1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
/* $Id: irplib_oddeven.c,v 1.9 2012-01-12 11:50:41 llundin Exp $
*
* This file is part of the irplib package
* Copyright (C) 2002,2003 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02111-1307 USA
*/
/*
* $Author: llundin $
* $Date: 2012-01-12 11:50:41 $
* $Revision: 1.9 $
* $Name: not supported by cvs2svn $
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include <math.h>
#include <cpl.h>
#include "irplib_oddeven.h"
/*-----------------------------------------------------------------------------
Functions prototypes
-----------------------------------------------------------------------------*/
static cpl_imagelist * irplib_oddeven_cube_conv_xy_rtheta(cpl_imagelist *) ;
static cpl_imagelist * irplib_oddeven_cube_conv_rtheta_xy(cpl_imagelist *) ;
/*----------------------------------------------------------------------------*/
/**
* @defgroup irplib_oddeven Odd/Even column effect correction
*/
/*----------------------------------------------------------------------------*/
/**@{*/
/*----------------------------------------------------------------------------*/
/**
@brief Estimate the odd/even rate in an image quadrant
@param in the inpute image
@param iquad the quadrant (ll=1, lr=2, ul=3, ur=4, all=0)
@param r_even the median of even columns / median of all columns
@return 0 if ok, -1 otherwise
*/
/*----------------------------------------------------------------------------*/
int irplib_oddeven_monitor(
const cpl_image * in,
int iquad,
double * r_even)
{
cpl_image * extracted ;
cpl_image * labels ;
int * plabels ;
int llx, lly, urx, ury ;
int nx, ny ;
double f_even, f_tot ;
cpl_apertures * aperts ;
int i, j ;
/* Test entries */
if (in == NULL || r_even == NULL) return -1 ;
nx = cpl_image_get_size_x(in) ;
ny = cpl_image_get_size_y(in) ;
switch (iquad){
case 1:
llx = 1 ; lly = 1 ; urx = nx/2 ; ury = ny/2 ; break ;
case 2:
llx = (nx/2)+1 ; lly = 1 ; urx = nx ; ury = ny/2 ; break ;
case 3:
llx = 1 ; lly = (ny/2)+1 ; urx = nx/2 ; ury = ny ; break ;
case 4:
llx = (nx/2)+1 ; lly = (ny/2)+1 ; urx = nx ; ury = ny ; break ;
case 0:
llx = 1 ; lly = 1 ; urx = nx ; ury = ny ; break ;
default:
cpl_msg_error(cpl_func, "Unsupported mode") ;
*r_even = 0.0 ;
return -1 ;
}
/* Extract quadrant */
if ((extracted = cpl_image_extract(in, llx, lly, urx, ury)) == NULL) {
cpl_msg_error(cpl_func, "Cannot extract quadrant") ;
*r_even = 0.0 ;
return -1 ;
}
nx = cpl_image_get_size_x(extracted) ;
ny = cpl_image_get_size_y(extracted) ;
/* Get f_tot */
f_tot = cpl_image_get_median(extracted) ;
if (fabs(f_tot) < 1e-6) {
cpl_msg_warning(cpl_func, "Quadrant median is 0.0") ;
cpl_image_delete(extracted) ;
*r_even = 0.0 ;
return -1 ;
}
/* Create the label image to define the even columns */
labels = cpl_image_new(nx, ny, CPL_TYPE_INT) ;
plabels = cpl_image_get_data_int(labels) ;
for (i=0 ; i<nx ; i++) {
if (i % 2) for (j=0 ; j<ny ; j++) plabels[i+j*nx] = 0 ;
else for (j=0 ; j<ny ; j++) plabels[i+j*nx] = 1 ;
}
/* Get the median of even columns */
