1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
from __future__ import with_statement
from __future__ import absolute_import
from __future__ import print_function
import sys
try:
import numpy
import reflex
from pipeline_product import PipelineProduct
import pipeline_display
import reflex_plot_widgets
from matplotlib import gridspec, pylab, pyplot, transforms
import pdb # for debugging
from collections import defaultdict # to make dictionary of lists
import_success = True
except ImportError:
import_success = False
print("Error importing modules pyfits, wx, matplotlib, numpy")
# Median absolute deviation function; used to scale the images
def MAD(x):
x=numpy.array(x)
return numpy.median(numpy.abs(x-numpy.median(x)))
def paragraph(text, width=None):
""" wrap text string into paragraph
text: text to format, removes leading space and newlines
width: if not None, wraps text, not recommended for tooltips as
they are wrapped by wxWidgets by default
"""
import textwrap
if width is None:
return textwrap.dedent(text).replace('\n', ' ').strip()
else:
return textwrap.fill(textwrap.dedent(text), width=width)
class DataPlotterManager(object):
"""
This class must be added to the PipelineInteractiveApp with setPlotManager
It must have following member functions which will be called by the app:
- setInteractiveParameters(self)
- readFitsData(self, fitsFiles):
- addSubplots(self, figure):
- plotProductsGraphics(self, figure, canvas)
Following members are optional:
- setWindowHelp(self)
- setWindowTitle(self)
"""
# static members
recipe_name = "vimos_ima_standard"
img_cat = "BASIC_CALIBRATED_STD" # individual calibrated frames, no stacks made
mstd_a_cat = "MATCHSTD_ASTROM"
mstd_p_cat = "MATCHSTD_PHOTOM"
def setWindowTitle(self):
return self.recipe_name+"_interactive"
def setInteractiveParameters(self):
"""
This function specifies which are the parameters that should be presented
in the window to be edited. Note that the parameter has to also be in the
in_sop port (otherwise it won't appear in the window). The descriptions are
used to show a tooltip. They should match one to one with the parameter
list.
"""
# Show all recipe params
return [
reflex.RecipeParameter(recipe=self.recipe_name, displayName="minphotom",
group="vimos_ima_standard",
description="Minimum stars for photometry solution. [1]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="savemstd",
group="vimos_ima_standard",
description="Save matched standard catalogues?. [FALSE]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cdssearch_astrom",
group="vimos_ima_standard",
description="CDS astrometric catalogue. <none | 2mass | usnob | ppmxl | wise> [none]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cdssearch_photom",
group="vimos_ima_standard",
description="CDS photometric catalogue. <none | apass > [none]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="ignore_fringe",
group="vimos_ima_standard",
description="Ignore provided fringe frame?. [FALSE]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="src_cat_ipix",
group="vimos_ima_standard",
description="Minimum pixel area for each detected object. [5]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="src_cat_thresh",
group="vimos_ima_standard",
description="Detection threshold in sigma above sky. [2.5]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="src_cat_icrowd",
group="vimos_ima_standard",
description="Use deblending?. [TRUE]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="src_cat_rcore",
group="vimos_ima_standard",
description="Value of Rcore in pixels. [5.0]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="src_cat_nbsize",
group="vimos_ima_standard",
description="Background smoothing box size. [128]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="cacheloc",
group="vimos_ima_standard",
description="Location for standard star cache [.]"),
reflex.RecipeParameter(recipe=self.recipe_name, displayName="magerrcut",
group="vimos_ima_standard",
description="A cut in the magnitude error [100.0]")
]
def readFitsData(self, fitsFiles):
"""
This function should be used to read and organize the raw fits files
produced by the recipes.
