0.0 || *rv != 0.0)
fk425pv (dtheta, dphi, ptheta, pphi, px, rv);
else
fk425m (dtheta, dphi, ptheta, pphi);
if (ep2 != 2000.0) {
*dtheta = *dtheta + ((ep2 - 2000.0) * *ptheta);
*dphi = *dphi + ((ep2 - 2000.0) * *pphi);
}
}
else if (ep2 > 0.0)
fk425e (dtheta, dphi, ep2);
else
fk425 (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_GALACTIC)
gal2fk5 (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC)
ecl2fk5 (dtheta, dphi, ep2);
}
else if (sys2 == VIMOSWCS_GALACTIC) {
if (sys1 == VIMOSWCS_B1950) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
fk42gal (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_J2000) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
fk52gal (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_ECLIPTIC) {
ecl2fk5 (dtheta, dphi, ep2);
fk52gal (dtheta, dphi);
}
}
else if (sys2 == VIMOSWCS_ECLIPTIC) {
if (sys1 == VIMOSWCS_B1950) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
if (ep2 > 0.0)
fk42ecl (dtheta, dphi, ep2);
else
fk42ecl (dtheta, dphi, 1950.0);
}
else if (sys1 == VIMOSWCS_J2000) {
if (ep2 != 0.0 && (*ptheta != 0.0 || *pphi != 0.0)) {
*dtheta = *dtheta + (*ptheta * (ep2 - ep1));
*dphi = *dphi + (*pphi * (ep2 - ep1));
}
fk52ecl (dtheta, dphi, ep2);
}
else if (sys1 == VIMOSWCS_GALACTIC) {
gal2fk5 (dtheta, dphi);
fk52ecl (dtheta, dphi, ep2);
}
}
/* Precess to desired equinox, if necessary */
if (eq1 != eq2) {
if (sys2 == VIMOSWCS_B1950 && eq2 != 1950.0)
fk4prec (1950.0, eq2, dtheta, dphi);
if (sys2 == VIMOSWCS_J2000 && eq2 != 2000.0)
fk5prec (2000.0, eq2, dtheta, dphi);
}
/* Keep latitude/declination between +90 and -90 degrees */
if (*dphi > 90.0) {
*dphi = 180.0 - *dphi;
*dtheta = *dtheta + 180.0;
}
else if (*dphi < -90.0) {
*dphi = -180.0 - *dphi;
*dtheta = *dtheta + 180.0;
}
/* Keep longitude/right ascension between 0 and 360 degrees */
if (*dtheta > 360.0)
*dtheta = *dtheta - 360.0;
else if (*dtheta < 0.0)
*dtheta = *dtheta + 360.0;
return;
}
/* Convert from coordinate system sys1 to coordinate system sys2 */
void
vimoswcscon (sys1, sys2, eq1, eq2, dtheta, dphi, epoch)
int sys1; /* Input coordinate system (J2000, B1950, ECLIPTIC, GALACTIC */
int sys2; /* Output coordinate system (J2000, B1950, ECLIPTIC, GALACTIC */
double eq1; /* Input equinox (default of sys1 if 0.0) */
double eq2; /* Output equinox (default of sys2 if 0.0) */
double *dtheta; /* Longitude or right ascension in degrees
Input in sys1, returned in sys2 */
double *dphi; /* Latitude or declination in degrees
Input in sys1, returned in sys2 */
double epoch; /* Besselian epoch in years */
{
void fk5prec(), fk4prec();
/* Set equinoxes if 0.0 */
if (eq1 == 0.0) {
if (sys1 == VIMOSWCS_B1950)
eq1 = 1950.0;
else
eq1 = 2000.0;
}
if (eq2 == 0.0) {
if (sys2 == VIMOSWCS_B1950)
eq2 = 1950.0;
else
eq2 = 2000.0;
}
/* If systems and equinoxes are the same, return */
if (sys2 == sys1 && eq1 == eq2)
return;
/* Precess from input equinox, if necessary */
if (eq1 != eq2) {
if (sys1 == VIMOSWCS_B1950 && eq1 != 1950.0)
fk4prec (eq1, 1950.0, dtheta, dphi);
if (sys1 == VIMOSWCS_J2000 && eq1 != 2000.0)
fk5prec (eq1, 2000.0, dtheta, dphi);
}
/* Convert to B1950 FK4 */
if (sys2 == VIMOSWCS_B1950) {
if (sys1 == VIMOSWCS_J2000) {
if (epoch > 0)
fk524e (dtheta, dphi, epoch);
else
fk524 (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_GALACTIC)
gal2fk4 (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC) {
if (epoch > 0)
ecl2fk4 (dtheta, dphi, epoch);
else
ecl2fk4 (dtheta, dphi, 1950.0);
}
}
else if (sys2 == VIMOSWCS_J2000) {
if (sys1 == VIMOSWCS_B1950) {
if (epoch > 0)
fk425e (dtheta, dphi, epoch);
else
fk425 (dtheta, dphi);
}
else if (sys1 == VIMOSWCS_GALACTIC)
gal2fk5 (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC) {
if (epoch > 0)
ecl2fk5 (dtheta, dphi, epoch);
else
ecl2fk5 (dtheta, dphi, 2000.0);
}
}
else if (sys2 == VIMOSWCS_GALACTIC) {
if (sys1 == VIMOSWCS_B1950)
fk42gal (dtheta, dphi);
else if (sys1 == VIMOSWCS_J2000)
fk52gal (dtheta, dphi);
else if (sys1 == VIMOSWCS_ECLIPTIC) {
if (epoch > 0)
ecl2fk5 (dtheta, dphi, epoch);
else
ecl2fk5 (dtheta, dphi, 2000.0);
fk52gal (dtheta, dphi);
}
}
else if (sys2 == VIMOSWCS_ECLIPTIC) {
if (sys1 == VIMOSWCS_B1950) {
if (epoch > 0)
fk42ecl (dtheta, dphi, epoch);
else
fk42ecl (dtheta, dphi, 1950.0);
}
else if (sys1 == VIMOSWCS_J2000) {
if (epoch > 0)
fk52ecl (dtheta, dphi, epoch);
else
fk52ecl (dtheta, dphi, 2000.0);
}
else if (sys1 == VIMOSWCS_GALACTIC) {
gal2fk5 (dtheta, dphi);
if (epoch > 0)
fk52ecl (dtheta, dphi, epoch);
else
fk52ecl (dtheta, dphi, 2000.0);
}
}
/* Precess to desired equinox, if necessary */
if (eq1 != eq2) {
if (sys2 == VIMOSWCS_B1950 && eq2 != 1950.0)
fk4prec (1950.0, eq2, dtheta, dphi);
if (sys2 == VIMOSWCS_J2000 && eq2 != 2000.0)
fk5prec (2000.0, eq2, dtheta, dphi);
}
/* Keep latitude/declination between +90 and -90 degrees */
if (*dphi > 90.0) {
*dphi = 180.0 - *dphi;
*dtheta = *dtheta + 180.0;
}
else if (*dphi < -90.0) {
*dphi = -180.0 - *dphi;
*dtheta = *dtheta + 180.0;
}
/* Keep longitude/right ascension between 0 and 360 degrees */
if (*dtheta > 360.0)
*dtheta = *dtheta - 360.0;
else if (*dtheta < 0.0)
*dtheta = *dtheta + 360.0;
return;
}
/* Set coordinate system from string */
int
vimoswcscsys (vimoswcstring)
char *vimoswcstring; /* Name of coordinate system */
{
double equinox;
if (vimoswcstring[0] == 'J' || vimoswcstring[0] == 'j' ||
!strcmp (vimoswcstring,"2000") || !strcmp (vimoswcstring, "2000.0") ||
!strcmp (vimoswcstring,"ICRS") || !strcmp (vimoswcstring, "icrs") ||
!strncmp (vimoswcstring,"FK5",3) || !strncmp (vimoswcstring, "fk5",3))
return VIMOSWCS_J2000;
if (vimoswcstring[0] == 'B' || vimoswcstring[0] == 'b' ||
!strcmp (vimoswcstring,"1950") || !strcmp (vimoswcstring, "1950.0") ||
