1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
|
from __future__ import absolute_import
try:
import numpy
from pipeline_display import *
from pipeline_product import *
from reflex_plot_widgets import *
from numpy.polynomial import Polynomial
numpy.seterr(invalid='ignore')
except ImportError:
donothing=1
class PlotableReducedArc :
def __init__(self, fits):
arc = PipelineProduct(fits)
self.multiext = False
self.ext_sel = 0
if len(arc.all_hdu) > 1:
self.multiext = True
self.arcs = []
if(self.multiext) :
for iext in range(1, len(arc.all_hdu)) :
self.arcs.append(PipelineProduct(fits))
else :
self.arcs.append(arc)
self.arcdisp = ImageDisplay()
self.loadFromFits()
def loadFromFits(self) :
if(self.multiext) :
read_ext = 1
else:
read_ext = 0
for arc in self.arcs :
arc.readImage(read_ext)
arc.read2DLinearWCS()
read_ext = read_ext + 1
def plot(self, subplot, title, tooltip):
self.arcdisp.setLabels('Lambda [Angstrom]', 'Y [pix]')
image_clean = self.arcs[self.ext_sel].image[numpy.isfinite(self.arcs[self.ext_sel].image)]
avg = numpy.median(image_clean)
quartiles = numpy.percentile(image_clean, [25, 75])
self.z_lim = avg - 30 * (avg - quartiles[0]), avg + 30 * (quartiles[1] - avg)
self.arcdisp.setZLimits(self.z_lim)
self.arcdisp.setXLinearWCSAxis(self.arcs[self.ext_sel].crval1,
self.arcs[self.ext_sel].cdelt1,
self.arcs[self.ext_sel].crpix1)
self.arcdisp.display(subplot, title, tooltip, self.arcs[self.ext_sel].image)
def selectMultiplexing(self, multiplexing_idx):
self.ext_sel = multiplexing_idx - 1
class PlotableWavelengthMap :
def __init__(self, fits):
map = PipelineProduct(fits)
self.multiext = False
self.ext_sel = 0
if len(map.all_hdu) > 1:
self.multiext = True
self.maps = []
if(self.multiext) :
for iext in range(1, len(map.all_hdu)) :
self.maps.append(PipelineProduct(fits))
else :
self.maps.append(map)
self.mapdisp = ImageDisplay()
self.loadFromFits()
def loadFromFits(self) :
if(self.multiext) :
read_ext = 1
else:
read_ext = 0
for map in self.maps :
map.readImage(read_ext)
read_ext = read_ext + 1
def plot(self, subplot, title, tooltip):
self.mapdisp.setZLimits((3000, 10000.))
self.mapdisp.display(subplot, title, tooltip, self.maps[self.ext_sel].image)
def selectMultiplexing(self, multiplexing_idx):
self.ext_sel = multiplexing_idx - 1
class PlotableFlat(object) :
def __init__(self, fits_flat, fits_slittrace):
flat = PipelineProduct(fits_flat)
self.multiext = False
self.ext_sel = 0
if len(flat.all_hdu) > 2:
self.multiext = True
self.flats = []
if(self.multiext) :
for iext in range(1, len(flat.all_hdu), 2) :
self.flats.append(PipelineProduct(fits_flat))
else :
self.flats.append(flat)
self.slittraces = []
if fits_slittrace is not None:
slittrace = PipelineProduct(fits_slittrace)
if(self.multiext) :
for iext in range(1, len(slittrace.all_hdu)) :
self.slittraces.append(PipelineProduct(fits_slittrace))
else :
self.slittraces.append(slittrace)
self.flatdisp = ImageDisplay()
self.loadFromFits()
def loadFromFits(self) :
#Reading the flat image
if(self.multiext) :
read_ext = 1
else:
read_ext = 0
for flat in self.flats :
flat.readImage(read_ext)
read_ext = read_ext + 2
#Reading the polinomial traces
if len(self.slittraces) >= 1:
self.nslits = []
self.ypos_traces = []
self.xpos_top_traces = []
self.xpos_bottom_traces = []
for i in range(0, len(self.flats)) :
slittrace = self.slittraces[i]
ndegree = slittrace.getTableNcols(i+1) - 1
nslits = slittrace.getTableNrows(i+1) // 2
self.nslits.append(nslits)
degreecols = []
for deg in range(ndegree):
colname = 'c%d'%deg
slittrace.readTableColumn(i+1, colname)
degreecols.append(slittrace.column)
top_trace_polynomials = []
bottom_trace_polynomials = []
for slit in range(nslits) :
top_trace_coeff = []
bottom_trace_coeff = []
for deg in range(ndegree) :
top_trace_coeff.append(degreecols[deg][2*slit])
bottom_trace_coeff.append(degreecols[deg][2*slit + 1])
