1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
/* $Id: irplib_strehl.c,v 1.43 2009-11-18 21:37:48 llundin Exp $
*
* This file is part of the irplib package
* Copyright (C) 2002,2003 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02111-1307 USA
*/
/*
* $Author: llundin $
* $Date: 2009-11-18 21:37:48 $
* $Revision: 1.43 $
* $Name: not supported by cvs2svn $
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*-----------------------------------------------------------------------------
Includes
-----------------------------------------------------------------------------*/
#include "irplib_strehl.h"
#include "irplib_utils.h"
#include <assert.h>
#include <stdint.h>
#include <math.h>
/*----------------------------------------------------------------------------*/
/**
* @defgroup irplib_strehl Functions to compute the Strehl
*/
/*----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
Define
-----------------------------------------------------------------------------*/
#ifndef IRPLIB_STREHL_RAD_CENTRAL
#define IRPLIB_STREHL_RAD_CENTRAL 5
#endif
#ifndef IRPLIB_STREHL_DETECT_LEVEL
#define IRPLIB_STREHL_DETECT_LEVEL 5.0
#endif
#define IRPLIB_DISK_BG_MIN_PIX_NB 30
#define IRPLIB_DISK_BG_REJ_LOW 0.1
#define IRPLIB_DISK_BG_REJ_HIGH 0.1
#ifdef CPL_MIN
#define IRPLIB_MIN CPL_MIN
#else
#define IRPLIB_MIN(A,B) (((A) < (B)) ? (A) : (B))
#endif
#ifdef CPL_MAX
#define IRPLIB_MAX CPL_MAX
#else
#define IRPLIB_MAX(A,B) (((A) > (B)) ? (A) : (B))
#endif
/*-----------------------------------------------------------------------------
Functions prototypes
-----------------------------------------------------------------------------*/
static cpl_image * irplib_strehl_generate_otf(double, double, double, double,
int, double);
static double PSF_H1(double, double, double);
static double PSF_H2(double, double);
static double PSF_G(double, double);
static double PSF_sinc_norm(double);
static double PSF_TelOTF(double, double);
#ifndef IRPLIB_NO_FIT_GAUSSIAN
#ifdef IRPLIB_STREHL_USE_CPL_IMAGE_FIT_GAUSSIAN
static double irplib_gaussian_2d(double, double, double, double, double);
#endif
#if defined CPL_VERSION_CODE && CPL_VERSION_CODE >= CPL_VERSION(6, 9, 1)
#define irplib_gaussian_eval_2d cpl_gaussian_eval_2d
#else
static double irplib_gaussian_eval_2d(const cpl_array *, double, double);
#endif
static uint32_t irplib_roundup_power2(uint32_t v) CPL_ATTR_CONST;
static
cpl_error_code irplib_gaussian_maxpos(const cpl_image *,
double,
double,
double,
double *,
double *,
double *);
static cpl_error_code
irplib_closeset_aperture(const cpl_apertures * self,
const double x, const double y, int * ind);
#endif
/*-----------------------------------------------------------------------------
Functions code
-----------------------------------------------------------------------------*/
/**@{*/
/*----------------------------------------------------------------------------*/
/**
@brief Compute the strehl ratio in an image
@param im Image with pixel-type float
@param m1 Diameter of the M1 mirror [m]
@param m2 Diameter of the M2 mirror [m]
@param lam Central wavelength [micron]
@param dlam Filter bandwidth [micron]
@param pscale Positive pixel scale [Arcsecond/pixel]
@param size Size of image to be used for internal PSF,
must be a power of two. [pixel]
@param xpos The x position of the ring center [pixel]
@param ypos The y position of the ring center [pixel]
@param r1 The Star Radius, r1 > 0 [Arcsecond]
@param r2 The Internal Radius, r2 > 0 [Arcsecond]
@param r3 The External Radius, r3 > r2 [Arcsecond]
@param noise_box_sz Pass -1 for default values
@param noise_nsamples Pass -1 for default values
@param strehl Pointer to the Strehl Error (positive on success)
@param strehl_err Pointer to the Strehl Error (non-negative on success)
@param star_bg Pointer to the Star Background
@param star_peak Pointer to the Star Peak (positive on success)
@param star_flux Pointer to the Star Flux (positive on success)
@param psf_peak Pointer to the PSF Peak (positive on success)
@param psf_flux Pointer to the PSF Flux (1 on success)
@param bg_noise Pointer to the Background Noise
@return CPL_ERROR_NONE or the relevant CPL error code on error
@note The output is undefined on error. On success the Strehl Ratio may
exceed 1. Any pixel flagged as bad is ignored.