!strncmp (vimoswcstring,"FK4",3) || !strncmp (vimoswcstring, "fk4",3))
return VIMOSWCS_B1950;
else if (vimoswcstring[0] == 'G' || vimoswcstring[0] == 'g' )
return VIMOSWCS_GALACTIC;
else if (vimoswcstring[0] == 'E' || vimoswcstring[0] == 'e' )
return VIMOSWCS_ECLIPTIC;
else if (vimoswcstring[0] == 'A' || vimoswcstring[0] == 'a' )
return VIMOSWCS_ALTAZ;
else if (vimoswcstring[0] == 'N' || vimoswcstring[0] == 'n' )
return VIMOSWCS_NPOLE;
else if (vimoswcstring[0] == 'L' || vimoswcstring[0] == 'l' )
return VIMOSWCS_LINEAR;
else if (vimoswcstring[0] == 'P' || vimoswcstring[0] == 'p' )
return VIMOSWCS_PLANET;
else if (isnum (vimoswcstring)) {
equinox = atof (vimoswcstring);
if (equinox > 1980.0)
return VIMOSWCS_J2000;
else if (equinox > 1900.0)
return VIMOSWCS_B1950;
else
return -1;
}
else
return -1;
}
/* Set equinox from string (return 0.0 if not obvious) */
double
vimoswcsceq (vimoswcstring)
char *vimoswcstring; /* Name of coordinate system */
{
if (vimoswcstring[0] == 'J' || vimoswcstring[0] == 'j' ||
vimoswcstring[0] == 'B' || vimoswcstring[0] == 'b')
return (atof (vimoswcstring+1));
else if (!strncmp (vimoswcstring, "FK4",3) ||
!strncmp (vimoswcstring, "fk4",3))
return (1950.0);
else if (!strncmp (vimoswcstring, "FK5",3) ||
!strncmp (vimoswcstring, "fk5",3))
return (2000.0);
else if (!strncmp (vimoswcstring, "ICRS",4) ||
!strncmp (vimoswcstring, "icrs",4))
return (2000.0);
else if (vimoswcstring[0] == '1' || vimoswcstring[0] == '2')
return (atof (vimoswcstring));
else
return (0.0);
}
/* Set coordinate system type string from system and equinox */
void
vimoswcscstr (cstr, sysvimoswcs, equinox, epoch)
char *cstr; /* Coordinate system string (returned) */
int sysvimoswcs; /* Coordinate system code */
double equinox; /* Equinox of coordinate system */
double epoch; /* Epoch of coordinate system */
{
char *estr;
if (sysvimoswcs == VIMOSWCS_XY) {
strcpy (cstr, "XY");
return;
}
/* Try to figure out coordinate system if it is not set */
if (epoch == 0.0)
epoch = equinox;
if (sysvimoswcs < 0) {
if (equinox > 0.0) {
if (equinox == 2000.0)
sysvimoswcs = VIMOSWCS_J2000;
else if (equinox == 1950.0)
sysvimoswcs = VIMOSWCS_B1950;
}
else if (epoch > 0.0) {
if (epoch > 1980.0) {
sysvimoswcs = VIMOSWCS_J2000;
equinox = 2000.0;
}
else {
sysvimoswcs = VIMOSWCS_B1950;
equinox = 1950.0;
}
}
else
sysvimoswcs = VIMOSWCS_J2000;
}
/* Set coordinate system string from system flag and epoch */
if (sysvimoswcs == VIMOSWCS_B1950) {
if (epoch == 1950.0 || epoch == 0.0)
strcpy (cstr, "B1950");
else
sprintf (cstr, "B%7.2f", equinox);
if ((estr = strsrch (cstr,".00")) != NULL) {
estr[0] = (char) 0;
estr[1] = (char) 0;
estr[2] = (char) 0;
}
}
else if (sysvimoswcs == VIMOSWCS_GALACTIC)
strcpy (cstr, "galactic");
else if (sysvimoswcs == VIMOSWCS_ECLIPTIC)
strcpy (cstr, "ecliptic");
else if (sysvimoswcs == VIMOSWCS_J2000) {
if (epoch == 2000.0 || epoch == 0.0)
strcpy (cstr, "J2000");
else
sprintf (cstr, "J%7.2f", equinox);
if ((estr = strsrch (cstr,".00")) != NULL) {
estr[0] = (char) 0;
estr[1] = (char) 0;
estr[2] = (char) 0;
}
}
else if (sysvimoswcs == VIMOSWCS_PLANET) {
strcpy (cstr, "PLANET");
}
return;
}
/* Constant vector and matrix (by columns)
These values were obtained by inverting C.Hohenkerk's forward matrix
(private communication), which agrees with the one given in reference
2 but which has one additional decimal place. */
static double a[3] = {-1.62557e-6, -0.31919e-6, -0.13843e-6};
static double ad[3] = {1.245e-3, -1.580e-3, -0.659e-3};
static double d2pi = 6.283185307179586476925287; /* two PI */
static double tiny = 1.e-30; /* small number to avoid arithmetic problems */
/* FK524 convert J2000 FK5 star data to B1950 FK4
based on Starlink sla_fk524 by P.T.Wallace 27 October 1987 */
static double emi[6][6] = {
{ 0.9999256795, /* emi[0][0] */
0.0111814828, /* emi[0][1] */
0.0048590039, /* emi[0][2] */
-0.00000242389840, /* emi[0][3] */
-0.00000002710544, /* emi[0][4] */
-0.00000001177742 }, /* emi[0][5] */
{ -0.0111814828, /* emi[1][0] */
0.9999374849, /* emi[1][1] */
-0.0000271771, /* emi[1][2] */
0.00000002710544, /* emi[1][3] */
-0.00000242392702, /* emi[1][4] */
0.00000000006585 }, /* emi[1][5] */
{ -0.0048590040, /* emi[2][0] */
-0.0000271557, /* emi[2][1] */
0.9999881946, /* emi[2][2] */
0.00000001177742, /* emi[2][3] */
0.00000000006585, /* emi[2][4] */
-0.00000242404995 }, /* emi[2][5] */
{ -0.000551, /* emi[3][0] */
0.238509, /* emi[3][1] */
-0.435614, /* emi[3][2] */
0.99990432, /* emi[3][3] */
0.01118145, /* emi[3][4] */
0.00485852 }, /* emi[3][5] */
{ -0.238560, /* emi[4][0] */
-0.002667, /* emi[4][1] */
0.012254, /* emi[4][2] */
-0.01118145, /* emi[4][3] */
0.99991613, /* emi[4][4] */
-0.00002717 }, /* emi[4][5] */
{ 0.435730, /* emi[5][0] */
-0.008541, /* emi[5][1] */
0.002117, /* emi[5][2] */
-0.00485852, /* emi[5][3] */
-0.00002716, /* emi[5][4] */
0.99996684 } /* emi[5][5] */
};
void
fk524 (ra,dec)
double *ra; /* Right ascension in degrees (J2000 in, B1950 out) */
double *dec; /* Declination in degrees (J2000 in, B1950 out) */
{
double rapm; /* Proper motion in right ascension */
double decpm; /* Proper motion in declination */
/* In: deg/jul.yr. Out: deg/trop.yr. */
rapm = (double) 0.0;
decpm = (double) 0.0;
fk524m (ra, dec, &rapm, &decpm);
return;
}
void
fk524e (ra, dec, epoch)
double *ra; /* Right ascension in degrees (J2000 in, B1950 out) */
double *dec; /* Declination in degrees (J2000 in, B1950 out) */
double epoch; /* Besselian epoch in years */
{
double rapm; /* Proper motion in right ascension */
double decpm; /* Proper motion in declination */
/* In: deg/jul.yr. Out: deg/trop.yr. */
rapm = (double) 0.0;
decpm = (double) 0.0;
fk524m (ra, dec, &rapm, &decpm);