top_trace_pol = Polynomial(top_trace_coeff)
bottom_trace_pol = Polynomial(bottom_trace_coeff)
top_trace_polynomials.append(top_trace_pol)
bottom_trace_polynomials.append(bottom_trace_pol)
#Creating the points to plot based on the polynomial traces
#We interchange X and Y since the traces are rotated
ypos_traces = []
xpos_top_traces = []
xpos_bottom_traces = []
for slit in range(self.nslits[i]) :
xpos_top = []
xpos_bottom = []
ypos = []
for ypix in range(self.flats[i].image.shape[0]) :
ypos.append(ypix+1)
xpos_top.append(self.flats[i].image.shape[1] - top_trace_polynomials[slit](ypix)+1)
xpos_bottom.append(self.flats[i].image.shape[1] - bottom_trace_polynomials[slit](ypix)+1)
ypos_traces.append(ypos)
xpos_top_traces.append(xpos_top)
xpos_bottom_traces.append(xpos_bottom)
self.ypos_traces.append(ypos_traces)
self.xpos_top_traces.append(xpos_top_traces)
self.xpos_bottom_traces.append(xpos_bottom_traces)
def plot(self, subplot, title, tooltip):
self.flatdisp.setLabels('X [pix]', 'Y [pix]')
self.flatdisp.display(subplot, title, tooltip, self.flats[self.ext_sel].image)
if len(self.slittraces) >= 1:
subplot.autoscale(enable=False)
for slit in range(self.nslits[self.ext_sel]) :
subplot.plot(self.xpos_top_traces[self.ext_sel][slit], self.ypos_traces[self.ext_sel][slit],
linestyle='solid',color='red')
subplot.plot(self.xpos_bottom_traces[self.ext_sel][slit], self.ypos_traces[self.ext_sel][slit],
linestyle='solid',color='darkred')
def selectMultiplexing(self, multiplexing_idx):
self.ext_sel = multiplexing_idx - 1
class PlotableNormFlat (PlotableFlat) :
def __init__(self, fits_flat, fits_slittrace):
super(PlotableNormFlat, self).__init__(fits_flat, fits_slittrace)
def plot(self, subplot, title, tooltip):
self.flatdisp.setZLimits((0.9, 1.1))
self.flats[self.ext_sel].image[self.flats[self.ext_sel].image > 5.] = 0
super(PlotableNormFlat, self).plot(subplot, title, tooltip)
class PlotableRawFlat (PlotableFlat) :
def __init__(self, fits_flat_raw, fits_master_flat, fits_slittrace):
super(PlotableRawFlat, self).__init__(fits_flat_raw, fits_slittrace)
if len(self.slittraces) >= 1 and fits_master_flat is not None :
master_flat = PipelineProduct(fits_master_flat)
self.trimm_lly = master_flat.all_hdu[0].header.get('HIERARCH ESO QC TRIMM LLY')
#Change the traces by the amount of overscan in Y that has been removed
#TODO: Fix this
for xpos_top in self.xpos_top_traces[self.ext_sel]:
for j, xpos in enumerate(xpos_top):
xpos_top[j] = xpos + self.trimm_lly - 1
for xpos_bottom in self.xpos_bottom_traces[self.ext_sel]:
for j, xpos in enumerate(xpos_bottom):
xpos_bottom[j] = xpos + self.trimm_lly -1
def plot(self, subplot, title, tooltip):
super(PlotableRawFlat, self).plot(subplot, title, tooltip)
class PlotableSpatialMap :
def __init__(self, fits_spatialmap):
self.spatialmap = PipelineProduct(fits_spatialmap)
self.spatialmapdisp = ImageDisplay()
self.loadFromFits()
def loadFromFits(self) :
#Reading the flat image
self.spatialmap.readImage()
def plot(self, subplot, title, tooltip):
self.spatialmapdisp.setLabels('X', 'Y')
self.spatialmapdisp.setZLimits((0., 100))
self.spatialmapdisp.display(subplot, title, tooltip, self.spatialmap.image)
class PlotableMappedScience :
def __init__(self, fits_mappedscience, fits_objecttable):
self.ext_sel = 0
mappedscience = PipelineProduct(fits_mappedscience)
self.multiext = False
self.ext_sel = 0
if len(mappedscience.all_hdu) > 2:
self.multiext = True
self.mappedsciences = []
if(self.multiext) :
for iext in range(1, len(mappedscience.all_hdu), 2) :
self.mappedsciences.append(PipelineProduct(fits_mappedscience))
else :
self.mappedsciences.append(mappedscience)
self.mappedsciencedisp = ImageDisplay()
if fits_objecttable is not None:
self.objecttables = []
for iext in range(0, len(self.mappedsciences)) :
self.objecttables.append(PipelineProduct(fits_objecttable))
