File: interactive_window_master_dark.py

package info (click to toggle)
cpl-plugin-vimos 4.1.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 28,228 kB
  • sloc: ansic: 169,271; cpp: 16,177; sh: 4,344; python: 3,678; makefile: 1,138; perl: 10
file content (376 lines) | stat: -rw-r--r-- 16,697 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from __future__ import with_statement
from __future__ import absolute_import
from __future__ import print_function
import sys


try:
    import numpy
    import reflex
    from pipeline_product import PipelineProduct
    import pipeline_display
    import reflex_plot_widgets
    from matplotlib import gridspec, pylab, pyplot
    import pdb  # for debugging
    import_success = True

except ImportError:
    import_success = False
    print("Error importing modules pyfits, wx, matplotlib, numpy")

# Median absolute deviation function; used to scale the images
def MAD(x):
    x=numpy.array(x)
    return numpy.median(numpy.abs(x-numpy.median(x)))


def paragraph(text, width=None):
    """ wrap text string into paragraph
       text:  text to format, removes leading space and newlines
       width: if not None, wraps text, not recommended for tooltips as
              they are wrapped by wxWidgets by default
    """
    import textwrap
    if width is None:
        return textwrap.dedent(text).replace('\n', ' ').strip()
    else:
        return textwrap.fill(textwrap.dedent(text), width=width)


class DataPlotterManager(object):
    """
    This class must be added to the PipelineInteractiveApp with setPlotManager
    It must have following member functions which will be called by the app:
     - setInteractiveParameters(self)
     - readFitsData(self, fitsFiles):
     - addSubplots(self, figure):
     - plotProductsGraphics(self, figure, canvas)
    Following members are optional:
     - setWindowHelp(self)
     - setWindowTitle(self)
    """

    # static members
    recipe_name = "vimos_ima_dark"
    img_cat = "MASTER_DARK"
    diff_img_cat = "DIFFIMG_DARK"
    diff_stats_cat = "DIFFIMG_STATS_DARK"

    def setWindowTitle(self):
        return self.recipe_name+"_interactive"

    def setInteractiveParameters(self):
        """
        This function specifies which are the parameters that should be presented
        in the window to be edited.  Note that the parameter has to also be in the
        in_sop port (otherwise it won't appear in the window). The descriptions are
        used to show a tooltip. They should match one to one with the parameter
        list.
        """
        return [
            reflex.RecipeParameter(recipe=self.recipe_name, displayName="combtype",
                                   group="vimos_ima_dark", description="Combination algorithm. <median | mean> [median]"),
            reflex.RecipeParameter(recipe=self.recipe_name, displayName="scaletype",
                                   group="vimos_ima_dark", description="Scaling algorithm. <none | additive | multiplicative | exptime> [exptime]"),
            reflex.RecipeParameter(recipe=self.recipe_name, displayName="xrej",
                                   group="vimos_ima_dark", description="True if using extra rejection cycle. [TRUE]"),
            reflex.RecipeParameter(recipe=self.recipe_name, displayName="thresh",
                                   group="vimos_ima_dark", description="Rejection threshold in sigma above background. [5.0]"),
            reflex.RecipeParameter(recipe=self.recipe_name, displayName="ncells",
                                   group="vimos_ima_dark", description="Number of cells per data channel to evaluate stats. < 1 | 2 | 4 | 8 | 16 | 32 | 64 > [8]")
        ]

    def readFitsData(self, fitsFiles):
        """
        This function should be used to read and organize the raw fits files
        produced by the recipes.
        It receives as input a list of reflex.FitsFiles
        """
        # organize the files into a dictionary, here we assume we only have 
        # one file per category if there are more, one must use a
        # dictionary of lists
        self.frames = dict()
        for f in fitsFiles:
            self.frames[f.category] = PipelineProduct(f)