*ra = *ra + (rapm * (epoch - 1950.0));
*dec = *dec + (decpm * (epoch - 1950.0));
return;
}
void
fk524m (ra,dec,rapm,decpm)
double *ra; /* Right ascension in degrees (J2000 in, B1950 out) */
double *dec; /* Declination in degrees (J2000 in, B1950 out) */
double *rapm; /* Proper motion in right ascension */
double *decpm; /* Proper motion in declination */
/* In: ra/dec deg/jul.yr. Out: ra/dec deg/trop.yr. */
{
double parallax = 0.0;
double rv = 0.0;
fk524pv (ra, dec, rapm, decpm, ¶llax, &rv);
return;
}
void
fk524pv (ra,dec,rapm,decpm, parallax, rv)
double *ra; /* Right ascension in degrees (J2000 in, B1950 out) */
double *dec; /* Declination in degrees (J2000 in, B1950 out) */
double *rapm; /* Proper motion in right ascension */
double *decpm; /* Proper motion in declination
* In: ra/dec degrees/Julian year
* Out: ra/dec degrees/tropical year */
double *parallax; /* Parallax (arcsec) */
double *rv; /* Rradial velocity (km/s, +ve = moving away) */
/* This routine converts stars from the new, IAU 1976, FK5, Fricke
system, to the old, Bessel-Newcomb, FK4 system, using Yallop's
implementation (see ref 2) of a matrix method due to Standish
(see ref 3). The numerical values of ref 2 are used canonically.
* Notes:
1) The proper motions in ra are dra / dt rather than
cos(dec) * dra / dt, and are per year rather than per century.
2) Note that conversion from Julian epoch 2000.0 to Besselian
epoch 1950.0 only is provided for. Conversions involving
other epochs will require use of the appropriate precession,
proper motion, and e-terms routines before and/or after
fk524 is called.
3) In the fk4 catalogue the proper motions of stars within
10 degrees of the poles do not embody the differential
e - term effect and should, strictly speaking, be handled
in a different manner from stars outside these regions.
however, given the general lack of homogeneity of the star
data available for routine astrometry, the difficulties of
handling positions that may have been determined from
astrometric fields spanning the polar and non - polar regions,
the likelihood that the differential e - terms effect was not
taken into account when allowing for proper motion in past
astrometry, and the undesirability of a discontinuity in
the algorithm, the decision has been made in this routine to
include the effect of differential e - terms on the proper
motions for all stars, whether polar or not. at epoch 2000,
and measuring on the sky rather than in terms of dra, the
errors resulting from this simplification are less than
1 milliarcsecond in position and 1 milliarcsecond per
century in proper motion.
References:
1 "Mean and apparent place computations in the new IAU System.
I. The transformation of astrometric catalog systems to the
equinox J2000.0." Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Yallop, B.D.; Hohenkerk, C.Y.
Astronomical Journal vol. 97, Jan. 1989, p. 265-273.
2 "Mean and apparent place computations in the new IAU System.
II. Transformation of mean star places from FK4 B1950.0 to
FK5 J2000.0 using matrices in 6-space." Yallop, B.D.;
Hohenkerk, C.Y.; Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Astronomical Journal vol. 97, Jan. 1989,
p. 274-279.
3 Seidelmann, P.K. (ed), 1992. "Explanatory Supplement to
the Astronomical Almanac", ISBN 0-935702-68-7.
4 "Conversion of positions and proper motions from B1950.0 to the
IAU system at J2000.0", Standish, E.M. Astronomy and
Astrophysics, vol. 115, no. 1, Nov. 1982, p. 20-22.
P.T.Wallace Starlink 19 December 1993
Doug Mink Smithsonian Astrophysical Observatory 1 November 2000 */
{
double r2000,d2000; /* J2000.0 ra,dec (radians) */
double r1950,d1950; /* B1950.0 ra,dec (rad) */
/* Miscellaneous */
double ur,ud;
double sr, cr, sd, cd, x, y, z, w, wd;
double v1[6],v2[6];
double xd,yd,zd;
double rxyz, rxysq, rxy;
double dra,ddec;
int i,j;
int diag = 0;
/* Constants */
double zero = (double) 0.0;
double vf = 21.095; /* Km per sec to AU per tropical century */
/* = 86400 * 36524.2198782 / 149597870 */
/* Convert J2000 RA and Dec from degrees to radians */
r2000 = degrad (*ra);
d2000 = degrad (*dec);
/* Convert J2000 RA and Dec proper motion from degrees/year to arcsec/tc */
ur = *rapm * 360000.0;
ud = *decpm * 360000.0;
/* Spherical to Cartesian */
sr = sin (r2000);
cr = cos (r2000);
sd = sin (d2000);
cd = cos (d2000);
x = cr * cd;
y = sr * cd;
z = sd;
v1[0] = x;
v1[1] = y;
v1[2] = z;
if (ur != zero || ud != zero) {
v1[3] = -(ur*y) - (cr*sd*ud);
v1[4] = (ur*x) - (sr*sd*ud);
v1[5] = (cd*ud);
}
else {
v1[3] = zero;
v1[4] = zero;
v1[5] = zero;
}
/* Convert position + velocity vector to bn system */
for (i = 0; i < 6; i++) {
w = zero;
for (j = 0; j < 6; j++) {
w = w + emi[i][j] * v1[j];
}
v2[i] = w;
}
/* Vector components */
x = v2[0];
y = v2[1];
z = v2[2];
rxyz = sqrt (x*x + y*y + z*z);
/* Magnitude of position vector */
rxyz = sqrt (x*x + y*y + z*z);
/* Apply e-terms to position */
w = (x * a[0]) + (y * a[1]) + (z * a[2]);
x = x + (a[0] * rxyz) - (w * x);
y = y + (a[1] * rxyz) - (w * z);
z = z + (a[2] * rxyz) - (w * z);
/* Recompute magnitude of position vector */
rxyz = sqrt (x*x + y*y + z*z);
/* Apply e-terms to position and velocity */
x = v2[0];
y = v2[1];
z = v2[2];
w = (x * a[0]) + (y * a[1]) + (z * a[2]);
wd = (x * ad[0]) + (y * ad[1]) + (z * ad[2]);
x = x + (a[0] * rxyz) - (w * x);
y = y + (a[1] * rxyz) - (w * y);
z = z + (a[2] * rxyz) - (w * z);
xd = v2[3] + (ad[0] * rxyz) - (wd * x);
yd = v2[4] + (ad[1] * rxyz) - (wd * y);
zd = v2[5] + (ad[2] * rxyz) - (wd * z);
/* Convert to spherical */
rxysq = (x * x) + (y * y);
rxy = sqrt (rxysq);
/* Convert back to spherical coordinates */
if (x == zero && y == zero)
r1950 = zero;
else {
r1950 = atan2 (y,x);
if (r1950 < zero)