else :
self.objecttables = None
self.loadFromFits()
def loadFromFits(self) :
#Reading the object images
if(self.multiext) :
read_ext = 1
else:
read_ext = 0
for mappedscience in self.mappedsciences :
mappedscience.readImage(read_ext)
read_ext = read_ext + 2
#Reading the object table
if self.objecttables is not None:
self.nobjects = []
self.ybottom_obj_extracts = []
self.ytop_obj_extracts = []
self.ybottom_slits = []
self.ytop_slits = []
for iext in range(0, len(self.objecttables)) :
objecttable = self.objecttables[iext]
nslit = objecttable.getTableNrows(iext+1)
n_object_cols = 0
for col in objecttable.all_hdu[iext+1].data.columns:
if "object" in col.name:
n_object_cols = n_object_cols + 1
maxobjectperslit = n_object_cols
objecttable.readTableColumn(iext+1, 'position')
position = objecttable.column
self.ybottom_slits.append(position)
objecttable.readTableColumn(iext+1, 'length')
self.ytop_slits.append([ylow + length for (ylow, length) in zip(position, objecttable.column) if length > 0])
start_extracted_cols = []
end_extracted_cols = []
for obj in range(maxobjectperslit):
colname = 'start_%d'%(obj+1)
objecttable.readTableColumn(iext+1, colname)
start_extracted_cols.append(objecttable.column)
colname = 'end_%d'%(obj+1)
objecttable.readTableColumn(iext+1, colname)
end_extracted_cols.append(objecttable.column)
ybottom_obj_extract = []
ytop_obj_extract = []
for slit in range(nslit) :
for obj in range(maxobjectperslit) :
ybottom = start_extracted_cols[obj][slit]
ytop = end_extracted_cols[obj][slit]
if ybottom != -1 :
ybottom_obj_extract.append(ybottom)
ytop_obj_extract.append(ytop)
self.ybottom_obj_extracts.append(ybottom_obj_extract)
self.ytop_obj_extracts.append(ytop_obj_extract)
self.nobjects.append(len(ybottom_obj_extract))
def plot(self, subplot, title, tooltip):
self.mappedsciencedisp.setLabels('X [pix]', 'Y [pix]')
self.mappedsciencedisp.display(subplot, title, tooltip,
self.mappedsciences[self.ext_sel].image)
if self.objecttables is not None:
subplot.autoscale(enable=False)
for obj in range(self.nobjects[self.ext_sel]) :
subplot.axhline(self.ytop_obj_extracts[self.ext_sel][obj], linestyle='solid',color='red')
subplot.axhline(self.ybottom_obj_extracts[self.ext_sel][obj], linestyle='solid',color='yellow')
color_slit = 'blue'
for yslit in self.ytop_slits[self.ext_sel]:
subplot.axhline(yslit, linestyle='solid', color=color_slit)
for yslit in self.ybottom_slits[self.ext_sel]:
subplot.axhline(yslit, linestyle='solid', color=color_slit)
def getObjectInPosition(self, ypos) :
for obj in range(self.nobjects[self.ext_sel]) :
if ypos > self.ybottom_obj_extracts[self.ext_sel][obj] and \
ypos < self.ytop_obj_extracts[self.ext_sel][obj] :
return self.nobjects[self.ext_sel] - obj
return -1
def selectMultiplexing(self, multiplexing_idx):
self.ext_sel = multiplexing_idx - 1
class PlotableDispResiduals :
def __init__(self, fits_dispresiduals):
self.multiext = False
self.ext_sel = 0
disp = PipelineProduct(fits_dispresiduals)
self.next = len(disp.all_hdu) - 1
if len(disp.all_hdu) > 2:
self.multiext = True
self.dispresiduals = []
for iext in range(1, len(disp.all_hdu)) :
self.dispresiduals.append(PipelineProduct(fits_dispresiduals))
self.resdisplay = ScatterDisplay()
self.loadFromFits()
def loadFromFits(self) :
self.residuals = []
self.allwave = []
self.allypos = []
self.allresiduals = []
for iext in range(0, self.next) :
#Reading the residuals table
self.dispresiduals[iext].readTableColumn(iext + 1, 'wavelength')
wave = self.dispresiduals[iext].column
nwave = self.dispresiduals[iext].getTableNrows(iext+1)
ncolumns = self.dispresiduals[iext].getTableNcols(iext+1)
nselectedrows = (ncolumns - 1) // 3
this_residuals = []
this_allwave = []
this_allypos = []
this_allresiduals = []
for i in range(nselectedrows) :
#TODO: Currently the residuals are computed every 10 rows.
