1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
from __future__ import with_statement
from __future__ import absolute_import
from __future__ import print_function
import sys
try:
import numpy
import reflex
from pipeline_product import PipelineProduct
import pipeline_display
import reflex_plot_widgets
from matplotlib import gridspec, pylab, pyplot
import pdb # for debugging
import_success = True
except ImportError:
import_success = False
print("Error importing modules pyfits, wx, matplotlib, numpy")
# Median absolute deviation function; used to scale the images
def MAD(x):
x=numpy.array(x)
return numpy.median(numpy.abs(x-numpy.median(x)))
def paragraph(text, width=None):
""" wrap text string into paragraph
text: text to format, removes leading space and newlines
width: if not None, wraps text, not recommended for tooltips as
they are wrapped by wxWidgets by default
"""
import textwrap
if width is None:
return textwrap.dedent(text).replace('\n', ' ').strip()
else:
return textwrap.fill(textwrap.dedent(text), width=width)
class DataPlotterManager(object):
"""
This class must be added to the PipelineInteractiveApp with setPlotManager
It must have following member functions which will be called by the app:
- setInteractiveParameters(self)
- readFitsData(self, fitsFiles):
- addSubplots(self, figure):
- plotProductsGraphics(self, figure, canvas)
Following members are optional:
- setWindowHelp(self)
- setWindowTitle(self)
"""
# static members
recipe_name = "vimos_ima_dark"
img_cat = "MASTER_DARK"
diff_img_cat = "DIFFIMG_DARK"
diff_stats_cat = "DIFFIMG_STATS_DARK"
def setWindowTitle(self):
return self.recipe_name+"_interactive"
def setInteractiveParameters(self):
"""
This function specifies which are the parameters that should be presented
in the window to be edited. Note that the parameter has to also be in the
in_sop port (otherwise it won't appear in the window). The descriptions are
used to show a tooltip. They should match one to one with the parameter
list.
"""
return [
reflex.RecipeParameter(recipe=self.recipe_name, displayName="combtype",
group="vimos_ima_dark", description="Combination algorithm. <median | mean> [median]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="scaletype",
group="vimos_ima_dark", description="Scaling algorithm. <none | additive | multiplicative | exptime> [exptime]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="xrej",
group="vimos_ima_dark", description="True if using extra rejection cycle. [TRUE]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="thresh",
group="vimos_ima_dark", description="Rejection threshold in sigma above background. [5.0]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="ncells",
group="vimos_ima_dark", description="Number of cells per data channel to evaluate stats. < 1 | 2 | 4 | 8 | 16 | 32 | 64 > [8]")
]
def readFitsData(self, fitsFiles):
"""
This function should be used to read and organize the raw fits files
produced by the recipes.
It receives as input a list of reflex.FitsFiles
"""
# organize the files into a dictionary, here we assume we only have
# one file per category if there are more, one must use a
# dictionary of lists
self.frames = dict()
for f in fitsFiles:
self.frames[f.category] = PipelineProduct(f)
# we only have two states, we have data or we don't
# define the plotting functions we want to use for each
if self.img_cat in self.frames:
dark_img = self.frames[self.img_cat]
self.n_extn = len(dark_img.hdulist())-1 # number of extensions
self.dark_img_name = dark_img.fits_file.name
self.dark_img_hdu = dark_img.all_hdu
self.img_found = True
# Read the dark images
self.dark_images = []
for i in range(self.n_extn):
dark_img.readImage(i+1)
self.dark_images.append(dark_img.image)
# Read the difference images
if self.diff_img_cat in self.frames:
diff_img = self.frames[self.diff_img_cat]
self.diff_img_name = diff_img.fits_file.name
self.diff_img_hdu = diff_img.all_hdu[0]
self.diff_img_found = True
self.diff_images = []
for i in range(self.n_extn):
diff_img.readImage(i+1)
self.diff_images.append(diff_img.image)
else:
self.diff_img_found = False
# Read in statistics FITS table
if self.diff_stats_cat in self.frames:
self.stats_found = True
self.stats = self.frames[self.diff_stats_cat]
# stats_table is a list of FITS record arrays, one for each extension
# access data by field name: stats_table[i_ext]['COLNAME']
# see help at https://pythonhosted.org/pyfits/users_guide/users_table.html
self.stats_table = []
for i in range(self.n_extn):
self.stats_table.append(self.stats.all_hdu[i+1].data)
else:
self.stats_found = False
# re-define plotting functions to enable callbacks
self._add_subplots = self._add_subplots
self._plot = self._data_plot
# Define radio button options as a dict; this is handy for assessing which option the user selected
if ((self.diff_img_found is True) and (self.stats_found is True)):
self.radio_button_opts = {'Master DARK Image':0,'Histogram of DARK Image':1,'Diff Image (DARK-REF)':2,'Stats on Diff Image':3}
else:
self.radio_button_opts = {'Master DARK Image':0,'Histogram of DARK Image':1}
# Set the initial radio button selections (value 0)
self.radio_button_label = [key for key, value in iter(self.radio_button_opts.items()) if value == 0][0]
else:
# Set the plotting functions to NODATA ones
self._add_subplots = self._add_nodata_subplots
self._plot = self._nodata_plot
def addSubplots(self, figure):
self._add_subplots(figure)
def plotProductsGraphics(self):
self._plot()
def plotWidgets(self) :
widgets = list()
# Radio button
self.radiobutton = reflex_plot_widgets.InteractiveRadioButtons(self.axradiobutton,
self.setRadioCallback,
[key for key,value in sorted(self.radio_button_opts.items(),key= lambda k: k[1])],
self.radio_button_opts.get(self.radio_button_label),
title='Select item to display')
widgets.append(self.radiobutton)
return widgets
def setRadioCallback(self, label) :
# Only do something if user changes the button
if (label != self.radio_button_label):
self.radio_button_label = label
self._plot()
def _add_subplots(self, figure):
self.img_plot = []
gs = gridspec.GridSpec(7, 2)
self.img_plot.append(figure.add_subplot(gs[1:4,0]))
self.img_plot.append(figure.add_subplot(gs[1:4,1]))
self.img_plot.append(figure.add_subplot(gs[4:8,0]))
self.img_plot.append(figure.add_subplot(gs[4:8,1]))
self.axradiobutton = figure.add_subplot(gs[0,0])
def _data_plot(self):
#clock_pattern = self.dark_img_hdu[0].header['HIERARCH ESO DET READ CLOCK']
#binx = self.dark_img_hdu[0].header['HIERARCH ESO DET WIN1 BINX']
#biny = self.dark_img_hdu[0].header['HIERARCH ESO DET WIN1 BINY']
for i in range(self.n_extn):
chip_name = self.dark_img_hdu[i+1].header['EXTNAME']
imgdisp = pipeline_display.ImageDisplay()
imgdisp.setAspect('equal')
if ( (self.radio_button_opts[self.radio_button_label] == 0) or
(self.radio_button_opts[self.radio_button_label] == 2)): # show master dark image or diff image
self.img_plot[i].cla()
if ( (i==0) or (i==1) ):
pylab.setp(self.img_plot[i].get_xticklabels(), visible = False)
imgdisp.setLabels('','Y')
else:
pylab.setp(self.img_plot[i].get_xticklabels(), visible = True)
imgdisp.setLabels('X','Y')
if (self.radio_button_opts[self.radio_button_label] == 0):
title = "Master DARK Chip:{}".format(chip_name)
temp_image = self.dark_images[i]
tool_tip = "Dark"
# Set z-limit using 1 iteration of sigma clipping using MED and MAD
temp_image = temp_image[numpy.isfinite(temp_image)]
try:
med = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKMED']
except:
med = numpy.median(temp_image)
try:
sig = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKRMS']
except:
sig = 1.48 * MAD(temp_image)
temp_image = temp_image[numpy.abs(temp_image-med) < 3*sig]
new_med = numpy.median(temp_image)
new_sig = 1.48 * MAD(temp_image)
# Set limits to median-1sigma, median+3sigma for darks
imgdisp.z_lim = new_med-new_sig, new_med+3*new_sig
imgdisp.display(self.img_plot[i], title, tool_tip, self.dark_images[i])
elif (self.radio_button_opts[self.radio_button_label] == 2):
title = "Diff Image Chip: {}".format(chip_name)
temp_image = self.diff_images[i]
tool_tip = "DARK - REF"
temp_image = temp_image[numpy.isfinite(temp_image)]
try:
med = self.diff_img_hdu[i+1].header['HIERARCH ESO QC DARKDIFF_MED']
except:
med = numpy.median(temp_image)
try:
sig = self.diff_img_hdu[i+1].header['HIERARCH ESO QC DARKDIFF_RMS']
except:
sig = 1.48 * MAD(temp_image)