r1950 = r1950 + d2pi;
}
d1950 = atan2 (z,rxy);
if (rxy > tiny) {
ur = (x*yd - y*xd) / rxysq;
ud = (zd*rxysq - z * (x*xd + y*yd)) / ((rxysq + z*z) * rxy);
}
if (*parallax > tiny) {
*rv = ((x * xd) + (y * yd) + (z * zd)) / (*parallax * vf * rxyz);
*parallax = *parallax / rxyz;
}
/* Return results */
*ra = raddeg (r1950);
*dec = raddeg (d1950);
*rapm = ur / 360000.0;
*decpm = ud / 360000.0;
if (diag) {
dra = 240.0 * raddeg (r1950 - r2000);
ddec = 3600.0 * raddeg (d1950 - d2000);
fprintf(stderr,"B1950-J2000: dra= %11.5f sec ddec= %f11.5f arcsec\n",
dra, ddec);
}
return;
}
/* Convert B1950.0 FK4 star data to J2000.0 FK5 */
static double em[6][6] = {
{ 0.9999256782, /* em[0][0] */
-0.0111820611, /* em[0][1] */
-0.0048579477, /* em[0][2] */
0.00000242395018, /* em[0][3] */
-0.00000002710663, /* em[0][4] */
-0.00000001177656 }, /* em[0][5] */
{ 0.0111820610, /* em[1][0] */
0.9999374784, /* em[1][1] */
-0.0000271765, /* em[1][2] */
0.00000002710663, /* em[1][3] */
0.00000242397878, /* em[1][4] */
-0.00000000006587 }, /* em[1][5] */
{ 0.0048579479, /* em[2][0] */
-0.0000271474, /* em[2][1] */
0.9999881997, /* em[2][2] */
0.00000001177656, /* em[2][3] */
-0.00000000006582, /* em[2][4] */
0.00000242410173 }, /* em[2][5] */
{ -0.000551, /* em[3][0] */
-0.238565, /* em[3][1] */
0.435739, /* em[3][2] */
0.99994704, /* em[3][3] */
-0.01118251, /* em[3][4] */
-0.00485767 }, /* em[3][5] */
{ 0.238514, /* em[4][0] */
-0.002667, /* em[4][1] */
-0.008541, /* em[4][2] */
0.01118251, /* em[4][3] */
0.99995883, /* em[4][4] */
-0.00002718 }, /* em[4][5] */
{ -0.435623, /* em[5][0] */
0.012254, /* em[5][1] */
0.002117, /* em[5][2] */
0.00485767, /* em[5][3] */
-0.00002714, /* em[5][4] */
1.00000956 } /* em[5][5] */
};
void
fk425 (ra, dec)
double *ra; /* Right ascension in degrees (B1950 in, J2000 out) */
double *dec; /* Declination in degrees (B1950 in, J2000 out) */
{
double rapm; /* Proper motion in right ascension */
double decpm; /* Proper motion in declination */
/* In: rad/trop.yr. Out: rad/jul.yr. */
rapm = (double) 0.0;
decpm = (double) 0.0;
fk425m (ra, dec, &rapm, &decpm);
return;
}
void
fk425e (ra, dec, epoch)
double *ra; /* Right ascension in degrees (B1950 in, J2000 out) */
double *dec; /* Declination in degrees (B1950 in, J2000 out) */
double epoch; /* Besselian epoch in years */
{
double rapm; /* Proper motion in right ascension */
double decpm; /* Proper motion in declination */
/* In: rad/trop.yr. Out: rad/jul.yr. */
rapm = (double) 0.0;
decpm = (double) 0.0;
fk425m (ra, dec, &rapm, &decpm);
*ra = *ra + (rapm * (epoch - 2000.0));
*dec = *dec + (decpm * (epoch - 2000.0));
return;
}
void
fk425m (ra, dec, rapm, decpm)
double *ra, *dec; /* Right ascension and declination in degrees
input: B1950.0,FK4 returned: J2000.0,FK5 */
double *rapm, *decpm; /* Proper motion in right ascension and declination
input: B1950.0,FK4 returned: J2000.0,FK5
ra/dec deg/trop.yr. ra/dec deg/jul.yr. */
{
double parallax = 0.0;
double rv = 0.0;
fk425pv (ra, dec, rapm, decpm, ¶llax, &rv);
return;
}
void
fk425pv (ra,dec,rapm,decpm, parallax, rv)
double *ra; /* Right ascension in degrees (J2000 in, B1950 out) */
double *dec; /* Declination in degrees (J2000 in, B1950 out) */
double *rapm; /* Proper motion in right ascension */
double *decpm; /* Proper motion in declination
* In: ra/dec degrees/Julian year
* Out: ra/dec degrees/tropical year */
double *parallax; /* Parallax (arcsec) */
double *rv; /* Rradial velocity (km/s, +ve = moving away) */
/* This routine converts stars from the old, Bessel-Newcomb, FK4
system to the new, IAU 1976, FK5, Fricke system, using Yallop's
implementation (see ref 2) of a matrix method due to Standish
(see ref 3). The numerical values of ref 2 are used canonically.
Notes:
1) The proper motions in ra are dra/dt rather than
cos(dec)*dra/dt, and are per year rather than per century.
2) Conversion from besselian epoch 1950.0 to Julian epoch
2000.0 only is provided for. Conversions involving other
epochs will require use of the appropriate precession,
proper motion, and e-terms routines before and/or
after fk425 is called.
3) In the FK4 catalogue the proper motions of stars within
10 degrees of the poles do not embody the differential
e-term effect and should, strictly speaking, be handled
in a different manner from stars outside these regions.
However, given the general lack of homogeneity of the star
data available for routine astrometry, the difficulties of
handling positions that may have been determined from
astrometric fields spanning the polar and non-polar regions,
the likelihood that the differential e-terms effect was not
taken into account when allowing for proper motion in past
astrometry, and the undesirability of a discontinuity in
the algorithm, the decision has been made in this routine to
include the effect of differential e-terms on the proper
motions for all stars, whether polar or not. At epoch 2000,
and measuring on the sky rather than in terms of dra, the
errors resulting from this simplification are less than
1 milliarcsecond in position and 1 milliarcsecond per
century in proper motion.
References:
1 "Mean and apparent place computations in the new IAU System.
I. The transformation of astrometric catalog systems to the
equinox J2000.0." Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Yallop, B.D.; Hohenkerk, C.Y.
Astronomical Journal vol. 97, Jan. 1989, p. 265-273.
2 "Mean and apparent place computations in the new IAU System.
II. Transformation of mean star places from FK4 B1950.0 to
FK5 J2000.0 using matrices in 6-space." Yallop, B.D.;
Hohenkerk, C.Y.; Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Astronomical Journal vol. 97, Jan. 1989,
p. 274-279.
