1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
from __future__ import with_statement
from __future__ import absolute_import
from __future__ import print_function
import sys
try:
import numpy
import reflex
from pipeline_product import PipelineProduct
import pipeline_display
import reflex_plot_widgets
import matplotlib.gridspec as gridspec
import_success = True
import pdb # for debugging
except ImportError:
import_success = False
print("Error importing modules pyfits, wx, matplotlib, numpy")
# Median absolute deviation function; used to scale the images
def MAD(x):
x=numpy.array(x)
return numpy.median(numpy.abs(x-numpy.median(x)))
def paragraph(text, width=None):
""" wrap text string into paragraph
text: text to format, removes leading space and newlines
width: if not None, wraps text, not recommended for tooltips as
they are wrapped by wxWidgets by default
"""
import textwrap
if width is None:
return textwrap.dedent(text).replace('\n', ' ').strip()
else:
return textwrap.fill(textwrap.dedent(text), width=width)
class DataPlotterManager(object):
"""
This class must be added to the PipelineInteractiveApp with setPlotManager
It must have following member functions which will be called by the app:
- setInteractiveParameters(self)
- readFitsData(self, fitsFiles):
- addSubplots(self, figure):
- plotProductsGraphics(self, figure, canvas)
Following members are optional:
- setWindowHelp(self)
- setWindowTitle(self)
"""
# static members
recipe_name = "vimos_ima_det_noise"
mst_cat = "MASTER_READGAIN"
ref_cat = "REFERENCE_READGAIN"
def setWindowTitle(self):
return self.recipe_name+"_interactive"
def setInteractiveParameters(self):
"""
This function specifies which are the parameters that should be presented
in the window to be edited. Note that the parameter has to also be in the
in_sop port (otherwise it won't appear in the window). The descriptions are
used to show a tooltip. They should match one to one with the parameter
list.
"""
return [
reflex.RecipeParameter(recipe=self.recipe_name, displayName="thresh",
group="vimos_ima_det_noise",
description="Rejection threshold in sigma above background. [5.0]"),
]
def readFitsData(self, fitsFiles):
"""
This function should be used to read and organize the raw fits files
produced by the recipes.
It receives as input a list of reflex.FitsFiles
"""
# organize the files into a dictionary, here we assume we only have
# one file per category if there are more, one must use a
# dictionary of lists
self.frames = dict()
for f in fitsFiles:
print(f.name)
self.frames[f.category] = PipelineProduct(f)
# we only have two states, we have data or we don't
# define the plotting functions we want to use for each
if self.mst_cat in self.frames:
self.mst_tab = self.frames[self.mst_cat]
self.mst_found = True
# Read the reference table
if self.ref_cat in self.frames:
self.ref_tab = self.frames[self.ref_cat]
else:
self.ref_found = False
# table is a list of FITS record arrays, one for each extension
# access data by field name: table['COLNAME']
# see help at https://pythonhosted.org/pyfits/users_guide/users_table.html
table = self.mst_tab.all_hdu[1].data
# check if data in MASTER_READGAIN is valid
if ( (False in numpy.isfinite(table['READNOISE'])) or
(False in numpy.isfinite(table['GAIN'])) or
(False in numpy.isfinite(table['COVAR'])) or
( (True in (table['READNOISE'] <= 0)) or
(True in (table['GAIN'] <= 0)) or
(True in (table['COVAR'] <= 0)) ) ):
# At least one data element is not good, so set the plotting functions to Baddata ones
self._add_subplots = self._add_nodata_subplots
self._plot = self._baddata_plot
else:
self._add_subplots = self._add_subplots
self._plot = self._data_plot
else:
# No master data, so set the plotting functions to NODATA ones
self._add_subplots = self._add_nodata_subplots
self._plot = self._nodata_plot
def addSubplots(self, figure):
self._add_subplots(figure)
def _add_subplots(self, figure):
# Make 1x2 grid of plots
self.img_plot = []
gs = gridspec.GridSpec(1, 2)
