File: vimos_science_interact.py

package info (click to toggle)
cpl-plugin-vimos 4.1.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 28,228 kB
  • sloc: ansic: 169,271; cpp: 16,177; sh: 4,344; python: 3,678; makefile: 1,138; perl: 10
file content (306 lines) | stat: -rwxr-xr-x 14,687 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# import the needed modules
from __future__ import absolute_import
from __future__ import print_function
try:
  import reflex
  import matplotlib.gridspec
  import_sucess = True

#NOTE for developers: 
# -If you want to modify the current script to cope
#  with different parameters, this is the function to modify:
#  setInteractiveParameters()
# -If you want to modify the current script to read different data from
#  the input FITS, this is the function to modify:
#  readFitsData()                  (from class DataPlotterManager) 
# -If you want to modify the current script to modify the plots (using the same
#  data),  this is the function to modify:
#  plotProductsGraphics()          (from class DataPlotterManager)
# -If you want to modify the text that appears in the "Help" button,
#  this is the function to modify:
#  setWindowHelp()
# -If you want to modify the title of the window, modify this function:
#  setWindowTitle()


  #This class deals with the specific details of data reading and final plotting.
  class DataPlotterManager:
    # This function will read all the columns, images and whatever is needed
    # from the products. The variables , self.plot_x, self.plot_y, etc...
    # are used later in function plotProductsGraphics().
    # Add/delete these variables as you need (only that plotProductsGraphics()
    # has to use the same names).
    # You can also create some additional variables (like statistics) after
    # reading the files.
    # If you use a control variable (self.xxx_found), you can modify 
    # later on the layout of the plotting window based on the presence of 
    # given input files. 
    # sof contains all the set of frames

    no_flux_cal_label = "Not Cal "
    flux_cal_label = "Cal "

    def readFitsData(self, fitsFiles):
      #Initialise the objects to read/display
      self.sci_mapped    = None
      self.sci_extracted = None
      self.skylines_off  = None
      self.object_table  = None
      self.objid = 1

      #Read all the products
      frames = dict()
      for frame in fitsFiles:
        if frame == '' :
          continue
        category = frame.category
        frames[category] = frame

      if 'OBJECT_SCI_TABLE' in frames :
        self.object_table = frames['OBJECT_SCI_TABLE']

      if 'MOS_SCIENCE_EXTRACTED' in frames:
        self.sci_mapped   = PlotableMappedScience(frames["MOS_SCIENCE_EXTRACTED"],
                                                  self.object_table)

      self.has_flux_cal = 'MOS_SCIENCE_FLUX_REDUCED' in frames
      mos_science_flux_reduced = None
      if self.has_flux_cal:
        mos_science_flux_reduced = frames["MOS_SCIENCE_FLUX_REDUCED"]

      if 'MOS_SCIENCE_REDUCED' in frames:
        self.sci_extracted   = PlotableExtractedScience(frames["MOS_SCIENCE_REDUCED"],
							mos_science_flux_reduced)
          
      if 'SKY_SHIFTS_SLIT_SCI_'in frames:
        self.skylines_off   = PlotableSkylinesOffsets(frames["SKY_SHIFTS_SLIT_SCI_"])
        if numpy.isnan(self.skylines_off.allwave_res).all() :
          self.skylines_off = None #All the offsets are NULL, not plotting
          
    # This function creates all the subplots. It is responsible for the plotting 
    # layouts. 
    # There can different layouts, depending on the availability of data
    # Note that subplot(I,J,K) means the Kth plot in a IxJ grid 
    # Note also that the last one is actually a box with text, no graphs.
    def addSubplots(self, figure):
      if self.sci_mapped is not None :
        if self.skylines_off is not None :
          gs = matplotlib.gridspec.GridSpec(7,7)
          self.subplot_sci_mapped    = figure.add_subplot(gs[0:2,:])
          self.subplot_sci_extracted = figure.add_subplot(gs[3:5,:])
          self.subplot_skylines_off  = figure.add_subplot(gs[6,:])
        else :
          gs = matplotlib.gridspec.GridSpec(4,6)
          self.subplot_sci_mapped    = figure.add_subplot(gs[0:2,0:6])
          self.subplot_sci_extracted = figure.add_subplot(gs[2:4,0:5])
          self.subplot_mplex_select_flux_not_cal = figure.add_subplot(gs[3:4,5])

      else : 
        self.subtext_nodata      = figure.add_subplot(1,1,1)
          
    # This is the function that makes the plots.
    # Add new plots or delete them using the given scheme.
    # The data has been already stored in self.plot_x, self.plot_xdif, etc ...
    # It is mandatory to add a tooltip variable to each subplot.
    # One might be tempted to merge addSubplots() and plotProductsGraphics().
    # There is a reason not to do it: addSubplots() is called only once at
    # startup, while plotProductsGraphics() is called always there is a resize.
    def plotProductsGraphics(self):
      if self.sci_mapped is not None :

