1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
/* $Id: vimos_flat_normalise.cc,v 1.9 2013-10-24 16:44:34 cgarcia Exp $
*
* This file is part of the MOSES library
* Copyright (C) 2002-2010 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* $Author: cgarcia $
* $Date: 2013-10-24 16:44:34 $
* $Revision: 1.9 $
* $Name: not supported by cvs2svn $
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <cmath>
#include <functional>
#include "vimos_flat_normalise.h"
#include "moses.h"
#include "image_smooth.h"
#include "vector_utils.h"
#include "image_spline_fit.h"
#include "image_normalisation.h"
#define STRETCH_FACTOR (1.20)
vimos::flat_normaliser::flat_normaliser() : m_normalisation_image()
{
}
vimos::flat_normaliser::~flat_normaliser()
{
}
/**
* @brief
* Normalise a flat field exposure
*
* @param flat Image containing the original flat field spectra
* @param wave_cal The wavelength calibration
* @param spatial Spatial calibration image
* @param slits Table with slits positions
* @param polytraces Coefficients of spectral curvature polynomials
* @param blue Start lambda to process
* @param red End lambda to process
* @param dispersion Mean spectral dispersion
* @param spa_smooth_radius Number of pixels for smoothing kernel in spatial axis
* @param disp_smooth_radius Number of pixels for smoothing kernel in dispersion axis
* @param spa_fit_polyorder Order for polynomial fit along spatial axis
* @param disp_fit_knots Number of knots in the spline fitting along dispersion axis
* @param fit_threshold values below this will be igonred in the fits
* @param normalise_spa_local if TRUE spatial normalisation is done row-by-row
*
* @return The smoothed flat field exposure used for normalisation
*
* TODO: rewrite
* The input @em flat frame should be already bias subtracted, and should
* be oriented so that the dispersion direction is horizontal with @em blue
* on the left and @em red on the right. The flat field spectra are spatially
* rectified, heavily smoothed, and then mapped back on the CCD. The original
* @em flat image is divided IN PLACE by its smoothed counterpart, which is
* also returned. If the polynomial @em polyorder is set to a negative number
* the smoothing consists of a linear fit along the spatial direction
* (excluding 3+3 pixels at the spectral edges), and by a median filtering
* along the dispersion direction using a window with the specified
* @em sradius; alternatively, if @em polyorder is not negative, the smoothing
* will consist of a polynomial fitting of the illumination profile along
* the dispersion direction, performed independently for each row of the
* spatially remapped spectra.
* TODO: Use vimos::detected_slits rather than cpl_table* slits
*/
int vimos::flat_normaliser::mos_normalise
(mosca::image& flat, const mosca::wavelength_calibration& wave_cal,
cpl_image *spatial,
const std::vector<mosca::calibrated_slit>& calib_slits,
cpl_table *slits, cpl_table *polytraces,
double blue, double red,
double dispersion,
int spa_smooth_radius, int disp_smooth_radius,
int spa_fit_polyorder, int disp_fit_nknots,
double fit_threshold, bool normalise_spa_local)
{
const char *func = "mos_mosflat_normalise";
const char *clab[6] = {"c0", "c1", "c2", "c3", "c4", "c5"};
/* Max order is 5 */
cpl_image *rectified;
cpl_image *smo_flat;
cpl_polynomial *polytop;
cpl_polynomial *polybot;
int *slit_id;
float *sdata;
float *xdata;
float *wdata;
double vtop, vbot, value;
double top, bot;
double coeff;
double ytop, ybot;
double ypos;
double fvalue;
int ivalue;
int npseudo;
int pixel_above, pixel_below, refpixel, start_pixel, end_pixel;
int nx, ny;
int xlow, ylow, xhig, yhig;
int nslits;
int *position;
int *length;
int missing_top, missing_bot;
int order;
int null;
int i, j;
cpl_size k;
/* For debug puposes only: cpl_image *smo_rectified; */
if (flat.get_cpl_image() == NULL || slits == NULL || polytraces == NULL) {
cpl_error_set(func, CPL_ERROR_NULL_INPUT);
return 1;
}
if (dispersion <= 0.0) {
cpl_error_set(func, CPL_ERROR_ILLEGAL_INPUT);
return 1;
}
if (red - blue < dispersion) {
cpl_error_set(func, CPL_ERROR_ILLEGAL_INPUT);
return 1;
}
cpl_image * flat_im = flat.get_cpl_image();
cpl_image * flat_err = flat.get_cpl_image_err();
double reference = wave_cal.get_refwave();
rectified = mos_spatial_calibration(flat_im, slits, polytraces, reference,