It receives as input a list of reflex.FitsFiles
"""
# frames is a dict of keyword/list pairs where elements of list are PipelineProducts
# it contains all FITS files in the input parameter list
self.std_frames = defaultdict(list)
for f in fitsFiles:
if (f.category == self.img_cat):
self.std_frames[self.img_cat].append(PipelineProduct(f))
if (f.category == self.mstd_a_cat):
self.std_frames[self.mstd_a_cat].append(PipelineProduct(f))
if (f.category == self.mstd_p_cat):
self.std_frames[self.mstd_p_cat].append(PipelineProduct(f))
if (len(self.std_frames[self.img_cat])) > 0:
self.std_img_found = True
self.n_std_frames = len(self.std_frames[self.img_cat])
self.cur_std_frame = 0
self.n_extn = len(self.std_frames[self.img_cat][0].hdulist())-1 # number of extensions, assumed to be same for all fitsFiles
# Don't read the individual calibrated standard images in here
# for memory/performance reasons. Read them in below as needed.
# There could be a lot of frames and user may not want to see all of them.
if (len(self.std_frames[self.mstd_a_cat])) > 0:
self.std_mstd_found = True
if (len(self.std_frames[self.img_cat]) != len(self.std_frames[self.mstd_a_cat])):
raise RuntimeError("Number of science images != number of matched astrometric standard catalogues!")
if (len(self.std_frames[self.img_cat]) != len(self.std_frames[self.mstd_p_cat])):
raise RuntimeError("Number of science images != number of matched photometric standard catalogues!")
# Sort the std frames and std mstd_a frames using PIPEFILE keyword
# This will implicitly associate the sci frames with the mstd frames by using indices
# e.g. the mstd astrom cat for self.sci_frames[self.img_cat][0] ("exp_1.fits")
# is self.sci_frames[self.mstd_a_cat][0] ("mstd_a0.fits")
self.std_frames[self.img_cat].sort(key=lambda foo: foo.all_hdu[0].header['PIPEFILE'])
self.std_frames[self.mstd_a_cat].sort(key=lambda foo: foo.all_hdu[0].header['PIPEFILE'])
self.std_frames[self.mstd_p_cat].sort(key=lambda foo: foo.all_hdu[0].header['PIPEFILE'])
# Read in FITS binary data like this:
# table = self.std_frames[self.mstd_a_cat][i].all_hdu[i_ext+1].data
# But do it only as needed
else:
self.std_mstd_found = False
# re-define eso-rex's pipeline_display plotting functions to enable callbacks
self._add_subplots = self._add_subplots
self._plot = self._data_plot
# Define radio button options
self.left_opts = {'STD frames':0}
self.mid_opts = {'Image':0,'Assess matched astrom stds':1,
'Histogram of matched astrom stds':2,
'Assess matched photom stds':3,
'Histogram of matched photom stds':4}
self.right_opts = {'Click to\nadvance to\nnext item\n(if available)'}
# Set the initial radio button selections (0 for mid)
self.mid_label = [key for key, value in iter(self.mid_opts.items()) if value == 0][0]
else:
# Set the plotting functions to NODATA ones
self._add_subplots = self._add_nodata_subplots
self._plot = self._nodata_plot
def addSubplots(self, figure):
self._add_subplots(figure)
def plotProductsGraphics(self):
self._plot()
def plotWidgets(self) :
widgets = list()
# Radio buttons
# Only show them if at least one std frame is found
if ((self.std_img_found is True)):
self.radiobutton_left = reflex_plot_widgets.InteractiveRadioButtons(self.axradiobutton_left,
self.setRadioCallback_left,
self.left_opts,
0,
title='Select group:')
widgets.append(self.radiobutton_left)
# pull out the keys from the dict() of button options sorted by value
mid_labels = [key for key,value in sorted(self.mid_opts.items(),key= lambda k: k[1])]
self.radiobutton_mid = reflex_plot_widgets.InteractiveRadioButtons(self.axradiobutton_mid,
self.setRadioCallback_mid,
mid_labels,
self.mid_opts.get(self.mid_label),
title='Select item in group :')
widgets.append(self.radiobutton_mid)
self.radiobutton_right = reflex_plot_widgets.InteractiveRadioButtons(self.axradiobutton_right,
self.setRadioCallback_right,
self.right_opts,
0, title='')
widgets.append(self.radiobutton_right)
# Adjust size of button boxes and font size of labels
for i in range(len(widgets)):
pos = widgets[i].rbuttons.ax.get_position()
widgets[i].rbuttons.ax.set_position(transforms.Bbox([[pos.x0,pos.y0-0.01],[pos.x1, 0.97]] ) )
for j in range(len(widgets[i].rbuttons.labels)):
widgets[i].rbuttons.labels[j].set_fontsize(11)
return widgets