*/
/*----------------------------------------------------------------------------*/
cpl_error_code irplib_strehl_compute(const cpl_image * im,
double m1,
double m2,
double lam,
double dlam,
double pscale,
int size,
double xpos,
double ypos,
double r1,
double r2,
double r3,
int noise_box_sz,
int noise_nsamples,
double * strehl,
double * strehl_err,
double * star_bg,
double * star_peak,
double * star_flux,
double * psf_peak,
double * psf_flux,
double * bg_noise)
{
cpl_image * psf;
double star_radius, max_radius;
/* FIXME: Arbitrary choice of image border */
const double window_size = (double)(IRPLIB_STREHL_RAD_CENTRAL);
/* Determined empirically by C. Lidman for Strehl error computation */
const double strehl_error_coefficient = CPL_MATH_PI * 0.007 / 0.0271;
double ring[4];
/* cpl_flux_get_noise_ring() must succeed with this many tries */
int ring_tries = 3;
#ifndef IRPLIB_NO_FIT_GAUSSIAN
double xposfit = 0.0, yposfit = 0.0, peak = 0.0;
cpl_error_code code;
#endif
cpl_errorstate prestate = cpl_errorstate_get();
/* Check compile-time constant */
cpl_ensure_code(window_size > 0.0, CPL_ERROR_ILLEGAL_INPUT);
/* Test inputs */
cpl_ensure_code(im != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(strehl != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(strehl_err != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(star_bg != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(star_peak != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(star_flux != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(psf_peak != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(psf_flux != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(pscale > 0.0, CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(r1 > 0.0, CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(r2 > 0.0, CPL_ERROR_ILLEGAL_INPUT);
cpl_ensure_code(r3 > r2, CPL_ERROR_ILLEGAL_INPUT);
/* Computing a Strehl ratio is a story between an ideal PSF */
/* and a candidate image supposed to approximate this ideal PSF. */
/* Generate first appropriate PSF to find max peak */
psf = irplib_strehl_generate_psf(m1, m2, lam, dlam, pscale, size);
if (psf == NULL) {
return cpl_error_set_where(cpl_func);
}
/* Compute flux in PSF and find max peak */
*psf_peak = cpl_image_get_max(psf);
cpl_image_delete(psf);
assert( *psf_peak > 0.0); /* The ideal PSF has a positive maximum */
*psf_flux = 1.0; /* The psf flux, cpl_image_get_flux(psf), is always 1 */
#ifndef IRPLIB_NO_FIT_GAUSSIAN
code = irplib_gaussian_maxpos(im, IRPLIB_STREHL_DETECT_LEVEL, xpos, ypos,
&xposfit, &yposfit, &peak);
if (code) {
cpl_errorstate_set(prestate);
} else {
xpos = xposfit;
ypos = yposfit;
}
#endif
/* Measure the background in the candidate image */
*star_bg = irplib_strehl_ring_background(im, xpos, ypos,
r2/pscale, r3/pscale,
IRPLIB_BG_METHOD_AVER_REJ);
if (!cpl_errorstate_is_equal(prestate)) {
return cpl_error_set_where(cpl_func);
}
/* Compute star_radius in pixels */
star_radius = r1/pscale;
/* Measure the flux on the candidate image */
*star_flux = irplib_strehl_disk_flux(im, xpos, ypos, star_radius, *star_bg);
if (*star_flux <= 0.0) {
return cpl_error_set_message(cpl_func, CPL_ERROR_ILLEGAL_OUTPUT,
"Non-positive star flux=%g (Star "
"background=%g)", *star_flux, *star_bg);
}
/* Find the peak value on the central part of the candidate image */
max_radius = window_size < star_radius ? window_size : star_radius;
cpl_ensure_code(!irplib_strehl_disk_max(im, xpos, ypos, max_radius,
star_peak), cpl_error_get_code());
*star_peak -= *star_bg;
if (*star_flux <= 0.0) {
return cpl_error_set_message(cpl_func, CPL_ERROR_ILLEGAL_OUTPUT,
"Non-positive star peak=%g (Star "
"background=%g, Star flux=%g)",
*star_flux, *star_bg, *star_flux);
}
/* Compute Strehl */
/* (StarPeak / StarFlux) / (PsfPeak / PsfFlux) */
*strehl = (*star_peak * *psf_flux ) / ( *star_flux * *psf_peak);
#ifndef IRPLIB_NO_FIT_GAUSSIAN
if (code == CPL_ERROR_NONE && peak > *star_peak && *star_peak > 0.0 &&
*strehl * peak / *star_peak <= 1.0) {
cpl_msg_debug(cpl_func, "Increasing Strehl from %g: %g (%g)",
*strehl, *strehl * peak / *star_peak,