        # we only have two states, we have data or we don't
        # define the plotting functions we want to use for each

        if self.img_cat in self.frames:
            dark_img = self.frames[self.img_cat]
            self.n_extn = len(dark_img.hdulist())-1  # number of extensions
            self.dark_img_name = dark_img.fits_file.name
            self.dark_img_hdu = dark_img.all_hdu
            self.img_found = True

            # Read the dark images
            self.dark_images = []
            for i in range(self.n_extn):
                dark_img.readImage(i+1)
                self.dark_images.append(dark_img.image) 

            # Read the difference images

            if self.diff_img_cat in self.frames:
                diff_img = self.frames[self.diff_img_cat]
                self.diff_img_name = diff_img.fits_file.name
                self.diff_img_hdu = diff_img.all_hdu[0]
                self.diff_img_found = True
                self.diff_images = []
                for i in range(self.n_extn):
                    diff_img.readImage(i+1)
                    self.diff_images.append(diff_img.image) 
            else:
                self.diff_img_found = False

            # Read in statistics FITS table
            if self.diff_stats_cat in self.frames:
                self.stats_found = True
                self.stats = self.frames[self.diff_stats_cat]

                # stats_table is a list of FITS record arrays, one for each extension
                # access data by field name: stats_table[i_ext]['COLNAME']
                # see help at https://pythonhosted.org/pyfits/users_guide/users_table.html
                self.stats_table = [] 
                
                for i in range(self.n_extn):
                    self.stats_table.append(self.stats.all_hdu[i+1].data)
            else:
                self.stats_found = False

            # re-define plotting functions to enable callbacks
            self._add_subplots = self._add_subplots
            self._plot = self._data_plot

            # Define radio button options as a dict; this is handy for assessing which option the user selected
            if ((self.diff_img_found is True) and (self.stats_found is True)):
                self.radio_button_opts = {'Master DARK Image':0,'Histogram of DARK Image':1,'Diff Image (DARK-REF)':2,'Stats on Diff Image':3}
            else:
                self.radio_button_opts = {'Master DARK Image':0,'Histogram of DARK Image':1}

            # Set the initial radio button selections (value 0)
            self.radio_button_label = [key for key, value in iter(self.radio_button_opts.items()) if value == 0][0]

        else:
            # Set the plotting functions to NODATA ones
            self._add_subplots = self._add_nodata_subplots
            self._plot = self._nodata_plot

    def addSubplots(self, figure):
        self._add_subplots(figure)

    def plotProductsGraphics(self):
        self._plot()

    def plotWidgets(self) :
        widgets = list()

        # Radio button
        self.radiobutton = reflex_plot_widgets.InteractiveRadioButtons(self.axradiobutton, 
                                                                       self.setRadioCallback, 
                                                                       [key for key,value in sorted(self.radio_button_opts.items(),key= lambda k: k[1])],
                                                                       self.radio_button_opts.get(self.radio_button_label),
                                                                       title='Select item to display')
        widgets.append(self.radiobutton)

        return widgets

    def setRadioCallback(self, label) :

        # Only do something if user changes the button
        if (label != self.radio_button_label):
            self.radio_button_label = label
            self._plot()

    def _add_subplots(self, figure):
      
        self.img_plot = []
        gs = gridspec.GridSpec(7, 2)
        self.img_plot.append(figure.add_subplot(gs[1:4,0]))
        self.img_plot.append(figure.add_subplot(gs[1:4,1]))
        self.img_plot.append(figure.add_subplot(gs[4:8,0]))
        self.img_plot.append(figure.add_subplot(gs[4:8,1]))
        self.axradiobutton = figure.add_subplot(gs[0,0])
            
    def _data_plot(self):