def setRadioCallback_left(self, label) :
return # do nothing, only one option
def setRadioCallback_mid(self, label) :
# Only do something if user changes the button
if (label != self.mid_label):
self.mid_label = label
self._plot()
def setRadioCallback_right(self, label) :
# advance (or wrap) frame number by one
self.cur_std_frame += 1
if (self.cur_std_frame == (self.n_std_frames)):
self.cur_std_frame = 0
self._plot()
def _add_subplots(self, figure):
self.img_plot = []
self.mstd_plot = []
if ((self.std_img_found is True)): # at least one std img found
gs = gridspec.GridSpec(9, 4)
gs.update(hspace=0.7) # make space so axis labels dont overlap
self.axradiobutton_left = figure.add_subplot(gs[0,0])
self.axradiobutton_mid = figure.add_subplot(gs[0,1:3])
self.axradiobutton_right = figure.add_subplot(gs[0,3])
self.img_plot.append(figure.add_subplot(gs[1:5,0:2]))
self.img_plot.append(figure.add_subplot(gs[1:5,2:4]))
self.img_plot.append(figure.add_subplot(gs[5:9,2:4]))
self.img_plot.append(figure.add_subplot(gs[5:9,0:2]))
# Move ticks to rhs for readability
self.img_plot[1].yaxis.tick_right()
self.img_plot[2].yaxis.tick_right()
self.mstd_plot.append(figure.add_subplot(gs[1:3,0:2]))
self.mstd_plot.append(figure.add_subplot(gs[3:5,0:2]))
self.mstd_plot.append(figure.add_subplot(gs[1:3,2:4]))
self.mstd_plot.append(figure.add_subplot(gs[3:5,2:4]))
self.mstd_plot.append(figure.add_subplot(gs[5:7,2:4]))
self.mstd_plot.append(figure.add_subplot(gs[7:9,2:4]))
self.mstd_plot.append(figure.add_subplot(gs[5:7,0:2]))
self.mstd_plot.append(figure.add_subplot(gs[7:9,0:2]))
# Move ticks to rhs for readability
self.mstd_plot[2].yaxis.tick_right()
self.mstd_plot[3].yaxis.tick_right()
self.mstd_plot[4].yaxis.tick_right()
self.mstd_plot[5].yaxis.tick_right()
# Keep track if subplots have been repositioned
self.mstd_repositioned = [False]*8
# Initially, turn off tick labels for scatterplots
for i in range(len(self.mstd_plot)):
pylab.setp(self.mstd_plot[i].get_xticklabels(), visible = False)
pylab.setp(self.mstd_plot[i].get_yticklabels(), visible = False)
else:
gs = gridspec.GridSpec(2, 2)
self.img_plot.append(figure.add_subplot(gs[0,0]))
self.img_plot.append(figure.add_subplot(gs[0,1]))
self.img_plot.append(figure.add_subplot(gs[1,0]))
self.img_plot.append(figure.add_subplot(gs[1,1]))
def _data_plot(self):
# Get filter name from first extension of cur_frame and assume its same for all other products
try:
for i in range(1,4):
key1 = 'HIERARCH ESO INS FILT{} NAME'.format(i)
if key1 in self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[1].header:
filt_name = self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[1].header.get(key1)
key2 = 'FILTER{}'.format(i) # alternate header keyword
if key2 in self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[1].header:
filt_name = self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[1].header.get(key2)
except:
filt_name = ''
for i in range(self.n_extn):
if (self.mid_opts[self.mid_label] == 0): # show an image
# turn off scatterplot axes visibility
self.mstd_plot[2*i].cla()
self.mstd_plot[2*i+1].cla()
self.mstd_plot[2*i].tooltip = ''
self.mstd_plot[2*i+1].tooltip = ''
self.mstd_plot[2*i].set_visible(False)
self.mstd_plot[2*i+1].set_visible(False)
# clear image frame and make it visible
self.img_plot[i].cla()
self.img_plot[i].tooltip=''
self.img_plot[i].set_visible(True)
for j in range(len(self.img_plot)):
if (j==0 or j == 1):
self.img_plot[j].set_xlabel(' ')
if (j==1 or j == 2):
self.img_plot[j].set_ylabel(' ')
pylab.setp(self.img_plot[j].get_xticklabels(), visible = True)
pylab.setp(self.img_plot[j].get_yticklabels(), visible = True)
# Setup the selected image and display it
imgdisp = pipeline_display.ImageDisplay()
imgdisp.setAspect('equal')
imgdisp.setLabels('X', 'Y')
chip_name = self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[i+1].header['EXTNAME']
title = "Cal. Std Frame {} {}/{} {}".format(filt_name,self.cur_std_frame+1,self.n_std_frames,chip_name)
# Try reading image
try:
temp = self.std_frames[self.img_cat][self.cur_std_frame]
temp.readImage(i+1)
imgdisp.display(self.img_plot[i], title, "Calibrated Standard Frame:\n" +
temp.fits_file.name, temp.image)
except IndexError:
self.img_plot[i].set_axis_off()
text_nodata = "No standard image found for this chip/extension."