#This is hard-coded in the pipeline. It would be better just to detect the
#columns whose name start with 'r'
colname = 'r%d'%(i*10)
self.dispresiduals[iext].readTableColumn(iext + 1, colname)
row_residuals = self.dispresiduals[iext].column
this_residuals.append(row_residuals)
this_allwave.extend(wave)
this_allresiduals.extend(row_residuals)
ypos = i*10.
this_allypos.extend([ypos] * nwave)
self.residuals.append(this_residuals)
self.allwave.append(this_allwave)
self.allypos.append(this_allypos)
self.allresiduals.append(this_allresiduals)
def plotResVsWave(self, subplot, title, tooltip, excluded_lines = None):
self.resdisplay.setLabels('Wavelength [Ang]','Residual [pix]')
self.resdisplay.display(subplot, title, tooltip, self.allwave[self.ext_sel],
self.allresiduals[self.ext_sel])
if excluded_lines is not None :
for line in excluded_lines :
subplot.axvline(line, linestyle='solid',color='red')
def plotResVsY(self, subplot, title, tooltip):
self.resdisplay.setLabels('Ypos [pix]','Residual [pix]')
self.resdisplay.display(subplot, title, tooltip, self.allypos[self.ext_sel],
self.allresiduals[self.ext_sel])
def selectMultiplexing(self, multiplexing_idx):
self.ext_sel = multiplexing_idx - 1
def getClosestLine(self, wave_selected) :
distance = numpy.fabs(self.allwave[self.ext_sel] - wave_selected)
idx = numpy.nanargmin(distance)
return self.allwave[self.ext_sel][idx]
class PlotableDetectedLines :
def __init__(self, fits_detectedlines):
self.multiext = False
self.ext_sel = 0
detect = PipelineProduct(fits_detectedlines)
self.next = len(detect.all_hdu) - 1
if len(detect.all_hdu) > 2:
self.multiext = True
self.detectedlines = []
for iext in range(1, len(detect.all_hdu)) :
self.detectedlines.append(PipelineProduct(fits_detectedlines))
self.xydisplay = ScatterDisplay()
self.resdisplay = ScatterDisplay()
self.loadFromFits()
def loadFromFits(self) :
#Reading the residuals table
self.x_pix = []
self.y_pix = []
self.x_pix_iter = []
self.y_pix_iter = []
self.wave = []
self.wave_iter = []
self.res_xpos = []
self.fit_used = []
for iext in range(0, self.next) :
try :
self.detectedlines[iext].readTableColumn(iext + 1, 'xpos_rectified')
x_pix = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'ypos_rectified')
y_pix = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'xpos_rectified_iter')
x_pix_iter = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'ypos_rectified_iter')
y_pix_iter = self.detectedlines[iext].column
except KeyError:
self.detectedlines[iext].readTableColumn(iext + 1, 'xpos')
x_pix = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'ypos')
y_pix = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'xpos_iter')
x_pix_iter = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'ypos_iter')
y_pix_iter = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'wave_ident')
wave = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'wave_ident_iter')
wave_iter = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'res_xpos')
res_xpos = self.detectedlines[iext].column
self.detectedlines[iext].readTableColumn(iext + 1, 'fit_used')
fit_used = self.detectedlines[iext].column
self.x_pix.append(x_pix)
self.y_pix.append(y_pix)
self.x_pix_iter.append(x_pix_iter)
self.y_pix_iter.append(y_pix_iter)
self.wave.append(wave)
self.wave_iter.append(wave_iter)
self.res_xpos.append(res_xpos)
self.fit_used.append(fit_used)
def plotXVsY(self, subplot, title, tooltip):