if ((aperts = cpl_apertures_new_from_image(extracted, labels)) == NULL) {
cpl_msg_error(cpl_func, "Cannot compute the even columns median") ;
cpl_image_delete(extracted) ;
cpl_image_delete(labels) ;
*r_even = 0.0 ;
return -1 ;
}
cpl_image_delete(extracted) ;
cpl_image_delete(labels) ;
f_even = cpl_apertures_get_median(aperts, 1) ;
cpl_apertures_delete(aperts) ;
/* Compute the even rate and return */
*r_even = f_even / f_tot ;
return 0 ;
}
/*----------------------------------------------------------------------------*/
/**
@brief Correct the odd/even in an image
@param in the inpute image
@return the corrected image or NULL on error case
*/
/*----------------------------------------------------------------------------*/
cpl_image * irplib_oddeven_correct(const cpl_image * in)
{
cpl_image * in_real ;
cpl_image * in_imag ;
cpl_imagelist * freq_i ;
cpl_imagelist * freq_i_amp ;
cpl_image * cur_im ;
double * pcur_im ;
cpl_image * cleaned ;
int nx ;
cpl_vector * hf_med ;
/* Test entries */
if (in==NULL) return NULL ;
nx = cpl_image_get_size_x(in) ;
/* Local copy of the input image in DOUBLE */
in_real = cpl_image_cast(in, CPL_TYPE_DOUBLE) ;
in_imag = cpl_image_duplicate(in_real) ;
cpl_image_multiply_scalar(in_imag, 0.0) ;
/* Apply FFT to input image */
cpl_image_fft(in_real, in_imag, CPL_FFT_DEFAULT) ;
/* Put the result in an image list */
freq_i = cpl_imagelist_new() ;
cpl_imagelist_set(freq_i, in_real, 0) ;
cpl_imagelist_set(freq_i, in_imag, 1) ;
/* Convert to amplitude/phase */
freq_i_amp = irplib_oddeven_cube_conv_xy_rtheta(freq_i);
cpl_imagelist_delete(freq_i) ;
/* Correct the odd-even frequency */
cur_im = cpl_imagelist_get(freq_i_amp, 0) ;
pcur_im = cpl_image_get_data_double(cur_im) ;
/* Odd-even frequency will be replaced by
the median of the 5 values around */
hf_med = cpl_vector_new(5);
cpl_vector_set(hf_med, 0, pcur_im[nx/2 + 1]);
cpl_vector_set(hf_med, 1, pcur_im[nx/2 + 2]);
cpl_vector_set(hf_med, 2, pcur_im[nx/2 + 3]);
cpl_vector_set(hf_med, 3, pcur_im[nx/2 ]);
cpl_vector_set(hf_med, 4, pcur_im[nx/2 -1]);
pcur_im[nx / 2 + 1] = cpl_vector_get_median(hf_med);
cpl_vector_delete(hf_med);
/* Convert to X/Y */
freq_i = irplib_oddeven_cube_conv_rtheta_xy(freq_i_amp) ;
cpl_imagelist_delete(freq_i_amp) ;
/* FFT back to image space */
cpl_image_fft(cpl_imagelist_get(freq_i, 0), cpl_imagelist_get(freq_i, 1),
CPL_FFT_INVERSE) ;
cleaned = cpl_image_cast(cpl_imagelist_get(freq_i, 0), CPL_TYPE_FLOAT) ;
cpl_imagelist_delete(freq_i) ;
return cleaned ;
}
/**@}*/
/*----------------------------------------------------------------------------*/
/**
@brief Convert a 2-plane cube from (real,imag) to (ampl,phase).
@param cube_in Input cube (containing 2 planes)
@return 1 newly allocated cube containing 2 planes.
The input cube is expected to contain two planes: first one is the real part
of a complex image, second one is the imaginary part of the same image. The
returned cube contains two planes: first one is the complex amplitude of the
image, second one is the phase.