peak / *star_peak);
*strehl *= peak / *star_peak;
*star_peak = peak;
}
#endif
/* Compute Strehl error */
ring[0] = xpos;
ring[1] = ypos;
ring[2] = r2/pscale;
ring[3] = r3/pscale;
while (cpl_flux_get_noise_ring(im, ring, noise_box_sz, noise_nsamples,
bg_noise, NULL) && --ring_tries > 0);
if (ring_tries > 0) {
cpl_errorstate_set(prestate); /* Recover, if an error happened */
} else {
return cpl_error_set_where(cpl_func);
}
*strehl_err = strehl_error_coefficient * (*bg_noise) * pscale *
star_radius * star_radius / *star_flux;
if (*strehl > 1.0) {
cpl_msg_warning(cpl_func, "Extreme Strehl-ratio=%g (strehl-error=%g, "
"star_peak=%g, star_flux=%g, psf_peak=%g, psf_flux=%g)",
*strehl, *strehl_err, *star_peak, *star_flux, *psf_peak,
*psf_flux);
}
/* This check should not be able to fail, but just to be sure */
return *strehl_err >= 0.0
? CPL_ERROR_NONE
: cpl_error_set_message(cpl_func, CPL_ERROR_ILLEGAL_OUTPUT,
"Negative strehl-error=%g (Strehl-ratio=%g, "
"star_peak=%g, star_flux=%g, psf_peak=%g, "
"psf_flux=%g", *strehl_err, *strehl,
*star_peak, *star_flux, *psf_peak, *psf_flux);
}
/*----------------------------------------------------------------------------*/
/**
@brief Compute the flux from a disk
@param im Image to compute from
@param xpos the x position of the disk center
@param ypos the y position of the disk center
@param rad the radius
@param bg the star background
@return The computed flux or 0.0 on error
@note (xpos, ypos) and may be outside the image, if so then a sufficiently
small rad will cause no pixels to be encircled, in which case the
returned flux is zero.
*/
/*----------------------------------------------------------------------------*/
double irplib_strehl_disk_flux(const cpl_image * im,
double xpos,
double ypos,
double rad,
double bg)
{
const int nx = cpl_image_get_size_x(im);
const int ny = cpl_image_get_size_y(im);
/* Round down */
const int lx = (int)(xpos - rad);
const int ly = (int)(ypos - rad);
/* Round up */
const int ux = (int)(xpos + rad) + 1;
const int uy = (int)(ypos + rad) + 1;
const double sqr = rad * rad;
double flux = 0.0;
int i, j;
/* Check entries */
cpl_ensure(im != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(rad > 0.0, CPL_ERROR_ILLEGAL_INPUT, 0.0);
for (j = IRPLIB_MAX(ly, 0); j < IRPLIB_MIN(uy, ny); j++) {
const double yj = (double)j - ypos;
for (i = IRPLIB_MAX(lx, 0); i < IRPLIB_MIN(ux, nx); i++) {
const double xi = (double)i - xpos;
const double dist = yj * yj + xi * xi;
if (dist <= sqr) {
int isbad;
const double value = cpl_image_get(im, i+1, j+1, &isbad);
if (!isbad ) {
flux += value - bg;
}
}
}
}
return flux;
}
/*----------------------------------------------------------------------------*/
/**
@brief Compute the background in the image from a specified disk
@param im Image to compute from
@param xpos the x position of the ring center
@param ypos the y position of the ring center
@param rad_int the internal radius
@param rad_ext the external radius
@param mode IRPLIB_BG_METHOD_AVER_REJ or IRPLIB_BG_METHOD_MEDIAN
@return The computed background or 0.0 on error.
*/
/*----------------------------------------------------------------------------*/
double irplib_strehl_ring_background(const cpl_image * im,
double xpos,
double ypos,
double rad_int,
double rad_ext,
irplib_strehl_bg_method mode)
{
const int nx = cpl_image_get_size_x(im);
const int ny = cpl_image_get_size_y(im);
/* Round down */
const int lx = (int)(xpos - rad_ext);
const int ly = (int)(ypos - rad_ext);
/* Round up */
const int ux = (int)(xpos + rad_ext) + 1;
const int uy = (int)(ypos + rad_ext) + 1;
int mpix, npix;
const double sqr_int = rad_int * rad_int;
const double sqr_ext = rad_ext * rad_ext;
cpl_vector * pix_arr;
double flux = 0.0;
int i, j;
/* Check entries */
cpl_ensure(im != NULL, CPL_ERROR_NULL_INPUT, 0.0);
cpl_ensure(rad_int > 0.0, CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_ensure(rad_ext > rad_int, CPL_ERROR_ILLEGAL_INPUT, 0.0);
cpl_ensure(mode == IRPLIB_BG_METHOD_AVER_REJ ||
mode == IRPLIB_BG_METHOD_MEDIAN,
CPL_ERROR_UNSUPPORTED_MODE, 0.0);
mpix = (int)((2.0 * rad_ext + 1.0) * (2.0 * rad_ext + 1.0));