self.img_plot[i].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=18, ha='left', va='center', alpha=1.0,
transform = self.img_plot[i].transAxes)
self.img_plot[i].tooltip = 'No data found'
continue # go to next extension
elif ((self.mid_opts[self.mid_label] == 1) or
(self.mid_opts[self.mid_label] == 2)): # show matched astrom stds
# If this is first request for mstd astrom,
# reposition the subplots so that axes touch and we have more room
# We have to do it here because windows aren't rendered inside the _add_subplots function
if (self.mstd_repositioned[2*i] == False):
pos = self.mstd_plot[2*i].get_position()
pos_new = [pos.x0, pos.y0-0.1*pos.height, pos.width, pos.height]
self.mstd_plot[2*i].set_position(pos_new)
self.mstd_repositioned[2*i] = True
if (self.mstd_repositioned[2*i+1] == False):
pos = self.mstd_plot[2*i+1].get_position()
pos_new = [pos.x0, pos.y0+0.1*pos.height, pos.width, pos.height]
self.mstd_plot[2*i+1].set_position(pos_new)
self.mstd_repositioned[2*i+1] = True
self.img_plot[i].cla()
self.img_plot[i].tooltip=''
self.img_plot[i].set_visible(False)
# Turn on scatterplot axes
self.mstd_plot[2*i].cla()
self.mstd_plot[2*i+1].cla()
self.mstd_plot[2*i].tooltip=''
self.mstd_plot[2*i+1].tooltip=''
self.mstd_plot[2*i].set_visible(True)
self.mstd_plot[2*i+1].set_visible(True)
for j in range(len(self.mstd_plot)):
if (j%2 == 1):
pylab.setp(self.mstd_plot[j].get_xticklabels(), visible = True)
else:
pylab.setp(self.mstd_plot[j].get_xticklabels(), visible = False)
pylab.setp(self.mstd_plot[j].get_yticklabels(), visible = True)
# Define xtitle
if ((self.mid_opts[self.mid_label]==1) and ((i == 2) or (i == 3))) :
xtitle = "Row number of matched standard"
else:
xtitle = " "
chip_name = self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[i+1].header['EXTNAME']
title = "Cal. Std Frame {} {}/{} {}".format(filt_name,self.cur_std_frame+1,self.n_std_frames,chip_name)
try:
table = self.std_frames[self.mstd_a_cat][self.cur_std_frame].all_hdu[i+1].data
filename = self.std_frames[self.mstd_a_cat][self.cur_std_frame].fits_file.name
except IndexError:
text_nodata = "No valid matched astrom standard\ncatalog found for this chip."
for k in range(2):
self.mstd_plot[2*i+k].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform = self.mstd_plot[2*i+k].transAxes)
self.mstd_plot[2*i+k].tooltip = 'No data found'
self.mstd_plot[2*i+k].set_xlabel(xtitle)
continue # go to next extension
# Check to make sure there is at least one row
if (self.std_frames[self.mstd_a_cat][self.cur_std_frame].all_hdu[i+1].header['NAXIS2'] == 0):
text_nodata = "No valid matched astrom standard\ncatalog found for this chip."