*/
/*----------------------------------------------------------------------------*/
static cpl_imagelist * irplib_oddeven_cube_conv_xy_rtheta(
cpl_imagelist * cube_in)
{
cpl_imagelist * cube_out ;
double re, im ;
double mod, phase ;
int nx, ny, np ;
cpl_image * tmp_im ;
double * pim1 ;
double * pim2 ;
double * pim3 ;
double * pim4 ;
int i, j ;
/* Error handling : test entries */
if (cube_in == NULL) return NULL ;
np = cpl_imagelist_get_size(cube_in) ;
if (np != 2) return NULL ;
/* Initialise */
tmp_im = cpl_imagelist_get(cube_in, 0) ;
pim1 = cpl_image_get_data_double(tmp_im) ;
nx = cpl_image_get_size_x(tmp_im) ;
ny = cpl_image_get_size_y(tmp_im) ;
tmp_im = cpl_imagelist_get(cube_in, 1) ;
pim2 = cpl_image_get_data_double(tmp_im) ;
/* Allocate cube_out */
cube_out = cpl_imagelist_duplicate(cube_in) ;
tmp_im = cpl_imagelist_get(cube_out, 0) ;
pim3 = cpl_image_get_data_double(tmp_im) ;
tmp_im = cpl_imagelist_get(cube_out, 1) ;
pim4 = cpl_image_get_data_double(tmp_im) ;
/* Convert */
for (j=0 ; j<ny ; j++) {
for (i=0 ; i<nx ; i++) {
re = (double)pim1[i+j*nx] ;
im = (double)pim2[i+j*nx] ;
mod = (double)(sqrt(re*re + im*im)) ;
if (re != 0.0)
phase = (double)atan2(im, re) ;
else
phase = 0.0 ;
pim3[i+j*nx] = mod ;
pim4[i+j*nx] = phase ;
}
}
return cube_out ;
}
/*----------------------------------------------------------------------------*/
/**
@brief Convert a 2-plane cube from (ampl,phase) to (real,imag).
@param cube_in Input cube (containing 2 planes)
@return 1 newly allocated cube containing 2 planes.
The input cube is expected to contain two planes: first one is the
amplitude of a complex image, second one is the phase. The returned cube
contains two planes: first one is the real part of the image, second one
is the imaginary part.
The returned cube must be deallocated using cube_del().
*/
/*----------------------------------------------------------------------------*/
static cpl_imagelist * irplib_oddeven_cube_conv_rtheta_xy(
cpl_imagelist * cube_in)
{
cpl_imagelist * cube_out ;
double re, im ;
double mod, phase ;
int nx, ny, np ;
cpl_image * tmp_im ;
double * pim1 ;
double * pim2 ;
double * pim3 ;
double * pim4 ;
int i, j ;
/* Error handling : test entries */
if (cube_in == NULL) return NULL ;
np = cpl_imagelist_get_size(cube_in) ;
if (np != 2) return NULL ;
/* Initialise */
tmp_im = cpl_imagelist_get(cube_in, 0) ;
pim1 = cpl_image_get_data_double(tmp_im) ;
nx = cpl_image_get_size_x(tmp_im) ;
ny = cpl_image_get_size_y(tmp_im) ;
tmp_im = cpl_imagelist_get(cube_in, 1) ;
pim2 = cpl_image_get_data_double(tmp_im) ;
/* Allocate cube_out */
cube_out = cpl_imagelist_duplicate(cube_in) ;
tmp_im = cpl_imagelist_get(cube_out, 0) ;
pim3 = cpl_image_get_data_double(tmp_im) ;
tmp_im = cpl_imagelist_get(cube_out, 1) ;
pim4 = cpl_image_get_data_double(tmp_im) ;
/* Convert */
for (j=0 ; j<ny ; j++) {
for (i=0 ; i<nx ; i++) {
mod = (double)pim1[i+j*nx] ;
phase = (double)pim2[i+j*nx] ;
re = (double)(mod * cos(phase));
im = (double)(mod * sin(phase));
pim3[i+j*nx] = re ;
pim4[i+j*nx] = im ;
}
}
return cube_out ;
}
|