/* Allocate pixel array to hold values in the ring */
pix_arr = cpl_vector_new(mpix);
/* Count number of pixels in the ring */
/* Retrieve all pixels which belong to the ring */
npix = 0;
for (j = IRPLIB_MAX(ly, 0); j < IRPLIB_MIN(uy, ny); j++) {
const double yj = (double)j - ypos;
for (i = IRPLIB_MAX(lx, 0); i < IRPLIB_MIN(ux, nx); i++) {
const double xi = (double)i - xpos;
const double dist = yj * yj + xi * xi;
if (sqr_int <= dist && dist <= sqr_ext) {
int isbad;
const double value = cpl_image_get(im, i+1, j+1, &isbad);
if (!isbad) {
cpl_vector_set(pix_arr, npix, value);
npix++;
}
}
}
}
assert(npix <= mpix);
if (npix < IRPLIB_DISK_BG_MIN_PIX_NB) {
cpl_vector_delete(pix_arr);
(void)cpl_error_set_message(cpl_func, CPL_ERROR_DATA_NOT_FOUND, "Need "
"at least %d (not %d <= %d) samples to "
"compute noise", IRPLIB_DISK_BG_MIN_PIX_NB,
npix, mpix);
return 0.0;
}
/* Should not be able to fail now */
/* Resize pixel array to actual number of values within the ring */
pix_arr = cpl_vector_wrap(npix, (double*)cpl_vector_unwrap(pix_arr));
if (mode == IRPLIB_BG_METHOD_AVER_REJ) {
const int low_ind = (int)((double)npix * IRPLIB_DISK_BG_REJ_LOW);
const int high_ind = (int)((double)npix
* (1.0 - IRPLIB_DISK_BG_REJ_HIGH));
/* Sort the array */
cpl_vector_sort(pix_arr, CPL_SORT_ASCENDING);
for (i=low_ind; i<high_ind; i++) {
flux += cpl_vector_get(pix_arr, i);
}
if (high_ind - low_ind > 1) flux /= (double)(high_ind - low_ind);
} else /* if (mode == IRPLIB_BG_METHOD_MEDIAN) */ {
flux = cpl_vector_get_median(pix_arr);
}
cpl_vector_delete(pix_arr);
return flux;
}
/*----------------------------------------------------------------------------*/
/**
@brief Compute the ideal PSF for a given telescope+instrument.
@param m1 Diameter of the M1 mirror [meter]
@param m2 Diameter of the M2 mirror [meter]
@param lam Central wavelength [micron]
@param dlam Filter bandwidth [micron]
@param size Generated image size (image will be square) [pixel]
@param pscale Pixel scale on the sky [Arcsecond/pixel]
@return 1 newly generated image.
This function computes the ideal PSF for a given telescope and instrument.
The PSF is computed by first generated the ideal OTF for the provided
conditions, and applying a Fourier transform to it to bring it back to real
space. The returned PSF is normalized to unity flux, to help Strehl ratio
computations.
The image halves of the returned PSF are swapped in both directions.
*/
/*----------------------------------------------------------------------------*/
cpl_image * irplib_strehl_generate_psf(double m1,
double m2,
double lam,
double dlam,
double pscale,
int size)
{
cpl_image * otf_image = irplib_strehl_generate_otf(m1, m2, lam, dlam,
size, pscale);
if (otf_image == NULL ||
/* Transform back to real space
- Normalization is unnecessary, due to the subsequent normalisation.
- An OTF is point symmetric about its center, i.e. it is even,
i.e. the real space image is real.
- Because of this a forward FFT works as well.
- If the PSF ever needs to have its images halves swapped add
CPL_FFT_SWAP_HALVES to the FFT call.
*/
cpl_image_fft(otf_image, NULL, CPL_FFT_UNNORMALIZED) ||
/* Compute absolute values of PSF */
cpl_image_abs(otf_image) ||
/* Normalize PSF to get flux=1 */
cpl_image_normalise(otf_image, CPL_NORM_FLUX)) {
(void)cpl_error_set_where(cpl_func);
cpl_image_delete(otf_image);
otf_image = NULL;
}
return otf_image;
}
/**@}*/
/*----------------------------------------------------------------------------*/
/**
@brief Generate an image of an ideal Optical Transfer Function.
@param m1 Diameter of the M1 mirror [m]
@param m2 Diameter of the M2 mirror [m], m2 < m1
@param lam Central wavelength [micron]
@param dlam Filter bandwidth [micron]
@param size The generated (square) image will be size X size pixels
@param pscale Pixel scale on the sky [Arcsecond/pixel]
@return 1 newly generated cpl_image
Based on the paper "Amplitude estimation from speckle interferometry" by
Christian Perrier in "Diffraction-limited imaging with very large telescopes",
NATO ASI Series C, Vol. 274, edited by D. Alloin and J.-M. Mariotti, 1989
(p. 99).