        #clock_pattern = self.dark_img_hdu[0].header['HIERARCH ESO DET READ CLOCK']
        #binx = self.dark_img_hdu[0].header['HIERARCH ESO DET WIN1 BINX']
        #biny = self.dark_img_hdu[0].header['HIERARCH ESO DET WIN1 BINY']

        for i in range(self.n_extn):
            chip_name = self.dark_img_hdu[i+1].header['EXTNAME']

            imgdisp = pipeline_display.ImageDisplay()
            imgdisp.setAspect('equal')
            if ( (self.radio_button_opts[self.radio_button_label] == 0) or
                 (self.radio_button_opts[self.radio_button_label] == 2)):  # show master dark image or diff image
                
                self.img_plot[i].cla()

                if ( (i==0) or (i==1) ): 
                    pylab.setp(self.img_plot[i].get_xticklabels(), visible = False)
                    imgdisp.setLabels('','Y')
                else:
                    pylab.setp(self.img_plot[i].get_xticklabels(), visible = True)
                    imgdisp.setLabels('X','Y')

                if (self.radio_button_opts[self.radio_button_label] == 0):
                    title = "Master DARK Chip:{}".format(chip_name)
                    temp_image = self.dark_images[i]
                    tool_tip = "Dark"
                    # Set z-limit using 1 iteration of sigma clipping using MED and MAD
                    temp_image = temp_image[numpy.isfinite(temp_image)]
                    try:
                        med = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKMED']
                    except:
                        med = numpy.median(temp_image)
                    try:
                        sig = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKRMS']
                    except:
                        sig = 1.48 * MAD(temp_image)

                    temp_image = temp_image[numpy.abs(temp_image-med) < 3*sig]
                    new_med = numpy.median(temp_image)
                    new_sig = 1.48 * MAD(temp_image)
                    
                    # Set limits to median-1sigma, median+3sigma for darks
                    imgdisp.z_lim = new_med-new_sig, new_med+3*new_sig
                    imgdisp.display(self.img_plot[i], title, tool_tip, self.dark_images[i])

                elif (self.radio_button_opts[self.radio_button_label] == 2):
                    title = "Diff Image Chip: {}".format(chip_name)
                    temp_image = self.diff_images[i]
                    tool_tip = "DARK - REF"
                    temp_image = temp_image[numpy.isfinite(temp_image)]

                    try:
                        med = self.diff_img_hdu[i+1].header['HIERARCH ESO QC DARKDIFF_MED']
                    except:
                        med = numpy.median(temp_image)
                    try:
                        sig = self.diff_img_hdu[i+1].header['HIERARCH ESO QC DARKDIFF_RMS']
                    except:
                        sig = 1.48 * MAD(temp_image)

                    temp_image = temp_image[numpy.abs(temp_image-med) < 3*sig]
                    new_med = numpy.median(temp_image)
                    new_sig = 1.48*MAD(temp_image)
                    
                    # Set limits to median-3sigma, median+3sigma for diff image
                    imgdisp.z_lim = new_med-3*new_sig, new_med+3*new_sig
                    imgdisp.display(self.img_plot[i], title, tool_tip, self.diff_images[i])


            elif (self.radio_button_opts[self.radio_button_label] == 1):  # show histogram
                self.img_plot[i].cla()
                self.img_plot[i].set_title("Histogram  Chip: {}".format(chip_name), fontsize=12, fontweight='semibold')
                pylab.setp(self.img_plot[i].get_xticklabels(), visible = True)

                temp_image = self.dark_images[i]
                x = temp_image[numpy.isfinite(temp_image)]

                try:
                    med = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKMED']
                except:
                    med = numpy.median(x)
                try:
                    sig = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKRMS']
                except:
                    sig = 1.48 * MAD(x)

                n, bins, patches = self.img_plot[i].hist(x,normed=True,range=(med-5.0*sig,med+5.0*sig))
                self.img_plot[i].axis('tight')  # change aspect ratio to show all data, has to be placed after .hist()
                if ( (i==0) or (i==1)):
                    self.img_plot[i].set_xlabel('')
                if ( (i==2) or (i==3)):
                    self.img_plot[i].set_xlabel('Pixel Value [ADU]')
                self.img_plot[i].set_ylabel('Normalised PDF')
                