blue, red, dispersion, 0, NULL);
nx = cpl_image_get_size_x(rectified);
ny = cpl_image_get_size_y(rectified);
smo_flat = cpl_image_new(cpl_image_get_size_x(spatial),
cpl_image_get_size_y(spatial), CPL_TYPE_FLOAT);
wdata = cpl_image_get_data_float(smo_flat);
nslits = cpl_table_get_nrow(slits);
order = cpl_table_get_ncol(polytraces) - 2;
position = cpl_table_get_data_int(slits, "position");
length = cpl_table_get_data_int(slits, "length");
slit_id = cpl_table_get_data_int(slits, "slit_id");
/*
* The spatial resampling is performed for a certain number of
* pixels above and below the position of the reference wavelength:
*/
pixel_above = (int)(STRETCH_FACTOR * (red - reference) / dispersion);
pixel_below = (int)(STRETCH_FACTOR * (reference - blue) / dispersion);
xlow = 1;
xhig = nx;
m_wave_profiles.clear();
for (i = 0; i < nslits; i++) {
if (length[i] == 0)
{
std::vector<float> empty_sed(nx, 0.);
m_wave_profiles.push_back(empty_sed);
m_wave_profiles_norm.push_back(1.);
continue;
}
/*
* We DON'T write:
*
* ylow = position[i];
* yhig = ylow + length[i];
*
* because the cpl_image pixels are counted from 1, and because in
* cpl_image_extract() the coordinates of the last pixel are inclusive.
*/
ylow = position[i] + 1;
yhig = ylow + length[i] - 1;
cpl_image * exslit_orig =
cpl_image_extract(rectified, xlow, ylow, xhig, yhig);
mosca::image im_exslit_orig(exslit_orig, true);
//Get a mask of valid pixels of the slit in the rectified space
std::vector<mosca::calibrated_slit>::const_iterator slit_it;
for(std::vector<mosca::calibrated_slit>::const_iterator it = calib_slits.begin();
it != calib_slits.end(); ++it) //Life would be easier with a lambda...
{
if(it->slit_id() == slit_id[i])
{
slit_it = it;
break;
}
}
cpl_mask * slit_mask_whole =
slit_it->get_mask_valid(flat.dispersion_axis());
cpl_image * slit_mask_im = cpl_image_new_from_mask(slit_mask_whole);
cpl_image * slit_mask_im_d = cpl_image_cast(slit_mask_im, CPL_TYPE_FLOAT);
cpl_image * slit_mask_rectified =
mos_spatial_calibration(slit_mask_im_d, slits, polytraces,
reference, blue, red, dispersion,
0, NULL);
//We don't consider fractional pixels yet
cpl_image_threshold(slit_mask_rectified, 0.75, 1.25, 0., 1.);
cpl_image * exslit_mask_rectified =
cpl_image_extract(slit_mask_rectified, xlow, ylow, xhig, yhig);
mosca::image slit_mask_im_mos(exslit_mask_rectified, true);
cpl_image_delete(slit_mask_rectified);
cpl_image_delete(slit_mask_im);
cpl_image_delete(slit_mask_im_d);
int final_spa_smooth_radius = spa_smooth_radius;
if (im_exslit_orig.size_spatial() / 2 < spa_smooth_radius)
{
final_spa_smooth_radius = im_exslit_orig.size_spatial() / 2;
cpl_msg_warning(cpl_func, "Slit too narrow for requested "
"smoothing radius %d. Using %d",
spa_smooth_radius, final_spa_smooth_radius);
}
std::vector<float> slit_spa_norm_profile;
std::vector<float> slit_disp_norm_profile;
mosca::image normslit = mosca::image_normalise_spa_local(im_exslit_orig,
slit_mask_im_mos,
final_spa_smooth_radius, disp_smooth_radius,
spa_fit_polyorder, disp_fit_nknots,
fit_threshold, normalise_spa_local,
slit_spa_norm_profile,
slit_disp_norm_profile);
//Get a position around the middle of the slit with a valid wave calib
int middle_slit = get_middle_slit_valid_calib(wave_cal, yhig, ylow);
//Get the pixel of the waveref at the middle of the slit
double pix_waveref = wave_cal.get_pixel(middle_slit,
wave_cal.get_refwave());
int pix_waveref_left = (int)std::floor(pix_waveref);
int pix_waveref_rigth = (int)std::ceil(pix_waveref);
//Normalise by the value at waveref
double prof_val_waveref = 1;
if(pix_waveref_left>=0 && pix_waveref_rigth < flat.size_dispersion())
prof_val_waveref = (slit_disp_norm_profile[pix_waveref_left] +
slit_disp_norm_profile[pix_waveref_rigth]) / 2.;
if(prof_val_waveref == 0.0)
cpl_msg_warning(cpl_func, "There is no flux at the reference wavelength for slit %i", slit_id[i]);
for(size_t i_prof = 0; i_prof < slit_disp_norm_profile.size(); i_prof++){
if(prof_val_waveref != 0.0)
slit_disp_norm_profile[i_prof] /= prof_val_waveref;
else
slit_disp_norm_profile[i_prof] = 0.0;
}
m_wave_profiles.push_back(slit_disp_norm_profile);
m_wave_profiles_norm.push_back(prof_val_waveref);
cpl_image * exslit = normslit.get_cpl_image();
/*
* Recover from the table of spectral curvature coefficients
* the curvature polynomials.