for k in range(2):
self.mstd_plot[2*i+k].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.mstd_plot[2*i+k].transAxes)
self.mstd_plot[2*i+k].tooltip = 'No data found'
self.mstd_plot[2*i+k].set_xlabel(xtitle)
continue # go to next extension
# Show scatter plot
if (self.mid_opts[self.mid_label]==1):
# Configure and display top plot of delta RA, if the column exists
# (if WCS fitting fails, then column is missing)
try:
x_top = numpy.linspace(1,len(table['diffRA']), num = len(table['diffRA']))
y_top = numpy.cos(table['Dec']*numpy.pi/180.0)*table['diffRA'] * 3600.0 # in arcseconds
except KeyError:
text_nodata = "No valid matched astrom standard \ncatalog found for this chip."
self.mstd_plot[2*i].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.mstd_plot[2*i+k].transAxes)
self.mstd_plot[2*i].tooltip = 'No data found'
self.mstd_plot[2*i].set_xlabel(xtitle)
continue # go to next extension
err_top = 0.0 * y_top
scat_top = pipeline_display.ScatterDisplay()
delta_x = max(x_top) - min(x_top)
scat_top.xLim = min(x_top)-0.11*delta_x, max(x_top)+0.11*delta_x
delta_y = max(y_top) - min(y_top)
scat_top.yLim = min(y_top)-0.11*delta_y, max(y_top)+0.11*delta_y
y_max = max([max(y_top),abs(min(y_top))])
if y_max > 1.0 :
tool_tip = " WARNING: Difference in coord is > 1.0 arcsec!\n"
else:
scat_top.yLim = -1.1,1.1
tool_tip = "Matched astrometric standard catalogue:\n"
scat_top.setLabels(" ",r'$\Delta\alpha*cos(\delta)$ ["]')
scat_top.display(self.mstd_plot[2*i],
title, tool_tip + filename,
x_top, y_top, err_top)
# Configure and display top plot of delta Dec, if the column exists
# (if WCS fitting fails, then column is missing)
try:
x_bot = numpy.linspace(1,len(table['diffDec']), num = len(table['diffDec']))
y_bot = table['diffDec'] * 3600.0 # in arcseconds
except KeyError:
text_nodata = "No valid matched astrom standard \ncatalog found for this chip."
self.mstd_plot[2*i+1].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.mstd_plot[2*i+k].transAxes)
self.mstd_plot[2*i+1].tooltip = 'No data found'
self.mstd_plot[2*i+1].set_xlabel(xtitle)
continue # go to next extension
err_bot = 0.0 * y_bot
scat_bot = pipeline_display.ScatterDisplay()
scat_bot.xLim = scat_top.xLim
delta_y = max(y_bot) - min(y_bot)
scat_bot.yLim = min(y_bot)-0.11*delta_y, max(y_bot)+0.11*delta_y
y_max = max([max(y_bot),abs(min(y_bot))])
if y_max > 1.0 :
tool_tip = " WARNING: Difference in coord is > 1.0 arcsec! \n"
else:
scat_bot.yLim = -1.1,1.1
tool_tip = "Matched astrometric standard catalogue:\n"
scat_bot.setLabels(xtitle,r'$\Delta\delta$ ["]')
scat_bot.display(self.mstd_plot[2*i+1],
" ", tool_tip + filename,
x_bot, y_bot, err_bot)
# Show histogram
if (self.mid_opts[self.mid_label]==2):
self.mstd_plot[2*i].cla()
self.mstd_plot[2*i+1].cla()
self.mstd_plot[2*i].tooltip=''
self.mstd_plot[2*i+1].tooltip=''
self.mstd_plot[2*i].set_visible(False)
self.mstd_plot[2*i+1].set_visible(False)
self.img_plot[i].cla()
self.img_plot[i].tooltip=''
self.img_plot[i].set_visible(True)
for j in range(len(self.img_plot)):
pylab.setp(self.img_plot[j].get_xticklabels(), visible = True)
pylab.setp(self.img_plot[j].get_yticklabels(), visible = True)
try:
delta_dec = table['diffDec'] * 3600.0 # in arcseconds
delta_ra = numpy.cos(table['Dec']*numpy.pi/180.0)*table['diffRA'] * 3600.0 # in arcseconds
except KeyError:
text_nodata = "No valid matched astrom standard \ncatalog found for this chip."