#We first plot all the detected lines
self.xydisplay.setLabels('Xpos [pix]','Ypos [pix]')
self.xydisplay.setColor('black')
self.xydisplay.display(subplot, title, tooltip, self.x_pix[self.ext_sel],
self.y_pix[self.ext_sel])
#We then overplot the identified lines in the second iteration
self.xydisplay.setColor('lightgreen')
self.xydisplay.display(subplot, title, tooltip,
self.x_pix_iter[self.ext_sel][numpy.isfinite(self.wave_iter[self.ext_sel])],
self.y_pix_iter[self.ext_sel][numpy.isfinite(self.wave_iter[self.ext_sel])])
#And then we overplot the identified lines in the first iteration
self.xydisplay.setColor('green')
self.xydisplay.display(subplot, title, tooltip,
self.x_pix[self.ext_sel][numpy.isfinite(self.wave[self.ext_sel])],
self.y_pix[self.ext_sel][numpy.isfinite(self.wave[self.ext_sel])])
#We then overplot the identified lines which have been rejected in the fit
self.xydisplay.setColor('red')
identified = numpy.logical_or(numpy.isfinite(self.wave_iter[self.ext_sel]), numpy.isfinite(self.wave[self.ext_sel]))
not_used_fit = numpy.logical_and(identified, self.fit_used[self.ext_sel] == 0)
self.xydisplay.display(subplot, title, tooltip,
self.x_pix_iter[self.ext_sel][not_used_fit],
self.y_pix_iter[self.ext_sel][not_used_fit])
def plotResVsWave(self, subplot, title, tooltip, excluded_lines = None):
self.resdisplay.setLabels('Wavelength [Ang]','Residual [pix]')
self.resdisplay.setColor('black')
self.resdisplay.display(subplot, title, tooltip,
self.wave[numpy.isfinite(self.res_xpos)],
self.res_xpos[numpy.isfinite(self.res_xpos)])
if excluded_lines is not None :
for line in excluded_lines :
subplot.axvline(line, linestyle='solid',color='red')
def selectMultiplexing(self, multiplexing_idx):
self.ext_sel = multiplexing_idx - 1
class PlotableSkylinesOffsets :
def __init__(self, fits_skylines_off):
self.skylines_off = PipelineProduct(fits_skylines_off)
self.resdisplay = ScatterDisplay()
self.loadFromFits()
def loadFromFits(self) :
#Reading the slylines offset table
nslits = self.skylines_off.getTableNcols(1) - 1
skylines_wave = self.skylines_off.readTableColumn(1, 'wave')
self.allskylines_wave = list()
self.allwave_res = list()
for col in range(nslits) :
self.allskylines_wave.extend(skylines_wave)
wave_res = self.skylines_off.readTableColumn(1, col + 1)
self.allwave_res.extend(wave_res)
def plot(self, subplot, title, tooltip):
self.resdisplay.setLabels('Wavelength [Ang]','Residual [Ang]')
self.resdisplay.setColor('black')
self.resdisplay.setPointSize(7)
self.resdisplay.display(subplot, title, tooltip,
self.allskylines_wave, self.allwave_res)
class PlotableExtractedScience :
def __init__(self, fits_extractedscience, fits_extractedfluxcalibrated = None):
self.obj_id = -1
self.ext_sel = 0
self.plot_flux_cal = False
extractedscience = PipelineProduct(fits_extractedscience)
extractedfluxcalibrated = self.getPipelineProduct(fits_extractedfluxcalibrated)
self.multiext = False
self.ext_sel = 0
if len(extractedscience.all_hdu) > 1:
self.multiext = True
self.extractedsciences = []
self.extractedfluxcalibratedsciences = []
if(self.multiext) :
for iext in range(1, len(extractedscience.all_hdu)) :
self.extractedsciences.append(PipelineProduct(fits_extractedscience))
self.extractedfluxcalibratedsciences.append(self.getPipelineProduct(fits_extractedfluxcalibrated))
else :
self.extractedsciences.append(extractedscience)
self.extractedfluxcalibratedsciences.append(extractedfluxcalibrated)