        #Reduced science
        self.plotSciMapped()

        #Extracted science
        if self.sci_extracted is not None :
            self.plotSciExtracted()
        else:
            self.showNoExtracted()

        #Sky lines offset
        self.plotSkyLinesOffsets()

      else :
        #Data not found info
        self.showNoData()
  
    def plotSciMapped(self) :
        title_sci_mapped   = 'Mapped science (not flux-calibrated)'
        tooltip_sci_mapped = """Mapped science (not flux-calibrated).
The regions of extracted spectra are marked by red 
(upper boundary of extraction region) 
and yellow (lower boundary) lines. The slits are marked by blue lines.
By middle-clicking within one of these regions,
you select an extracted spectrum,
which will be plotted below."""
        self.sci_mapped.plot(self.subplot_sci_mapped, title_sci_mapped,
                             tooltip_sci_mapped)

    def plotSciExtracted(self) :
        title_sci_extracted = 'Extracted science spectrum #' + str(self.sci_extracted.obj_id)
        tooltip_sci_extracted ="""Extracted science spectrum.
This is the sky-subtracted spectrum as extracted by the pipeline."""
        self.subplot_sci_extracted.clear()
        self.sci_extracted.plot(self.subplot_sci_extracted, title_sci_extracted,
                                tooltip_sci_extracted)

    def showNoExtracted(self) :
      #Data not found info
      self.subplot_sci_extracted.set_axis_off()
      self.text_nodata = 'No objects found. There are no extracted spectra.'
      self.subplot_sci_extracted.text(0.1, 0.6, self.text_nodata, color='#11557c', fontsize=18,
                               ha='left', va='center', alpha=1.0)
      self.subplot_sci_extracted.tooltip='No objects found. There are no extracted spectra'


    def plotSkyLinesOffsets(self) :
      if self.skylines_off is not None :
        title_skylines_off   = 'Sky lines offsets'
        tooltip_skylines_off ="""Sky lines offsets.
This plots shows the offsets of certain sky lines
(defined in the MASTER_SKYLINECAT table or 
pipeline values as given in the User Manual) 
relative to their reference position. 
The offsets are adjusted by default by 
a constant shift (--skyalign parameter)."""
        if self.sci_extracted is not None:
          wave_minlim = self.sci_extracted.spectrumdisplay.wave_lim[0]
          wave_maxlim = self.sci_extracted.spectrumdisplay.wave_lim[1]
          res_minlim = numpy.nanmin(self.skylines_off.allwave_res)
          res_maxlim = numpy.nanmax(self.skylines_off.allwave_res)
          if (res_minlim == res_maxlim) :
            res_minlim = 0
            res_maxlim = 2 * res_maxlim
          self.skylines_off.resdisplay.setLimits(wave_minlim, wave_maxlim,
                                                 res_minlim, res_maxlim)
        self.skylines_off.plot(self.subplot_skylines_off, title_skylines_off,
                               tooltip_skylines_off)

    def showNoData(self) :
      #Data not found info
      self.subtext_nodata.set_axis_off()
      self.text_nodata = 'Science data not found in the products (PRO.CATG=)'
      self.subtext_nodata.text(0.1, 0.6, self.text_nodata, color='#11557c', fontsize=18,
                               ha='left', va='center', alpha=1.0)
      self.subtext_nodata.tooltip='Science data not found in the products'

    def plotWidgets(self) :
      widgets = list()
      
      if self.sci_mapped is not None :
        #Object selector
        if self.sci_mapped is not None :
          # Clickable subplot
          self.clickablesmapped = InteractiveClickableSubplot(
            self.subplot_sci_mapped, self.setExtractedObject)
          widgets.append(self.clickablesmapped)
        
        # Multiplexing Selector radiobutton
        self.keys = dict()
        labels = []
        for i in range(1, len(self.sci_mapped.mappedsciences)+1) :
          label = self.no_flux_cal_label + str(i)
          self.keys[label] = [i, False]
          labels.append(label)

        if self.has_flux_cal:
          for i in range(1, len(self.sci_mapped.mappedsciences)+1) :
            label = self.flux_cal_label + str(i)
            self.keys[label] = [i, True]
            labels.append(label)

        self.radiomplex_flux_not_cal =  InteractiveRadioButtons(self.subplot_mplex_select_flux_not_cal, 
            self.setMultiplexing, labels, 0, title='Mplex')
        widgets.append(self.radiomplex_flux_not_cal)

      return widgets
    
    def setExtractedObject(self, point) :
      obj = self.sci_mapped.getObjectInPosition(point.ydata)
      if obj != -1 :
        self.sci_extracted.selectObject(obj)
      self.plotSciExtracted()

    def setMultiplexing(self, label) :
      multiplexing_number, plot_flux_cal = self.keys[label]
      self.sci_mapped.selectMultiplexing(multiplexing_number)
      self.sci_extracted.selectMultiplexing(multiplexing_number, plot_flux_cal)
      self.subplot_sci_mapped.cla()
      self.subplot_sci_extracted.cla()
      self.plotSciMapped()
      self.plotSciExtracted()
        