3 "Conversion of positions and proper motions from B1950.0 to the
IAU system at J2000.0", Standish, E.M. Astronomy and
Astrophysics, vol. 115, no. 1, Nov. 1982, p. 20-22.
P.T.Wallace Starlink 20 December 1993
Doug Mink Smithsonian Astrophysical Observatory 7 June 1995 */
{
double r1950,d1950; /* B1950.0 ra,dec (rad) */
double r2000,d2000; /* J2000.0 ra,dec (rad) */
/* Miscellaneous */
double ur,ud,sr,cr,sd,cd,w,wd;
double x,y,z,xd,yd,zd, dra,ddec;
double rxyz, rxysq, rxy, rxyzsq, spxy, spxyz;
int i,j;
int diag = 0;
double r0[3],rd0[3]; /* star position and velocity vectors */
double v1[6],v2[6]; /* combined position and velocity vectors */
/* Constants */
double zero = (double) 0.0;
double vf = 21.095; /* Km per sec to AU per tropical century */
/* = 86400 * 36524.2198782 / 149597870 */
/* Convert B1950 RA and Dec from degrees to radians */
r1950 = degrad (*ra);
d1950 = degrad (*dec);
/* Convert B1950 RA and Dec proper motion from degrees/year to arcsec/tc */
ur = *rapm * 360000.0;
ud = *decpm * 360000.0;
/* Convert direction to Cartesian */
sr = sin (r1950);
cr = cos (r1950);
sd = sin (d1950);
cd = cos (d1950);
r0[0] = cr * cd;
r0[1] = sr * cd;
r0[2] = sd;
/* Convert motion to Cartesian */
w = vf * *rv * *parallax;
if (ur != zero || ud != zero || (*rv != zero && *parallax != zero)) {
rd0[0] = (-sr * cd * ur) - (cr * sd * ud) + (w * r0[0]);
rd0[1] = (cr * cd * ur) - (sr * sd * ud) + (w * r0[1]);
rd0[2] = (cd * ud) + (w * r0[2]);
}
else {
rd0[0] = zero;
rd0[1] = zero;
rd0[2] = zero;
}
/* Remove e-terms from position and express as position+velocity 6-vector */
w = (r0[0] * a[0]) + (r0[1] * a[1]) + (r0[2] * a[2]);
for (i = 0; i < 3; i++)
v1[i] = r0[i] - a[i] + (w * r0[i]);
/* Remove e-terms from proper motion and express as 6-vector */
wd = (r0[0] * ad[0]) + (r0[1] * ad[1]) + (r0[2] * ad[2]);
for (i = 0; i < 3; i++)
v1[i+3] = rd0[i] - ad[i] + (wd * r0[i]);
/* Alternately: Put proper motion in 6-vector without adding e-terms
for (i = 0; i < 3; i++)
v1[i+3] = rd0[i]; */
/* Convert position + velocity vector to FK5 system */
for (i = 0; i < 6; i++) {
w = zero;
for (j = 0; j < 6; j++) {
w += em[i][j] * v1[j];
}
v2[i] = w;
}
/* Vector components */
x = v2[0];
y = v2[1];
z = v2[2];
xd = v2[3];
yd = v2[4];
zd = v2[5];
/* Magnitude of position vector */
rxysq = x*x + y*y;
rxy = sqrt (rxysq);
rxyzsq = rxysq + z*z;
rxyz = sqrt (rxyzsq);
spxy = (x * xd) + (y * yd);
spxyz = spxy + (z * zd);
/* Convert back to spherical coordinates */
if (x == zero && y == zero)
r2000 = zero;
else {
r2000 = atan2 (y,x);
if (r2000 < zero)
r2000 = r2000 + d2pi;
}
d2000 = atan2 (z,rxy);
if (rxy > tiny) {
ur = ((x * yd) - (y * xd)) / rxysq;
ud = ((zd * rxysq) - (z * spxy)) / (rxyzsq * rxy);
}
if (*parallax > tiny) {
*rv = spxyz / (*parallax * rxyz * vf);
*parallax = *parallax / rxyz;
}
/* Return results */
*ra = raddeg (r2000);
*dec = raddeg (d2000);
*rapm = ur / 360000.0;
*decpm = ud / 360000.0;
if (diag) {
dra = 240.0 * raddeg (r2000 - r1950);
ddec = 3600.0 * raddeg (d2000 - d1950);
fprintf(stderr,"J2000-B1950: dra= %11.5f sec ddec= %f11.5f arcsec\n",
dra, ddec);
}
return;
}
int idg=0;
/* l2,b2 system of galactic coordinates
* p = 192.25 ra of galactic north pole (mean b1950.0)
* q = 62.6 inclination of galactic to mean b1950.0 equator
* r = 33 longitude of ascending node
* p,q,r are degrees
* Equatorial to galactic rotation matrix
(The Eulerian angles are p, q, 90-r)
+cp.cq.sr-sp.cr +sp.cq.sr+cp.cr -sq.sr
-cp.cq.cr-sp.sr -sp.cq.cr+cp.sr +sq.cr
cp.sq +sp.sq +cq
*/
static
double bgal[3][3] =
{-0.066988739415,-0.872755765852,-0.483538914632,
0.492728466075,-0.450346958020, 0.744584633283,
-0.867600811151,-0.188374601723, 0.460199784784};
/*--- Transform b1950.0 'FK4' equatorial coordinates to
* IAU 1958 galactic coordinates */
void
fk42gal (dtheta,dphi)
double *dtheta; /* b1950.0 'FK4' ra in degrees
Galactic longitude (l2) in degrees (returned) */
double *dphi; /* b1950.0 'FK4' dec in degrees
Galactic latitude (b2) in degrees (returned) */
/* Note: The equatorial coordinates are b1950.0 'FK4'. use the
routine jpgalj if conversion from j2000.0 coordinates
is required.
Reference: blaauw et al, MNRAS,121,123 (1960) */
{
double pos[3],pos1[3],r,dl,db,rl,rb,rra,rdec,dra,ddec;
void v2s3(),s2v3();
int i;
char *eqcoor, *eqstrn();
dra = *dtheta;
ddec = *dphi;
rra = degrad (dra);
rdec = degrad (ddec);
/* remove e-terms */
/* call jpabe (rra,rdec,-1,idg) */
/* Spherical to Cartesian */
r = 1.;
s2v3 (rra,rdec,r,pos);
/* rotate to galactic */
for (i = 0; i<3; i++) {
pos1[i] = pos[0]*bgal[i][0] + pos[1]*bgal[i][1] + pos[2]*bgal[i][2];
}
/* Cartesian to spherical */
v2s3 (pos1,&rl,&rb,&r);
dl = raddeg (rl);
db = raddeg (rb);
*dtheta = dl;
*dphi = db;
/* Print result if in diagnostic mode */
if (idg) {
eqcoor = eqstrn (dra,ddec);
fprintf (stderr,"FK42GAL: B1950 RA,Dec= %s\n",eqcoor);
fprintf (stderr,"FK42GAL: long = %.5f lat = %.5f\n",dl,db);
free (eqcoor);
}
return;
}
/*--- Transform IAU 1958 galactic coordinates to B1950.0 'FK4'
* equatorial coordinates */
void
gal2fk4 (dtheta,dphi)
double *dtheta; /* Galactic longitude (l2) in degrees
B1950 FK4 RA in degrees (returned) */
double *dphi; /* Galactic latitude (b2) in degrees
B1950 FK4 Dec in degrees (returned) */
/* Note:
The equatorial coordinates are B1950.0 FK4. Use the
routine GAL2FK5 if conversion to J2000 coordinates
is required.