self.spectrumdisplay = SpectrumDisplay()
self.loadFromFits()
def getPipelineProduct(self, frame):
if frame is None:
return None
return PipelineProduct(frame)
def loadFromFits(self) :
#Reading the object images
if(self.multiext) :
read_ext = 1
else:
read_ext = 0
self.nobj = []
self.bunit_extracted = []
self.bunit_flux_cal = []
self.wave = []
for i in range(0, len(self.extractedsciences)) :
extractedscience = self.extractedsciences[i]
extractedscience.readImage(read_ext)
extractedscience_flux_cal = self.extractedfluxcalibratedsciences[i]
if extractedscience_flux_cal is not None:
extractedscience_flux_cal.readImage(read_ext)
self.bunit_flux_cal.append(extractedscience_flux_cal.readKeyword('BUNIT', 0))
read_ext = read_ext + 1
self.nobj.append(extractedscience.image.shape[0])
crpix1 = extractedscience.readKeyword('CRPIX1', 0)
crval1 = extractedscience.readKeyword('CRVAL1', 0)
cdelt1 = extractedscience.readKeyword('CD1_1', 0)
self.bunit_extracted.append(extractedscience.readKeyword('BUNIT', 0))
nwave = extractedscience.image.shape[1]
self.wave.append(numpy.arange(1, nwave+1, 1))
self.wave[i] = (self.wave[i] - crpix1) * cdelt1 + crval1
if(self.obj_id == -1) : # Select brightest
self.selectBrightest()
self.setFluxSelected()
def selectBrightest(self):
if self.nobj[self.ext_sel] == 1:
self.obj_id = 1
median = 0
for obj in range(self.nobj[self.ext_sel]) :
new_median = numpy.median(self.extractedsciences[self.ext_sel].image[obj,:])
if new_median > median :
median = new_median
self.obj_id = obj + 1
def setFluxSelected(self) :
self.flux = self.extractedsciences[self.ext_sel].image[self.obj_id-1,:]
self.flux_cal = None
if(self.extractedfluxcalibratedsciences[self.ext_sel] is not None):
self.flux_cal = self.extractedfluxcalibratedsciences[self.ext_sel].image[self.obj_id-1,:]
def selectObject(self, obj_id):
self.obj_id = obj_id
self.setFluxSelected()
def selectMultiplexing(self, multiplexing_idx, plot_flux_cal = False):
self.ext_sel = multiplexing_idx - 1
self.selectBrightest()
self.setFluxSelected()
self.plot_flux_cal = plot_flux_cal
def plot(self, subplot, title, tooltip):
units = self.bunit_extracted[self.ext_sel]
if(self.plot_flux_cal and self.flux_cal is not None):
units = self.bunit_flux_cal[self.ext_sel]
self.spectrumdisplay.setLabels('Lambda', 'Total Flux ['+units+']')
if(not self.plot_flux_cal):
self.spectrumdisplay.display(subplot, title, tooltip, self.wave[self.ext_sel], self.flux,
autolimits = True)
elif(self.flux_cal is not None):
self.spectrumdisplay.display(subplot, title, tooltip, self.wave[self.ext_sel], self.flux_cal,
autolimits = True)
class PlotableSpecPhot :
def __init__(self, fits):
self.resp = PipelineProduct(fits)
self.respdisp = SpectrumDisplay()
self.tabdisp = ScatterDisplay()
self.flat_sed = False
self.loadFromFits()
def loadFromFits(self) :
self.wave = self.resp.readTableColumn(1, 'WAVE')
self.wave_obs = self.resp.readTableColumn(2, 'WAVE')
self.std_ref_flux = self.resp.readTableColumn(1, 'STD_FLUX')
self.std_obs_flux = self.resp.readTableColumn(1, 'OBS_FLUX')
if 'RESPONSE' in self.resp.all_hdu[2].columns.names :
self.fit_response = self.resp.readTableColumn(2, 'RESPONSE')
self.raw_response = self.resp.readTableColumn(1, 'RAW_RESPONSE')
else :
self.fit_response = self.resp.readTableColumn(2, 'RESPONSE_FFSED')
self.raw_response = self.resp.readTableColumn(1, 'RAW_RESPONSE_FFSED')
self.flat_sed = True
self.used_fit = self.resp.readTableColumn(1, 'USED_FIT')