                
    # This function specifies which are the parameters that should be presented
    # in the window to be edited.
    # Note that the parameter has to be also in the in_sop port (otherwise it 
    # won't appear in the window) 
    # The descriptions are used to show a tooltip. They should match one to one
    # with the parameter list 
    # Note also that parameters have to be prefixed by the 'recipe name:'
    def setInteractiveParameters(self):
      paramList = list()
      paramList.append(reflex.RecipeParameter('vmmosscience','skyglobal',group='Sky subtraction',description='Subtract global sky spectrum from CCD'))
      paramList.append(reflex.RecipeParameter('vmmosscience','skymedian',group='Sky subtraction',description='Sky subtraction from extracted slit spectra'))
      paramList.append(reflex.RecipeParameter('vmmosscience','skylocal',group='Sky subtraction',description='Sky subtraction from CCD slit spectra'))
      paramList.append(reflex.RecipeParameter('vmmosscience','cosmics',group='Sky subtraction',description='Eliminate cosmic rays hits (only if global sky subtraction is also requested)'))
      paramList.append(reflex.RecipeParameter('vmmosscience','slit_margin',group='Spectra extraction',description='Number of pixels to exclude at each slit in object detection and extraction.'))
      paramList.append(reflex.RecipeParameter('vmmosscience','ext_radius',group='Spectra extraction',description='Maximum extraction radius for detected objects (pixel)'))
      paramList.append(reflex.RecipeParameter('vmmosscience','cont_radius',group='Spectra extraction',description='Minimum distance at which two objects of equal luminosity do not contaminate each other (pixel)'))
      paramList.append(reflex.RecipeParameter('vmmosscience','ext_mode',group='Spectra extraction',description='Object extraction method: 0 = aperture, 1 = Horne optimal extraction'))
      paramList.append(reflex.RecipeParameter('vmmosscience','skyalign',group='Wave calib',description='Polynomial order for sky lines alignment, or -1 to avoid alignment'))
      paramList.append(reflex.RecipeParameter('vmmosscience','detection',group='Spectra extraction',description='Object detection threshold (ADU)'))
      paramList.append(reflex.RecipeParameter('vmmosscience','alignment',group='Dithering',description='Type of alignment of dithered frames, either to the nearest neighbour pixel or to fractions of pixel.  <integer | float>'))
      paramList.append(reflex.RecipeParameter('vmmosscience','dither',group='Dithering',description='Align dithered frames before stacking(for multiple input frames)'))
      paramList.append(reflex.RecipeParameter('vmmosscience','compute',group='Dithering',description='Compute offsets of dithered images from detected objects (true), or read offsets from header (false)'))
      paramList.append(reflex.RecipeParameter('vmmosscience','stack_method',group='Stacking',description='Frames combination method. <average | median | minmax | ksigma>'))
      paramList.append(reflex.RecipeParameter('vmmosscience','minrejection',group='Stacking',description='Number of lowest values to be rejected'))
      paramList.append(reflex.RecipeParameter('vmmosscience','maxrejection',group='Stacking',description='Number of highest values to be rejected'))
      paramList.append(reflex.RecipeParameter('vmmosscience','klow',group='Stacking',description='Low threshold in ksigma method'))
      paramList.append(reflex.RecipeParameter('vmmosscience','khigh',group='Stacking',description='High threshold in ksigma method'))
      paramList.append(reflex.RecipeParameter('vmmosscience','kiter',group='Stacking',description='Max number of iterations in ksigma method'))
      return paramList

    def setWindowHelp(self):
      help_text = """
In this window, the user will interact with the Vimos science reduction"""
      return help_text

    def setWindowTitle(self):
      title = 'Vimos Interactive Science Reduction'
      return title

except ImportError:
  import_sucess = 'false'
  print("Error importing modules pyfits, wx, matplotlib, numpy")

#This is the 'main' function
if __name__ == '__main__':

  # import reflex modules
  import reflex_interactive_app
  import sys

  # import UVES reflex modules
  from vimos_plot_common import *

  # Create interactive application
  interactive_app = reflex_interactive_app.PipelineInteractiveApp(enable_init_sop=True)

  #Check if import failed or not
  if import_sucess == 'false' :
    interactive_app.setEnableGUI('false')

  #Open the interactive window if enabled
  if interactive_app.isGUIEnabled() :
    #Get the specific functions for this window
    dataPlotManager = DataPlotterManager()
    interactive_app.setPlotManager(dataPlotManager)
    interactive_app.showGUI()
  else :
    interactive_app.passProductsThrough()

  # print outputs
  interactive_app.print_outputs()

  sys.exit()