temp_image = temp_image[numpy.abs(temp_image-med) < 3*sig]
new_med = numpy.median(temp_image)
new_sig = 1.48*MAD(temp_image)
# Set limits to median-3sigma, median+3sigma for diff image
imgdisp.z_lim = new_med-3*new_sig, new_med+3*new_sig
imgdisp.display(self.img_plot[i], title, tool_tip, self.diff_images[i])
elif (self.radio_button_opts[self.radio_button_label] == 1): # show histogram
self.img_plot[i].cla()
self.img_plot[i].set_title("Histogram Chip: {}".format(chip_name), fontsize=12, fontweight='semibold')
pylab.setp(self.img_plot[i].get_xticklabels(), visible = True)
temp_image = self.dark_images[i]
x = temp_image[numpy.isfinite(temp_image)]
try:
med = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKMED']
except:
med = numpy.median(x)
try:
sig = self.dark_img_hdu[i+1].header['HIERARCH ESO QC DARKRMS']
except:
sig = 1.48 * MAD(x)
n, bins, patches = self.img_plot[i].hist(x,normed=True,range=(med-5.0*sig,med+5.0*sig))
self.img_plot[i].axis('tight') # change aspect ratio to show all data, has to be placed after .hist()
if ( (i==0) or (i==1)):
self.img_plot[i].set_xlabel('')
if ( (i==2) or (i==3)):
self.img_plot[i].set_xlabel('Pixel Value [ADU]')
self.img_plot[i].set_ylabel('Normalised PDF')
self.img_plot[i].tooltip = '10 bins over a range Median'+u"\u00B1"+'5*sigma'
self.img_plot[i].text(0.05,0.9,'Med: {:4.2e}'.format(med), transform=self.img_plot[i].transAxes)
self.img_plot[i].text(0.05,0.8,'Mean: {:4.2e}'.format(numpy.mean(x)), transform=self.img_plot[i].transAxes)
self.img_plot[i].text(0.05,0.7,'MAD: {:4.2e}'.format(sig/1.48), transform=self.img_plot[i].transAxes)
self.img_plot[i].text(0.05,0.6,'RMS: {:4.2e}'.format(numpy.std(x)), transform=self.img_plot[i].transAxes)
elif (self.radio_button_opts[self.radio_button_label] == 3): # show statistics
self.img_plot[i].cla()
x = numpy.linspace(1,len(self.stats_table[0]['xmin']), num = len(self.stats_table[0]['xmin']))
y = self.stats_table[i]['median']
err = 1.483*(self.stats_table[i]['mad'])
title = "Stats {} ".format(chip_name)
tool_tip = ("X axis: Index of small cell/box on chip \nY axis: Median value of (DARK-REF) pixels in box \n\t (Err bars = 1.48*Median Abs Deviation)")
scatter_display = pipeline_display.ScatterDisplay()
self.img_plot[i].axis('tight') # change aspect ratio to show all data
if (min(y) != max(y)):
self.img_plot[i].set_ylim(min(y),max(y))
else:
self.img_plot[i].set_ylim(min(y)-2*max(err),min(y)+2*max(err))
if (max(x) != max(x)):
self.img_plot[i].set_xlim(min(x),max(x))
else:
self.img_plot[i].set_xlim(min(x)-1,max(x)+1)
if ( (i==0) or (i==1) ):
pylab.setp(self.img_plot[i].get_xticklabels(), visible = False)
xtitle = ""
else:
pylab.setp(self.img_plot[i].get_xticklabels(), visible = True)
xtitle = "Index of Cell on Chip"
scatter_display.setLabels(xtitle,"DARK - REF")
scatter_display.display(self.img_plot[i],
title, tool_tip,
x, y, err)
def _add_nodata_subplots(self, figure):
self.img_plot = figure.add_subplot(1,1,1)
def _nodata_plot(self):
# could be moved to reflex library?
self.img_plot.set_axis_off()
text_nodata = "Data not found. Input files should contain this" \
" type:\n%s" % self.img_cat
self.img_plot.text(0.1, 0.6, text_nodata, color='#11557c',
fontsize=18, ha='left', va='center', alpha=1.0)
self.img_plot.tooltip = 'No data found'
def setWindowHelp(self):
help_text = """
This is an interactive window which help asses the quality of the execution of a recipe.
"""
return help_text
#This is the 'main' function
if __name__ == '__main__':
from reflex_interactive_app import PipelineInteractiveApp
# Create interactive application
interactive_app = PipelineInteractiveApp()
# get inputs from the command line
interactive_app.parse_args()
#Check if import failed or not
if not import_success:
interactive_app.setEnableGUI(False)
#Open the interactive window if enabled
if interactive_app.isGUIEnabled():
#Get the specific functions for this window
dataPlotManager = DataPlotterManager()
interactive_app.setPlotManager(dataPlotManager)
interactive_app.showGUI()
else:
interactive_app.set_continue_mode()
#Print outputs. This is parsed by the Reflex python actor to
#get the results. Do not remove
interactive_app.print_outputs()
sys.exit()
|