Reference: Blaauw et al, MNRAS,121,123 (1960) */
{
double pos[3],pos1[3],r,dl,db,rl,rb,rra,rdec,dra,ddec;
void v2s3(),s2v3();
char *eqcoor, *eqstrn();
int i;
/* spherical to cartesian */
dl = *dtheta;
db = *dphi;
rl = degrad (dl);
rb = degrad (db);
r = 1.0;
s2v3 (rl,rb,r,pos);
/* rotate to equatorial coordinates */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0]*bgal[0][i] + pos[1]*bgal[1][i] + pos[2]*bgal[2][i];
}
/* cartesian to spherical */
v2s3 (pos1,&rra,&rdec,&r);
/* introduce e-terms */
/* jpabe (rra,rdec,-1,idg); */
dra = raddeg (rra);
ddec = raddeg (rdec);
*dtheta = dra;
*dphi = ddec;
/* print result if in diagnostic mode */
if (idg) {
fprintf (stderr,"GAL2FK4: long = %.5f lat = %.5f\n",dl,db);
eqcoor = eqstrn (dra,ddec);
fprintf (stderr,"GAL2FK4: B1950 RA,Dec= %s\n",eqcoor);
free (eqcoor);
}
return;
}
/* l2,b2 system of galactic coordinates
p = 192.25 ra of galactic north pole (mean b1950.0)
q = 62.6 inclination of galactic to mean b1950.0 equator
r = 33 longitude of ascending node
p,q,r are degrees */
/* Equatorial to galactic rotation matrix
The eulerian angles are p, q, 90-r
+cp.cq.sr-sp.cr +sp.cq.sr+cp.cr -sq.sr
-cp.cq.cr-sp.sr -sp.cq.cr+cp.sr +sq.cr
+cp.sq +sp.sq +cq */
static
double jgal[3][3] =
{-0.054875539726,-0.873437108010,-0.483834985808,
0.494109453312,-0.444829589425, 0.746982251810,
-0.867666135858,-0.198076386122, 0.455983795705};
/* Transform J2000 equatorial coordinates to IAU 1958 galactic coordinates */
void
fk52gal (dtheta,dphi)
double *dtheta; /* J2000 right ascension in degrees
Galactic longitude (l2) in degrees (returned) */
double *dphi; /* J2000 declination in degrees
Galactic latitude (b2) in degrees (returned) */
/* Rotation matrices by P.T.Wallace, Starlink eqgal and galeq, March 1986 */
/* Note:
The equatorial coordinates are J2000 FK5. Use the routine
GAL2FK4 if conversion from B1950 FK4 coordinates is required.
Reference: Blaauw et al, MNRAS,121,123 (1960) */
{
double pos[3],pos1[3],r,dl,db,rl,rb,rra,rdec,dra,ddec;
void v2s3(),s2v3();
char *eqcoor, *eqstrn();
int i;
/* Spherical to cartesian */
dra = *dtheta;
ddec = *dphi;
rra = degrad (dra);
rdec = degrad (ddec);
r = 1.0;
(void)s2v3 (rra,rdec,r,pos);
/* Rotate to galactic */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0]*jgal[i][0] + pos[1]*jgal[i][1] + pos[2]*jgal[i][2];
}
/* Cartesian to spherical */
v2s3 (pos1,&rl,&rb,&r);
dl = raddeg (rl);
db = raddeg (rb);
*dtheta = dl;
*dphi = db;
/* Print result if in diagnostic mode */
if (idg) {
eqcoor = eqstrn (dra,ddec);
fprintf (stderr,"FK52GAL: J2000 RA,Dec= %s\n",eqcoor);
fprintf (stderr,"FK52GAL: long = %.5f lat = %.5f\n",dl,db);
free (eqcoor);
}
return;
}
/*--- Transform IAU 1958 galactic coordinates to J2000 equatorial coordinates */
void
gal2fk5 (dtheta,dphi)
double *dtheta; /* Galactic longitude (l2) in degrees
J2000.0 ra in degrees (returned) */
double *dphi; /* Galactic latitude (b2) in degrees
J2000.0 dec in degrees (returned) */
/* Note:
The equatorial coordinates are J2000. Use the routine FK42GAL
if conversion to J2000 coordinates is required.
Reference: Blaauw et al, MNRAS,121,123 (1960) */
{
double pos[3],pos1[3],r,dl,db,rl,rb,rra,rdec,dra,ddec;
void v2s3(),s2v3();
int i;
char *eqcoor, *eqstrn();
/* Spherical to Cartesian */
dl = *dtheta;
db = *dphi;
rl = degrad (dl);
rb = degrad (db);
r = 1.0;
s2v3 (rl,rb,r,pos);
/* Rotate to equatorial coordinates */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0]*jgal[0][i] + pos[1]*jgal[1][i] + pos[2]*jgal[2][i];
}
/* Cartesian to Spherical */
v2s3 (pos1,&rra,&rdec,&r);
dra = raddeg (rra);
ddec = raddeg (rdec);
*dtheta = dra;
*dphi = ddec;
/* Print result if in diagnostic mode */
if (idg) {
fprintf (stderr,"GAL2FK5: long = %.5f lat = %.5f\n",dl,db);
eqcoor = eqstrn (dra,ddec);
fprintf (stderr,"GAL2FK5: J2000 RA,Dec= %s\n",eqcoor);
free (eqcoor);
}
return;
}
/* Return string with right ascension in hours and declination in degrees */
char *eqstrn (dra, ddec)
double dra; /* Right ascension in degrees */
double ddec; /* Declination in degrees */
{
char *eqcoor; /* ASCII character string of position (returned) */
char decp;
int rah,irm,decd,decm;
double xpos,ypos,xp,yp,ras,decs;
/* Right ascension to hours, minutes, and seconds */
xpos = dra / 15.0;
rah = (int) xpos;
xp = (double) 60.0 * (xpos - (double) rah);
irm = (int) xp;
ras = (double) 60.0 * (xp - (double) irm);
/* Declination to degrees, minutes, seconds */
if (ddec < 0) {
ypos = -ddec;
decp = '-';
}
else {
decp = '+';
ypos = ddec;
}
decd = (int) ypos;
yp = (double) 60.0 * (ypos - (double) decd);
decm = (int) yp;
decs = (double) 60.0 * (yp - (double) decm);
eqcoor = malloc (32);
(void)sprintf (eqcoor,"%02d:%02d:%06.3f %c%02d:%02d:%05.2f",
rah,irm,ras,decp,decd,decm,decs);
if (eqcoor[6] == ' ')
eqcoor[6] = '0';
if (eqcoor[20] == ' ')
eqcoor[20] = '0';
return (eqcoor);
}
/* Convert geocentric equatorial rectangular coordinates to
right ascension and declination, and distance */
void
v2s3 (pos,rra,rdec,r)
double pos[3]; /* x,y,z geocentric equatorial position of object */
double *rra; /* Right ascension in radians (returned) */
double *rdec; /* Declination in radians (returned) */
double *r; /* Distance to object in same units as pos (returned) */
{
double x,y,z,rxy,rxy2,z2;
x = pos[0];
y = pos[1];
z = pos[2];
*rra = atan2 (y, x);
if (*rra < 0.) *rra = *rra + 6.283185307179586;
rxy2 = x*x + y*y;
rxy = sqrt (rxy2);
*rdec = atan2 (z, rxy);
z2 = z * z;
*r = sqrt (rxy2 + z2);
return;
}
/* Convert right ascension, declination, and distance to
geocentric equatorial rectangular coordinates */
void
s2v3 (rra,rdec,r,pos)
double rra; /* Right ascension in radians */
double rdec; /* Declination in radians */