*/
/*----------------------------------------------------------------------------*/
static cpl_image * irplib_strehl_generate_otf(double m1,
double m2,
double lam,
double dlam,
int size,
double pscale)
{
double * otf_data;
/* Obscuration ratio, m1 / m2 */
const double obs_ratio = m1 != 0.0 ? m2 / m1 : 0.0;
/* pixel scale converted from Arsecond to radian */
const double rpscale = pscale * CPL_MATH_2PI / (double)(360 * 60 * 60);
/* Cut-off frequency in pixels per central wavelength (in m) */
const double f_max = m1 * rpscale * (double)size;
/* Pixel corresponding to the zero frequency */
const int pix0 = size / 2;
int i, j;
cpl_ensure(m2 > 0.0, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_ensure(m1 > m2, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_ensure(dlam > 0.0, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_ensure(pscale > 0.0, CPL_ERROR_ILLEGAL_INPUT, NULL);
cpl_ensure(size > 0, CPL_ERROR_ILLEGAL_INPUT, NULL);
/* Due the the FFT, size is actually required to be a power of two */
cpl_ensure(size % 2 == 0, CPL_ERROR_ILLEGAL_INPUT, NULL);
/* Ensure positive lambda */
cpl_ensure(2.0 * lam > dlam, CPL_ERROR_ILLEGAL_INPUT, NULL);
/* Convert wavelengths from micron to meter */
lam /= 1.0e6;
dlam /= 1.0e6;
/* Allocate the output pixel buffer */
otf_data = (double*)cpl_malloc(size * size * sizeof(*otf_data));
/* Convolution with the detector pixels */
/* The OTF is point symmetric so the whole image can be computed from the
values of a single octant. */
/* The image could be created with calloc() and j limited by
f_max / (mlam - mdlam * 0.5) but this is not faster */
for (j = 0; j <= pix0; j++) {
double sinc_y_9 = 0.0; /* Avoid uninit warning */
for (i = 0; i <= j; i++) {
if (i == 0 && j == 0) {
otf_data[size * pix0 + pix0] = 1.0;
} else {
const double x = (double)i;
const double y = (double)j;
const double sqdist = x * x + y * y;
double f_lambda = 0.0;
double sinc_xy_9 = 0.0; /* Zero if OTF is zero */
double otfxy = 0.0;
int k;
assert( j > 0 );
/* 9 iterations on the wavelength */
/* Unrolling the loop is not faster (due to the break?) */
for (k = 4; k >= -4; k--) {
/* Compute intermediate cut-off frequency */
const double lambda = lam - dlam * (double)k / 8.0;
/* A decreasing k ensures that we either enter on the first
iteration or not at all */
if (sqdist * lambda * lambda >= f_max * f_max) break;
if (k == 4) {
f_lambda = sqrt(sqdist) / f_max;
if (i == 0) {
/* Sinc(x = 0) == 1 */
sinc_xy_9 = sinc_y_9 =
PSF_sinc_norm(y / (double)size) / 9.0;
} else {
sinc_xy_9 = sinc_y_9 *
PSF_sinc_norm(x / (double)size);
}
}
otfxy += PSF_TelOTF(f_lambda * lambda, obs_ratio);
}
otfxy *= sinc_xy_9;
/* When i == j the same value is written to the same
position twice. That's probably faster than a guard */
otf_data[size * (pix0 - j) + pix0 - i] = otfxy;
otf_data[size * (pix0 - i) + pix0 - j] = otfxy;
if (i < pix0) {
otf_data[size * (pix0 - j) + pix0 + i] = otfxy;
otf_data[size * (pix0 + i) + pix0 - j] = otfxy;
if (j < pix0) {
otf_data[size * (pix0 + j) + pix0 - i] = otfxy;
otf_data[size * (pix0 - i) + pix0 + j] = otfxy;
otf_data[size * (pix0 + j) + pix0 + i] = otfxy;
otf_data[size * (pix0 + i) + pix0 + j] = otfxy;
}
}
}
}
}
return cpl_image_wrap_double(size, size, otf_data);
}
/*----------------------------------------------------------------------------*
* H1 function
*----------------------------------------------------------------------------*/
static double PSF_H1(
double f,
double u,
double v)
{
const double e = fabs(1.0-v) > 0.0 ? -1.0 : 1.0; /* e = 1.0 iff v = 1.0 */
return((v*v/CPL_MATH_PI)*acos((f/v)*(1.0+e*(1.0-u*u)/(4.0*f*f))));
}
/*----------------------------------------------------------------------------*
* H2 function
*----------------------------------------------------------------------------*/
static double PSF_H2(double f,
double u)
{
const double tmp1 = (2.0 * f) / (1.0 + u);
const double tmp2 = (1.0 - u) / (2.0 * f);
return -1.0 * (f/CPL_MATH_PI) * (1.0+u)
* sqrt((1.0-tmp1*tmp1)*(1.0-tmp2*tmp2));
}
/*----------------------------------------------------------------------------*
* G function
*----------------------------------------------------------------------------*/