for k in range(2):
self.mstd_plot[2*i+k].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.mstd_plot[2*i+k].transAxes)
self.mstd_plot[2*i+k].tooltip = 'No data found'
self.mstd_plot[2*i+k].set_xlabel(xtitle)
continue # go to next extension
# some entries are NaN if reference catalog doesnt have valid coords
delta_ra_valid = delta_ra[(numpy.isfinite(delta_ra) & numpy.isfinite(delta_dec))]
delta_dec_valid = delta_dec[(numpy.isfinite(delta_ra) & numpy.isfinite(delta_dec))]
r = numpy.sqrt(delta_ra_valid**2 + delta_dec_valid**2)
med = numpy.median(r)
mad = MAD(r)
n, bins, patches = self.img_plot[i].hist(r)
self.img_plot[i].axis('tight')
if ((i ==0) or (i == 1)):
self.img_plot[i].set_xlabel('')
elif ((i == 2) or (i == 3)):
self.img_plot[i].set_xlabel(r'$\Delta\Theta=$'+r'$\sqrt{[cos(\delta)*\Delta\alpha]^2 + \Delta\delta^2}$'+' ["]')
self.img_plot[i].set_ylabel('Frequency')
self.img_plot[i].set_title(title,fontweight='semibold', fontsize=12)
self.img_plot[i].tooltip = 'Histogram with 10 bins over entire data range\nNumbers in legend are for whole data sample'
self.img_plot[i].text(0.65,0.9,'Med: {:8.2f}'.format(med),
transform=self.img_plot[i].transAxes,color='red')
self.img_plot[i].text(0.65,0.8,'Mean: {:8.2f}'.format(numpy.mean(r)),
transform=self.img_plot[i].transAxes,color='red')
self.img_plot[i].text(0.65,0.7,'MAD: {:8.2f}'.format(mad),
transform=self.img_plot[i].transAxes,color='red')
self.img_plot[i].text(0.65,0.6,'RMS: {:8.2f}'.format(numpy.std(r)),
transform=self.img_plot[i].transAxes,color='red')
elif ((self.mid_opts[self.mid_label] == 3) or
(self.mid_opts[self.mid_label] == 4)): # show matched photom stds
# there is just one scatter plot per chip, so use img_plot subplot
self.mstd_plot[2*i].cla()
self.mstd_plot[2*i+1].cla()
self.mstd_plot[2*i].tooltip=''
self.mstd_plot[2*i+1].tooltip=''
self.mstd_plot[2*i].set_visible(False)
self.mstd_plot[2*i+1].set_visible(False)
self.img_plot[i].cla()
self.img_plot[i].tooltip=''
self.img_plot[i].set_visible(True)
self.img_plot[i].axis('auto')
for j in range(len(self.img_plot)):
pylab.setp(self.img_plot[j].get_xticklabels(), visible = True)
pylab.setp(self.img_plot[j].get_yticklabels(), visible = True)
# Define xtitle
if ((self.mid_opts[self.mid_label]==3) and ((i == 2) or (i == 3))) :
xtitle = "Row number of matched standard"
else:
xtitle = " "
chip_name = self.std_frames[self.img_cat][self.cur_std_frame].all_hdu[i+1].header['EXTNAME']
title = "Cal. Std Frame {} {}/{} {}".format(filt_name, self.cur_std_frame+1,self.n_std_frames,chip_name)
try:
table = self.std_frames[self.mstd_p_cat][self.cur_std_frame].all_hdu[i+1].data
filename = self.std_frames[self.mstd_p_cat][self.cur_std_frame].fits_file.name
except IndexError:
text_nodata = "No valid matched photom standard\n catalog found for this chip."
self.img_plot[i].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.img_plot[i].transAxes)
self.img_plot[i].tooltip = 'No data found'
self.img_plot[i].set_xlabel(xtitle)
continue # go to next extension
# Check to make sure there is at least one row
if (self.std_frames[self.mstd_p_cat][self.cur_std_frame].all_hdu[i+1].header['NAXIS2'] == 0):
text_nodata = "No valid matched photom standard\ncatalog found for this chip."
self.img_plot[i].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.img_plot[i].transAxes)
self.img_plot[i].tooltip = 'No data found'
self.img_plot[i].set_xlabel(xtitle)
continue
# Show scatter plot
if (self.mid_opts[self.mid_label]==3):
try:
x = numpy.linspace(1,len(table['dm5']), num = len(table['dm5']))
y = table['dm5'] # difference in magnitudes (measured - reference), use aper5
except KeyError:
text_nodata = "No valid matched photom standard\ncatalog found for this chip."