double r; /* Distance to object in same units as pos */
double pos[3]; /* x,y,z geocentric equatorial position of object (returned) */
{
pos[0] = r * cos (rra) * cos (rdec);
pos[1] = r * sin (rra) * cos (rdec);
pos[2] = r * sin (rdec);
return;
}
/* These routines are heavily based on Pat Wallace's slalib package */
/* Convert B1950 right ascension and declination to ecliptic coordinates */
void
fk42ecl (dtheta, dphi, epoch)
double *dtheta; /* B1950 right ascension in degrees
Galactic longitude (l2) in degrees (returned) */
double *dphi; /* B1950 declination in degrees
Galactic latitude (b2) in degrees (returned) */
double epoch; /* Besselian epoch in years */
{
void fk425e(), fk52ecl();
/* Convert from B1950 to J2000 coordinates */
fk425e (dtheta, dphi, epoch);
/* Convert from J2000 to ecliptic coordinates */
fk52ecl (dtheta, dphi, epoch);
return;
}
/* Convert J2000 right ascension and declination to ecliptic coordinates */
void
fk52ecl (dtheta, dphi, epoch)
double *dtheta; /* J2000 right ascension in degrees
Galactic longitude (l2) in degrees (returned) */
double *dphi; /* J2000 declination in degrees
Galactic latitude (b2) in degrees (returned) */
double epoch; /* Besselian epoch in years */
{
double t, eps0, rphi, rtheta;
double rmat[3][3]; /* Rotation matrix from slalib slaEcmat() by P.T. Wallace */
double das2r=4.8481368110953599358991410235794797595635330237270e-6;
void slaDeuler();
double v1[3], v2[3];
void fk5prec();
rtheta = degrad (*dtheta);
rphi = degrad (*dphi);
/* Precess coordinates from J2000 to epoch */
if (epoch != 2000.0)
fk5prec (2000.0, epoch, &rtheta, &rphi);
/* Convert RA,Dec to x,y,z */
slaDcs2c (rtheta, rphi, v1);
/* Interval between basic epoch J2000.0 and current epoch (JC) in centuries*/
t = (epoch - 2000.0) * 0.01;
/* Mean obliquity */
eps0 = das2r * (84381.448 + (-46.8150 + (-0.00059 + 0.001813 * t) * t) * t);
/* Form the equatorial to ecliptic rotation matrix (IAU 1980 theory).
* References: Murray, C.A., Vectorial Astrometry, section 4.3.
* The matrix is in the sense v[ecl] = rmat * v[equ]; the
* equator, equinox and ecliptic are mean of date. */
slaDeuler ("X", eps0, 0.0, 0.0, rmat);
/* Rotate from equatorial to ecliptic coordinates */
slaDmxv (rmat, v1, v2);
/* Convert x,y,z to latitude, longitude */
slaDcc2s (v2, &rtheta, &rphi);
/* Express in conventional ranges */
rtheta = slaDranrm (rtheta);
rphi = slaDrange (rphi);
*dtheta = raddeg (rtheta);
*dphi = raddeg (rphi);
}
/* Convert ecliptic coordinates to B1950 right ascension and declination */
void
ecl2fk4 (dtheta, dphi, epoch)
double *dtheta; /* Galactic longitude (l2) in degrees
B1950 right ascension in degrees (returned) */
double *dphi; /* Galactic latitude (b2) in degrees
B1950 declination in degrees (returned) */
double epoch; /* Besselian epoch in years */
{
void ecl2fk5(), fk524e();
/* Convert from ecliptic to J2000 coordinates */
ecl2fk5 (dtheta, dphi, epoch);
/* Convert from J2000 to B1950 coordinates */
fk524e (dtheta, dphi, epoch);
return;
}
/* Convert ecliptic coordinates to J2000 right ascension and declination */
void
ecl2fk5 (dtheta, dphi, epoch)
double *dtheta; /* Galactic longitude (l2) in degrees
J2000 right ascension in degrees (returned) */
double *dphi; /* Galactic latitude (b2) in degrees
J2000 declination in degrees (returned) */
double epoch; /* Besselian epoch in years */
{
double rtheta, rphi, v1[3], v2[3];
double t, eps0;
double rmat[3][3]; /* Rotation matrix from slalib slaEcmat() */
double das2r=4.8481368110953599358991410235794797595635330237270e-6;
void fk5prec();
rtheta = degrad (*dtheta);
rphi = degrad (*dphi);
/* Convert RA,Dec to x,y,z */
slaDcs2c (rtheta, rphi, v1);
/* Interval between basic epoch J2000.0 and current epoch (JC) in centuries*/
t = (epoch - 2000.0) * 0.01;
/* Mean obliquity */
eps0 = das2r * (84381.448 + (-46.8150 + (-0.00059 + 0.001813 * t) * t) * t);
/* Form the equatorial to ecliptic rotation matrix (IAU 1980 theory).
* References: Murray, C.A., Vectorial Astrometry, section 4.3.
* The matrix is in the sense v[ecl] = rmat * v[equ]; the
* equator, equinox and ecliptic are mean of date. */
slaDeuler ("X", eps0, 0.0, 0.0, rmat);
/* Ecliptic to equatorial */
slaDimxv (rmat, v1, v2);
/* Cartesian to spherical */
slaDcc2s (v2, &rtheta, &rphi);
/* Keep RA within 0 to 2pi range */
if (rtheta < 0.0)
rtheta = rtheta + (2.0 * PI);
if (rtheta > 2.0 * PI)
rtheta = rtheta - (2.0 * PI);
/* Precess coordinates from epoch to J2000 */
if (epoch != 2000.0)
fk5prec (epoch, 2000.0, &rtheta, &rphi);
*dtheta = raddeg (rtheta);
*dphi = raddeg (rphi);
}
/* The following routines are almost verbatim from Patrick Wallace's SLALIB */
void
fk4prec (ep0, ep1, ra, dec)
double ep0; /* Starting Besselian epoch */
double ep1; /* Ending Besselian epoch */
double *ra; /* RA in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
double *dec; /* Dec in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
/*
** slaPreces:
** Precession - FK4 (Bessel-Newcomb, pre-IAU1976)
**
** Note:
** This routine will not correctly convert between the old and
** the new systems - for example conversion from B1950 to J2000.
** For these purposes see fk425, fk524, fk45m and fk54m.
**
** P.T.Wallace Starlink 22 December 1993
*/
{
double pm[3][3], v1[3], v2[3], rra, rdec;
void mprecfk4();
rra = degrad (*ra);
rdec = degrad (*dec);
/* Generate appropriate precession matrix */
mprecfk4 ( ep0, ep1, pm );
/* Convert RA,Dec to x,y,z */
slaDcs2c ( rra, rdec, v1 );
/* Precess */
slaDmxv ( pm, v1, v2 );
/* Back to RA,Dec */
slaDcc2s ( v2, &rra, &rdec );
rra = slaDranrm ( rra );
*ra = raddeg (rra);
*dec = raddeg (rdec);
}
void
fk5prec (ep0, ep1, ra, dec)