                self.img_plot[i].tooltip = '10 bins over a range Median'+u"\u00B1"+'5*sigma'
                self.img_plot[i].text(0.05,0.9,'Med:  {:4.2e}'.format(med), transform=self.img_plot[i].transAxes)
                self.img_plot[i].text(0.05,0.8,'Mean: {:4.2e}'.format(numpy.mean(x)), transform=self.img_plot[i].transAxes)
                self.img_plot[i].text(0.05,0.7,'MAD:  {:4.2e}'.format(sig/1.48), transform=self.img_plot[i].transAxes)
                self.img_plot[i].text(0.05,0.6,'RMS:  {:4.2e}'.format(numpy.std(x)), transform=self.img_plot[i].transAxes)

            elif (self.radio_button_opts[self.radio_button_label] == 3):  # show statistics
                self.img_plot[i].cla()
                x = numpy.linspace(1,len(self.stats_table[0]['xmin']), num = len(self.stats_table[0]['xmin']))
                y = self.stats_table[i]['median']
                err = 1.483*(self.stats_table[i]['mad'])

                title = "Stats {} ".format(chip_name)

                tool_tip = ("X axis: Index of small cell/box on chip \nY axis: Median value of (DARK-REF) pixels in box \n\t (Err bars = 1.48*Median Abs Deviation)")

                scatter_display = pipeline_display.ScatterDisplay()
                self.img_plot[i].axis('tight')  # change aspect ratio to show all data
                if (min(y) != max(y)):
                    self.img_plot[i].set_ylim(min(y),max(y))
                else:
                    self.img_plot[i].set_ylim(min(y)-2*max(err),min(y)+2*max(err))
                if (max(x) != max(x)):
                    self.img_plot[i].set_xlim(min(x),max(x))
                else:
                     self.img_plot[i].set_xlim(min(x)-1,max(x)+1)

                if ( (i==0) or (i==1) ): 
                    pylab.setp(self.img_plot[i].get_xticklabels(), visible = False)
                    xtitle = ""
                else:
                    pylab.setp(self.img_plot[i].get_xticklabels(), visible = True)
                    xtitle = "Index of Cell on Chip"
                    
                scatter_display.setLabels(xtitle,"DARK - REF")
                scatter_display.display(self.img_plot[i],
                                        title, tool_tip, 
                                        x, y, err)
                
    def _add_nodata_subplots(self, figure):
        self.img_plot = figure.add_subplot(1,1,1)

    def _nodata_plot(self):
        # could be moved to reflex library?
        self.img_plot.set_axis_off()
        text_nodata = "Data not found. Input files should contain this" \
                       " type:\n%s" % self.img_cat
        self.img_plot.text(0.1, 0.6, text_nodata, color='#11557c',
                      fontsize=18, ha='left', va='center', alpha=1.0)
        self.img_plot.tooltip = 'No data found'


    def setWindowHelp(self):
      help_text = """
This is an interactive window which help asses the quality of the execution of a recipe.
"""
      return help_text


#This is the 'main' function
if __name__ == '__main__':
    from reflex_interactive_app import PipelineInteractiveApp

    # Create interactive application
    interactive_app = PipelineInteractiveApp()

    # get inputs from the command line
    interactive_app.parse_args()

    #Check if import failed or not
    if not import_success:
        interactive_app.setEnableGUI(False)

    #Open the interactive window if enabled
    if interactive_app.isGUIEnabled():
        #Get the specific functions for this window
        dataPlotManager = DataPlotterManager()

        interactive_app.setPlotManager(dataPlotManager)
        interactive_app.showGUI()
    else:
        interactive_app.set_continue_mode()

    #Print outputs. This is parsed by the Reflex python actor to
    #get the results. Do not remove
    interactive_app.print_outputs()
    sys.exit()