self.img_plot[i].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.img_plot[i].transAxes)
self.img_plot[i].tooltip = 'No data found'
self.img_plot[i].set_xlabel(xtitle)
continue
err = 0.0 * y
scat = pipeline_display.ScatterDisplay()
tool_tip = "Matched photometric standards catalogue:\n"
delta_x = max(x) - min(x)
scat.xLim = min(x)-0.11*delta_x, max(x)+0.11*delta_x
delta_y = max(y[numpy.isfinite(y)]) - min(y[numpy.isfinite(y)])
scat.yLim = min(y[numpy.isfinite(y)])-0.11*delta_y, max(y[numpy.isfinite(y)])+0.11*delta_y
scat.setLabels(xtitle,'Magnitude zero point')
scat.display(self.img_plot[i],
title, tool_tip + filename,
x, y, err)
# Show histogram plot of non-NaN map zpt entries in table
elif (self.mid_opts[self.mid_label]==4):
try:
x = table['dm5'] # difference in magnitudes (measured - reference), use aper5
except KeyError:
text_nodata = "No valid matched photom standard\ncatalog found for this chip."
self.img_plot[i].text(0.1, 0.5, text_nodata, color='#11557c',
fontsize=12, ha='left', va='center', alpha=1.0,
transform=self.img_plot[i].transAxes)
self.img_plot[i].tooltip = 'No data found'
self.img_plot[i].set_xlabel(xtitle)
continue
# some entries are NaN if reference catalog doesnt have mag in the same band as data being reduced
x = x[numpy.isfinite(x)]
med = numpy.median(x)
mad = MAD(x)
n, bins, patches = self.img_plot[i].hist(x)
self.img_plot[i].axis('tight')
if ((i ==0) or (i == 1)):
self.img_plot[i].set_xlabel('')
elif ((i == 2) or (i == 3)):
self.img_plot[i].set_xlabel('MagZPT [mag]')
self.img_plot[i].set_ylabel('Frequency')
self.img_plot[i].tooltip = 'Histogram with 10 bins over entire data range\nNumbers in legend are for whole data sample'
self.img_plot[i].set_title(title,fontweight='semibold', fontsize=12)
self.img_plot[i].text(0.05,0.9,'Med: {:8.2f}'.format(med),
transform=self.img_plot[i].transAxes,color='red')
self.img_plot[i].text(0.05,0.8,'Mean: {:8.2f}'.format(numpy.mean(x)),
transform=self.img_plot[i].transAxes,color='red')
self.img_plot[i].text(0.05,0.7,'MAD: {:8.2f}'.format(mad),
transform=self.img_plot[i].transAxes,color='red')
self.img_plot[i].text(0.05,0.6,'RMS: {:8.2f}'.format(numpy.std(x)),
transform=self.img_plot[i].transAxes,color='red')
def _add_nodata_subplots(self, figure):
self.img_plot = figure.add_subplot(1,1,1)
def _nodata_plot(self):
# could be moved to reflex library?
self.img_plot.set_axis_off()
text_nodata = "Data not found. Input files should contain this" \
" type:\n%s" % self.img_cat
self.img_plot.text(0.1, 0.6, text_nodata, color='#11557c',
fontsize=18, ha='left', va='center', alpha=1.0)
self.img_plot.tooltip = 'No data found'
def setWindowHelp(self):
help_text = """
This is an interactive window which help asses the quality of the execution of a recipe.
"""
return help_text
#This is the 'main' function
if __name__ == '__main__':
from reflex_interactive_app import PipelineInteractiveApp
# Create interactive application
interactive_app = PipelineInteractiveApp()
# get inputs from the command line
interactive_app.parse_args()
#Check if import failed or not
if not import_success:
interactive_app.setEnableGUI(False)
#Open the interactive window if enabled
if interactive_app.isGUIEnabled():
#Get the specific functions for this window
dataPlotManager = DataPlotterManager()
interactive_app.setPlotManager(dataPlotManager)
interactive_app.showGUI()
else:
interactive_app.set_continue_mode()
#Print outputs. This is parsed by the Reflex python actor to
#get the results. Do not remove
interactive_app.print_outputs()
sys.exit()
|