static double PSF_G(double f,
double u)
{
if (f <= (1.0-u)/2.0) return(u*u);
if (f >= (1.0+u)/2.0) return(0.0);
else return(PSF_H1(f,u,1.0) + PSF_H1(f,u,u) + PSF_H2(f,u));
}
/*----------------------------------------------------------------------------*/
/**
@internal
@brief The normalized sinc function
@param x The non-zero argument
@return sin(x * pi)/ (x * pi)
*/
/*----------------------------------------------------------------------------*/
static double PSF_sinc_norm(double x)
{
/* This static function should not be called with zero, but handle it
anyway. */
return x != 0.0 ? sin(x * CPL_MATH_PI) / (x * CPL_MATH_PI) : 1.0;
}
/*----------------------------------------------------------------------------*
* Telescope OTF function
*----------------------------------------------------------------------------*/
static double PSF_TelOTF(double f,
double u)
{
return((PSF_G(f,1.0)+u*u*PSF_G(f/u,1.0)-2.0*PSF_G(f,u))/(1.0-u*u));
}
/*----------------------------------------------------------------------------*/
/**
@brief Find the peak flux inside a disk
@param self Image with pixel-type float
@param xpos The x position of the disk center
@param ypos The y position of the disk center
@param radius The positive radius
@param ppeak On success, *ppeak is the peak intensity
@return CPL_ERROR_NONE or the relevant CPL error code on error
*/
/*----------------------------------------------------------------------------*/
cpl_error_code irplib_strehl_disk_max(const cpl_image * self,
double xpos,
double ypos,
double radius,
double * ppeak)
{
const int nx = cpl_image_get_size_x(self);
const int ny = cpl_image_get_size_y(self);
/* Round down */
const int lx = (int)(xpos - radius);
const int ly = (int)(ypos - radius);
/* Round up */
const int ux = (int)(xpos + radius) + 1;
const int uy = (int)(ypos + radius) + 1;
const double sqr = radius * radius;
cpl_boolean first = CPL_TRUE;
int i, j;
/* Check entries */
cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(ppeak != NULL, CPL_ERROR_NULL_INPUT);
cpl_ensure_code(radius > 0.0, CPL_ERROR_ILLEGAL_INPUT);
for (j = IRPLIB_MAX(ly, 0); j < IRPLIB_MIN(uy, ny); j++) {
const double yj = (double)j - ypos;
for (i = IRPLIB_MAX(lx, 0); i < IRPLIB_MIN(ux, nx); i++) {
const double xi = (double)i - xpos;
const double dist = yj * yj + xi * xi;
if (dist <= sqr) {
int isbad;
const double value = cpl_image_get(self, i+1, j+1, &isbad);
if (!isbad &&
(first || value > *ppeak)) {
first = CPL_FALSE;
*ppeak = value;
}
}
}
}
return first
? cpl_error_set(cpl_func, CPL_ERROR_DATA_NOT_FOUND)
: CPL_ERROR_NONE;
}
#ifndef IRPLIB_NO_FIT_GAUSSIAN
#ifdef IRPLIB_STREHL_USE_CPL_IMAGE_FIT_GAUSSIAN
/*----------------------------------------------------------------------------*/
/**
@internal
@brief Compute the value of a Gaussian function at a given point.
@param x x coordinate where to compute the function.
@param y y coordinate where to compute the function.
@param norm The norm of the gaussian.
@param sig_x Sigma in x for the Gauss distribution.
@param sig_y Sigma in y for the Gauss distribution.
@return the gaussian value
Compute the value of a 2d Gaussian function at a given point:
f(x, y) = (norm/(2*pi*sig_x*sig_y)) * exp(-x^2/(2*sig_x^2)) *
exp(-y^2/(2*sig_y^2))
*/
/*----------------------------------------------------------------------------*/
static double irplib_gaussian_2d(double x,
double y,
double norm,
double sig_x,
double sig_y)
{
/* Copied from CPL */
return norm / (sig_x * sig_y * CPL_MATH_2PI *
exp(x * x / (2.0 * sig_x * sig_x) +
y * y / (2.0 * sig_y * sig_y)));
}
#endif
#if defined CPL_VERSION_CODE && CPL_VERSION_CODE >= CPL_VERSION(6, 9, 1)
#else
/*----------------------------------------------------------------------------*/
/**
@brief Evaluate the Gaussian in a 2D-point
@param self The seven Gaussian parameters
@param x The X-coordinate to evaluate
@param y The Y-coordinate to evaluate
@return The gaussian value or zero on error
@see cpl_fit_image_gaussian()
@note The function should not be able to fail if the parameters come from
a succesful call to cpl_fit_image_gaussian()
Possible #_cpl_error_code_ set in this function:
- CPL_ERROR_NULL_INPUT if a pointer is NULL.