self.raw_response_nonnull = self.raw_response[self.raw_response > 0]
self.wave_nonnull = self.wave[self.raw_response > 0]
self.wave_used = self.wave[self.used_fit > 0]
self.raw_response_used = self.raw_response[self.used_fit > 0]
def getMinWave(self):
return min(min(self.wave_nonnull), min(self.wave_used))
def getMaxWave(self):
return max(max(self.wave_nonnull), max(self.wave_used))
def plotResponse(self, subplot, title, tooltip):
self.respdisp.setLabels('$\lambda\, [\AA]$','$10^{-16} erg\, cm^{-2} e-^{-1}$')
self.respdisp.flux_lim = 0., numpy.max(self.raw_response_nonnull) * 1.1
self.respdisp.display(subplot, title, tooltip, self.wave_obs, self.fit_response, autolimits = False)
subplot.scatter(self.wave_nonnull, self.raw_response_nonnull, color='darkblue')
subplot.scatter(self.wave_used, self.raw_response_used, color='lightgreen')
def plotStdExtracted(self, subplot, title, tooltip):
self.respdisp.setLabels('$\lambda\, [\AA]$','$e-\, s^{-1} \AA^{-1}$')
std_obs_flux_nonnull = self.std_obs_flux[self.std_obs_flux > 0]
wave_nonnull = self.wave[self.std_obs_flux > 0]
self.respdisp.display(subplot, title, tooltip,
wave_nonnull, std_obs_flux_nonnull, autolimits = True)
def plotStdTabulated(self, subplot, title, tooltip):
self.tabdisp.setLabels('$\lambda\, [\AA]$','$10^{-16} erg\, cm^{-2} s^{-1} \AA-^{-1}$')
self.tabdisp.display(subplot, title, tooltip, self.wave, self.std_ref_flux)
class PlotableStdTabRedFlux :
def __init__(self, reducedfluxstd_fits, reducedstd_fits, specphot_fits):
self.reducedfluxstd = PlotableExtractedScience(reducedfluxstd_fits)
self.reducedstd = PlotableExtractedScience(reducedstd_fits)
self.specphot = PlotableSpecPhot(specphot_fits)
self.tabstddisp = ScatterDisplay()
self.stdreddisp = ScatterDisplay()
self.loadFromFits()
def loadFromFits(self) :
#This will select the brightest spectrum, which is the criteria
#used to extract the standard star
self.reducedfluxstd.loadFromFits()
self.reducedstd.loadFromFits()
self.specphot.loadFromFits()
self.std_ref_flux_nonnull = self.specphot.std_ref_flux[self.specphot.raw_response > 0]
self.std_ref_flux_used = self.specphot.std_ref_flux[self.specphot.used_fit > 0]
def plotStdTabRedFlux(self, subplot, title, tooltip) :
self.tabstddisp.setLabels('$\lambda\, [\AA]$','$10^{-16} erg\, cm^{-2} s^{-1} \AA^{-1}$')
self.tabstddisp.setLimits(self.reducedfluxstd.wave[self.reducedfluxstd.ext_sel][0],
self.reducedfluxstd.wave[self.reducedfluxstd.ext_sel][len(self.reducedfluxstd.wave[self.reducedfluxstd.ext_sel])-1],
0.,
numpy.max(self.reducedfluxstd.flux) * 1.1)
self.tabstddisp.setColor('red')
self.tabstddisp.display(subplot, title, tooltip,
self.reducedfluxstd.wave[self.reducedfluxstd.ext_sel], self.reducedfluxstd.flux)
self.tabstddisp.setColor('darkblue')
self.tabstddisp.setPointSize(20)
subplot.scatter(self.specphot.wave, self.specphot.std_ref_flux)
subplot.scatter(self.specphot.wave_used, self.std_ref_flux_used, color='lightgreen')
def plotStdRed(self, subplot, title, tooltip) :
self.stdreddisp.setLabels('$\lambda\, [\AA]$','$ADU/s$')
self.stdreddisp.setLimits(self.reducedstd.wave[self.reducedstd.ext_sel][0],
self.reducedstd.wave[self.reducedstd.ext_sel][len(self.reducedstd.wave[self.reducedstd.ext_sel])-1],
0.,
numpy.max(self.reducedstd.flux) * 1.1)
self.stdreddisp.setColor('red')
self.stdreddisp.display(subplot, title, tooltip,
self.reducedstd.wave[self.reducedstd.ext_sel], self.reducedstd.flux)
|