double ep0; /* Starting epoch */
double ep1; /* Ending epoch */
double *ra; /* RA in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
double *dec; /* Dec in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
/*
** slaPreces:
** Precession - FK5 (Fricke, post-IAU1976)
**
** Note:
** This routine will not correctly convert between the old and
** the new systems - for example conversion from B1950 to J2000.
** For these purposes see fk425, fk524, fk45m and fk54m.
**
** P.T.Wallace Starlink 22 December 1993
*/
{
double pm[3][3], v1[3], v2[3], rra, rdec;
void mprecfk5(), slaDcs2c(), slaDmxv(), slaDcc2s();
double slaDranrm();
rra = degrad (*ra);
rdec = degrad (*dec);
/* Generate appropriate precession matrix */
mprecfk5 ( ep0, ep1, pm );
/* Convert RA,Dec to x,y,z */
slaDcs2c ( rra, rdec, v1 );
/* Precess */
slaDmxv ( pm, v1, v2 );
/* Back to RA,Dec */
slaDcc2s ( v2, &rra, &rdec );
rra = slaDranrm ( rra );
*ra = raddeg (rra);
*dec = raddeg (rdec);
return;
}
/* pi/(180*3600): arcseconds to radians */
#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
void
mprecfk4 (bep0, bep1, rmatp)
double bep0; /* Beginning Besselian epoch */
double bep1; /* Ending Besselian epoch */
double (*rmatp)[3]; /* 3x3 Precession matrix (returned) */
/*
** slaPrebn:
** Generate the matrix of precession between two epochs,
** using the old, pre-IAU1976, Bessel-Newcomb model, using
** Kinoshita's formulation (double precision)
**
** The matrix is in the sense v(bep1) = rmatp * v(bep0)
**
** Reference:
** Kinoshita, H. (1975) 'Formulas for precession', SAO Special
** Report No. 364, Smithsonian Institution Astrophysical
** Observatory, Cambridge, Massachusetts.
**
** P.T.Wallace Starlink 30 October 1993
*/
{
double bigt, t, tas2r, w, zeta, z, theta;
void slaDeuler();
/* Interval between basic epoch B1850.0 and beginning epoch in TC */
bigt = ( bep0 - 1850.0 ) / 100.0;
/* Interval over which precession required, in tropical centuries */
t = ( bep1 - bep0 ) / 100.0;
/* Euler angles */
tas2r = t * DAS2R;
w = 2303.5548 + ( 1.39720 + 0.000059 * bigt ) * bigt;
zeta = (w + ( 0.30242 - 0.000269 * bigt + 0.017996 * t ) * t ) * tas2r;
z = (w + ( 1.09478 + 0.000387 * bigt + 0.018324 * t ) * t ) * tas2r;
theta = ( 2005.1125 + ( - 0.85294 - 0.000365* bigt ) * bigt +
( - 0.42647 - 0.000365 * bigt - 0.041802 * t ) * t ) * tas2r;
/* Rotation matrix */
slaDeuler ( "ZYZ", -zeta, theta, -z, rmatp );
}
void
mprecfk5 (ep0, ep1, rmatp)
double ep0; /* Beginning epoch */
double ep1; /* Ending epoch */
double (*rmatp)[3]; /* 3x3 Precession matrix (returned) */
/*
** slaPrec:
** Form the matrix of precession between two epochs (IAU 1976, FK5).
** Notes:
** 1) The epochs are TDB (loosely ET) Julian epochs.
** 2) The matrix is in the sense v(ep1) = rmatp * v(ep0) .
**
** References:
** Lieske,J.H., 1979. Astron. Astrophys.,73,282.
** equations (6) & (7), p283.
** Kaplan,G.H., 1981. USNO circular no. 163, pa2.
**
** P.T.Wallace Starlink 31 October 1993
*/
{
double t0, t, tas2r, w, zeta, z, theta;
void slaDeuler();
/* Interval between basic epoch J2000.0 and beginning epoch (JC) */
t0 = ( ep0 - 2000.0 ) / 100.0;
/* Interval over which precession required (JC) */
t = ( ep1 - ep0 ) / 100.0;
/* Euler angles */
tas2r = t * DAS2R;
w = 2306.2181 + ( ( 1.39656 - ( 0.000139 * t0 ) ) * t0 );
zeta = (w + ( ( 0.30188 - 0.000344 * t0 ) + 0.017998 * t ) * t ) * tas2r;
z = (w + ( ( 1.09468 + 0.000066 * t0 ) + 0.018203 * t ) * t ) * tas2r;
theta = ( ( 2004.3109 + ( - 0.85330 - 0.000217 * t0 ) * t0 )
+ ( ( -0.42665 - 0.000217 * t0 ) - 0.041833 * t ) * t ) * tas2r;
/* Rotation matrix */
slaDeuler ( "ZYZ", -zeta, theta, -z, rmatp );
}
/*
* Nov 6 1995 Include stdlib.h instead of malloc.h
* Apr 1 1996 Add arbitrary epoch precession
* Apr 26 1996 Add FK4 <-> FK5 subroutines for use when epoch is known
* Aug 6 1996 Clean up after lint
* Nov 4 1996 Break SLA subroutines into separate file slasubs.c
* Dec 9 1996 Change arguments to degrees in FK4 and FK5 precession programs
* Dec 10 1996 All subroutine arguments are degrees except vector conversions
*
* Mar 20 1997 Drop unused variables after lint
*
* Apr 14 1998 Add ecliptic coordinate conversions and general conversion routines
* Apr 23 1998 Add LINEAR coordinate system
* Apr 28 1998 Change coordinate system flags to WCS_*
* Apr 28 1998 Return -1 from wcscsys if not a legal coordinate system
* May 7 1998 Keep theta within 0 to 2pi in ecl2fk5()
* May 13 1998 Add wcsceq()
* May 13 1998 Add equinox arguments to wcscon()
* Jun 24 1998 Set J2000 from ICRS in wcscsys()
* Jul 9 1998 Include stdio.h for fprintf() and sprintf() declarations
* Sep 17 1998 Add wcscstr() to get coordinate string
* Sep 21 1998 Fix bug in wcscstr() which returned B2000 instead of J2000
* Sep 21 1998 Add subroutine to convert proper motions, too.
* Oct 21 1998 In wcscstr(), drop .00 from returned string
* Nov 18 1998 Rename jpcop() v2s3() and jpcon() s2v3() (spherical to vector)
* Dec 2 1998 Add PLANET coordinate system to wcscsys() and wcscstr()
*
* Mar 10 2000 Precess coordinates correctly from other than 1950.0 and 2000.0
* Mar 10 2000 Set coordinate system to J2000 or B1950 if string is numeric
* Mar 14 2000 Clean up code in fk524m() and fk425m()
* May 31 2000 Add proper motion correctly if proper motion precessed
* Jun 26 2000 Add some support for WCS_XY image coordinates
* Sep 14 2000 Return -1 from wcscsys if equinox is less than 1900.0
* Oct 31 2000 Add proper motion after fk425 or fk524 from system epoch
* Oct 31 2000 Fix proper motion units in fk524p() and fk425p()
* Nov 6 2000 Update fk425 and fk524 algorithms to include parallax and rv
*
* Jan 11 2001 Print all messages to stderr
* Mar 21 2001 Move braces around bgal[] and jgal[] matrix initialization
*/
|