- CPL_ERROR_TYPE_MISMATCH if the array is not of type double
- CPL_ERROR_ILLEGAL_INPUT if the array has a length different from 7
- CPL_ERROR_ILLEGAL_OUTPUT if the (absolute value of the) radius exceeds 1
- CPL_ERROR_DIVISION_BY_ZERO if a sigma is 0, or the radius is 1
*/
/*----------------------------------------------------------------------------*/
static
double irplib_gaussian_eval_2d(const cpl_array * self, double x, double y)
{
cpl_errorstate prestate = cpl_errorstate_get();
const double B = cpl_array_get_double(self, 0, NULL);
const double A = cpl_array_get_double(self, 1, NULL);
const double R = cpl_array_get_double(self, 2, NULL);
const double M_x = cpl_array_get_double(self, 3, NULL);
const double M_y = cpl_array_get_double(self, 4, NULL);
const double S_x = cpl_array_get_double(self, 5, NULL);
const double S_y = cpl_array_get_double(self, 6, NULL);
double value = 0.0;
if (!cpl_errorstate_is_equal(prestate)) {
(void)cpl_error_set_where(cpl_func);
} else if (cpl_array_get_size(self) != 7) {
(void)cpl_error_set(cpl_func, CPL_ERROR_ILLEGAL_INPUT);
} else if (fabs(R) < 1.0 && S_x != 0.0 && S_y != 0.0) {
const double x_n = (x - M_x) / S_x;
const double y_n = (y - M_y) / S_y;
value = B + A / (CPL_MATH_2PI * S_x * S_y * sqrt(1 - R * R)) *
exp(-0.5 / (1 - R * R) * ( x_n * x_n + y_n * y_n
- 2.0 * R * x_n * y_n));
} else if (fabs(R) > 1.0) {
(void)cpl_error_set_message(cpl_func, CPL_ERROR_ILLEGAL_OUTPUT,
"fabs(R=%g) > 1", R);
} else {
(void)cpl_error_set_message(cpl_func, CPL_ERROR_DIVISION_BY_ZERO,
"R=%g. Sigma=(%g, %g)", R, S_x, S_y);
}
return value;
}
#endif
/*----------------------------------------------------------------------------*/
/**
@brief Increase a non-zero, unsigned 32-bit integer to the next power of 2
@param v The non-zero number to increase
@return The power of two
@see http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
*/
/*----------------------------------------------------------------------------*/
static uint32_t irplib_roundup_power2(uint32_t v)
{
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return v + 1;
}
static cpl_error_code
irplib_closeset_aperture(const cpl_apertures * self,
const double x, const double y, int * ind){
double dist = INFINITY;
const int nsize = cpl_apertures_get_size(self);
cpl_ensure_code(nsize > 0, cpl_error_get_code());
cpl_ensure_code(ind, CPL_ERROR_NULL_INPUT);
*ind = -1;
for(int i = 1; i <= nsize; ++i){
const double this_x = cpl_apertures_get_centroid_x(self, i);
const double this_y = cpl_apertures_get_centroid_y(self, i);
const double this_d_sq = pow(this_x - x, 2.0) + pow(this_y - y, 2.0);
if(this_d_sq < dist){
dist = this_d_sq;
*ind = i;
}
}
return CPL_ERROR_NONE;
}
/*----------------------------------------------------------------------------*/
/**
@brief Find the peak flux, peak sum and position of a Gaussian
@param self Image to process
@param sigma The initial detection level
@param pxpos On success, the refined X-position
@param pypos On success, the refined Y-position
@param ppeak On success, the refined peak flux
@return CPL_ERROR_NONE or the relevant CPL error code on error
*/
/*----------------------------------------------------------------------------*/
static
cpl_error_code irplib_gaussian_maxpos(const cpl_image * self,
double sigma,
double x_initial,
double y_initial,
double * pxpos,
double * pypos,
double * ppeak)
{
const cpl_size nx = cpl_image_get_size_x(self);
const cpl_size ny = cpl_image_get_size_y(self);
int iretry = 3; /* Number retries with decreasing sigma */
int ifluxapert = 0;
double med_dist;
const double median = cpl_image_get_median_dev(self, &med_dist);
cpl_mask * selection;
cpl_size nlabels = 0;
cpl_image * labels = NULL;