self.img_plot.append(figure.add_subplot(gs[0,0]))
self.img_plot.append(figure.add_subplot(gs[0,1]))
def plotProductsGraphics(self):
self._plot()
def _data_plot(self):
title = " "
tooltip = "If a REFERENCE value equals a derived MASTER value, the point will lie on the solid blue line"
colours = ['red','blue','green','purple']
markers = ["o","s","^","D"]
mst_table = self.mst_tab.all_hdu[1].data
ref_table = self.ref_tab.all_hdu[1].data
for i in range(2):
self.img_plot[i].grid(True)
self.img_plot[i].set_title(title, fontsize=12, fontweight='semibold')
self.img_plot[i].tooltip = tooltip
#self.img_plot[i].set_aspect('equal')
self.img_plot[i].set_aspect('auto')
# Pull out correct numbers in table, be careful to match reference chip to master chip
chip_mst = mst_table['EXTNAME']
chip_ref = ref_table['EXTNAME']
x_left=[]
y_left=[]
x_right=[]
y_right=[]
chip_label = []
for i in range(len(chip_ref)):
for j in range(len(chip_mst)):
if ( chip_mst[j] == chip_ref[i]):
x_left.append(mst_table['READNOISE'][j])
y_left.append(ref_table['READNOISE'][i])
x_right.append((mst_table['GAIN'][j]) / (mst_table['COVAR'][j]))
y_right.append((ref_table['GAIN'][i]) / (ref_table['COVAR'][i]))
chip_label.append(chip_mst[j])
self.img_plot[0].set_xlabel("READNOISE [ADU]")
self.img_plot[0].set_ylabel("REFERENCE READNOISE [ADU]")
for i_row in range(len(mst_table['EXTNAME'])):
self.img_plot[0].scatter(x_left[i_row], y_left[i_row], 60, color = colours[i_row],marker = markers[i_row], label = chip_label[i_row])
self.img_plot[0].plot([min(x_left),max(x_left)],[min(x_left),max(x_left)], label="REF == MASTER")
self.img_plot[0].legend(loc = 0, scatterpoints = 1)
cur_ylim = self.img_plot[0].get_ylim()
self.img_plot[0].set_ylim([cur_ylim[0], cur_ylim[1]+0.2*(cur_ylim[1]-cur_ylim[0])])
self.img_plot[1].set_xlabel("GAIN [e-/ADU]")
self.img_plot[1].set_ylabel("REFERENCE GAIN [e-/ADU]")
for i_row in range(len(mst_table['EXTNAME'])):
self.img_plot[1].scatter(x_right[i_row], y_right[i_row], 60, color = colours[i_row],marker = markers[i_row], label = chip_label[i_row])
self.img_plot[1].plot([min(x_right),max(x_right)],[min(x_right),max(x_right)], label="REF == MASTER")
self.img_plot[1].legend(loc = 0, scatterpoints = 1)
cur_ylim = self.img_plot[1].get_ylim()
self.img_plot[1].set_ylim([cur_ylim[0], cur_ylim[1]+0.2*(cur_ylim[1]-cur_ylim[0])])
def _add_nodata_subplots(self, figure):
self.img_plot = figure.add_subplot(1,1,1)
def _nodata_plot(self):
# could be moved to reflex library?
self.img_plot.set_axis_off()
text_nodata = "Data not found. Input files should contain this" \
" type:\n%s" % self.mst_cat
self.img_plot.text(0.1, 0.6, text_nodata, color='#11557c',
fontsize=18, ha='left', va='center', alpha=1.0)
self.img_plot.tooltip = 'No data found'
def _baddata_plot(self):
# could be moved to reflex library?
self.img_plot.set_axis_off()
text_baddata = "At least one value in MASTER_READGAIN table\n is out of bounds\n" \
"Check the log and input files"
self.img_plot.text(0.1, 0.6, text_baddata, color='#11557c',
fontsize=18, ha='left', va='center', alpha=1.0)
self.img_plot.tooltip = 'Bad data'
def setWindowHelp(self):
help_text = """
This is an interactive window which help asses the quality of the execution of a recipe.
"""
return help_text
#This is the 'main' function
if __name__ == '__main__':
from reflex_interactive_app import PipelineInteractiveApp
# Create interactive application
interactive_app = PipelineInteractiveApp()
# get inputs from the command line
interactive_app.parse_args()
#Check if import failed or not
if not import_success:
interactive_app.setEnableGUI(False)
#Open the interactive window if enabled
if interactive_app.isGUIEnabled():
#Get the specific functions for this window
dataPlotManager = DataPlotterManager()
interactive_app.setPlotManager(dataPlotManager)
interactive_app.showGUI()
else:
interactive_app.set_continue_mode()
#Print outputs. This is parsed by the Reflex python actor to
#get the results. Do not remove
interactive_app.print_outputs()
sys.exit()
|