cpl_apertures * aperts;
cpl_size npixobj;
double objradius;
cpl_size winsize;
cpl_size xposmax, yposmax;
double xposcen, yposcen;
double valmax, valfit = -1.0;
#ifdef IRPLIB_STREHL_USE_CPL_IMAGE_FIT_GAUSSIAN
double norm, xcen, ycen, sig_x, sig_y, fwhm_x, fwhm_y;
#endif
cpl_array * gauss_parameters = NULL;
cpl_errorstate prestate = cpl_errorstate_get();
cpl_error_code code = CPL_ERROR_NONE;
cpl_ensure_code( sigma > 0.0, CPL_ERROR_ILLEGAL_INPUT);
selection = cpl_mask_new(nx, ny);
for (; iretry > 0 && nlabels == 0; iretry--, sigma *= 0.5) {
/* Compute the threshold */
const double threshold = median + sigma * med_dist;
/* Select the pixel above the threshold */
code = cpl_mask_threshold_image(selection, self, threshold, DBL_MAX,
CPL_BINARY_1);
if (code) break;
/* Labelise the thresholded selection */
cpl_image_delete(labels);
labels = cpl_image_labelise_mask_create(selection, &nlabels);
}
sigma *= 2.0; /* FIXME: unelegant */
cpl_mask_delete(selection);
if (code) {
cpl_image_delete(labels);
return cpl_error_set_where(cpl_func);
} else if (nlabels == 0) {
cpl_image_delete(labels);
return cpl_error_set(cpl_func, CPL_ERROR_DATA_NOT_FOUND);
}
aperts = cpl_apertures_new_from_image(self, labels);
/* Find the aperture closest to the provided coordinates */
code = irplib_closeset_aperture(aperts, x_initial, y_initial, &ifluxapert);
if (code) {
cpl_apertures_delete(aperts);
cpl_image_delete(labels);
return cpl_error_set(cpl_func, CPL_ERROR_DATA_NOT_FOUND);
}
npixobj = cpl_apertures_get_npix(aperts, ifluxapert);
objradius = sqrt((double)npixobj * CPL_MATH_1_PI);
/* Size is power of two for future noise filtering w. fft */
winsize = IRPLIB_MIN(IRPLIB_MIN(nx, ny), irplib_roundup_power2
((uint32_t)(3.0 * objradius + 0.5)));
xposmax = cpl_apertures_get_maxpos_x(aperts, ifluxapert);
yposmax = cpl_apertures_get_maxpos_y(aperts, ifluxapert);
xposcen = cpl_apertures_get_centroid_x(aperts, ifluxapert);
yposcen = cpl_apertures_get_centroid_y(aperts, ifluxapert);
valmax = cpl_apertures_get_max(aperts, ifluxapert);
cpl_apertures_delete(aperts);
cpl_image_delete(labels);
cpl_msg_debug(cpl_func, "Object radius at S/R=%g: %g (window-size=%u)",
sigma, objradius, (unsigned)winsize);
cpl_msg_debug(cpl_func, "Object-peak @ (%d, %d) = %g", (int)xposmax,
(int)yposmax, valmax);
gauss_parameters = cpl_array_new(7, CPL_TYPE_DOUBLE);
cpl_array_set_double(gauss_parameters, 0, median);
code = cpl_fit_image_gaussian(self, NULL, xposcen, yposcen,
winsize, winsize, gauss_parameters,
NULL, NULL, NULL,
NULL, NULL, NULL,
NULL, NULL, NULL);
if (!code) {
const double M_x = cpl_array_get_double(gauss_parameters, 3, NULL);
const double M_y = cpl_array_get_double(gauss_parameters, 4, NULL);
valfit = irplib_gaussian_eval_2d(gauss_parameters, M_x, M_y);
if (!cpl_errorstate_is_equal(prestate)) {
code = cpl_error_get_code();
} else {
*pxpos = M_x;
*pypos = M_y;
*ppeak = valfit;
cpl_msg_debug(cpl_func, "Gauss-fit @ (%g, %g) = %g",
M_x, M_y, valfit);
}
}
cpl_array_delete(gauss_parameters);
#ifdef IRPLIB_STREHL_USE_CPL_IMAGE_FIT_GAUSSIAN
if (code || valfit < valmax) {
cpl_errorstate_set(prestate);
code = cpl_image_fit_gaussian(self, xposcen, yposcen,
(int)(2.0 * objradius),
&norm,
&xcen,
&ycen,
&sig_x,
&sig_y,
&fwhm_x,
&fwhm_y);
if (!code) {
valfit = irplib_gaussian_2d(0.0, 0.0, norm, sig_x, sig_y);
cpl_msg_debug(cpl_func, "Gauss-Fit @ (%g, %g) = %g. norm=%g, "
"sigma=(%g, %g)", xcen, ycen, valfit, norm,
sig_x, sig_y);
if (valfit > valmax) {
*pxpos = xcen;
*pypos = ycen;
*ppeak = valfit;
}
}
}
#endif
if (code || valfit < valmax) {
cpl_errorstate_set(prestate);
*pxpos = xposcen;
*pypos = yposcen;
*ppeak = valmax;
}
return code ? cpl_error_set_where(cpl_func) : CPL_ERROR_NONE;
}
#endif
|