*/
refpixel = (int)(cpl_table_get_double(slits, "xtop", i, NULL));
start_pixel = refpixel - pixel_below;
if (start_pixel < 0)
start_pixel = 0;
end_pixel = refpixel + pixel_above;
if (end_pixel > nx)
end_pixel = nx;
missing_top = 0;
polytop = cpl_polynomial_new(1);
for (k = 0; k <= order; k++) {
coeff = cpl_table_get_double(polytraces, clab[k], 2*i, &null);
if (null) {
cpl_polynomial_delete(polytop);
missing_top = 1;
break;
}
cpl_polynomial_set_coeff(polytop, &k, coeff);
}
missing_bot = 0;
polybot = cpl_polynomial_new(1);
for (k = 0; k <= order; k++) {
coeff = cpl_table_get_double(polytraces, clab[k], 2*i+1, &null);
if (null) {
cpl_polynomial_delete(polybot);
missing_bot = 1;
break;
}
cpl_polynomial_set_coeff(polybot, &k, coeff);
}
if (missing_top && missing_bot) {
cpl_msg_debug(func, "Slit %d was not traced: no extraction!",
slit_id[i]);
continue;
}
/*
* In case just one of the two edges was not traced, the other
* edge curvature model is duplicated and shifted to the other
* end of the slit: better than nothing!
*/
if (missing_top) {
cpl_msg_debug(func, "Upper edge of slit %d was not traced: "
"the spectral curvature of the lower edge "
"is used instead.", slit_id[i]);
polytop = cpl_polynomial_duplicate(polybot);
ytop = cpl_table_get_double(slits, "ytop", i, NULL);
ybot = cpl_table_get_double(slits, "ybottom", i, NULL);
k = 0;
coeff = cpl_polynomial_get_coeff(polybot, &k);
coeff += ytop - ybot;
cpl_polynomial_set_coeff(polytop, &k, coeff);
}
if (missing_bot) {
cpl_msg_debug(func, "Lower edge of slit %d was not traced: "
"the spectral curvature of the upper edge "
"is used instead.", slit_id[i]);
polybot = cpl_polynomial_duplicate(polytop);
ytop = cpl_table_get_double(slits, "ytop", i, NULL);
ybot = cpl_table_get_double(slits, "ybottom", i, NULL);
k = 0;
coeff = cpl_polynomial_get_coeff(polytop, &k);
coeff -= ytop - ybot;
cpl_polynomial_set_coeff(polybot, &k, coeff);
}
/*
* Now map smoothed image to CCD.
* Note that the npseudo value related to this slit is equal
* to the number of spatial pseudo-pixels decreased by 1
* (compare with function mos_spatial_calibration()).
*/
nx = cpl_image_get_size_x(flat_im);
ny = cpl_image_get_size_y(flat_im);
sdata = cpl_image_get_data_float(spatial);
cpl_binary * slit_mask_data = cpl_mask_get_data(slit_mask_whole);
xdata = cpl_image_get_data_float(exslit);
npseudo = cpl_image_get_size_y(exslit) - 1;
/*
* Write interpolated smoothed values to CCD image
*/
int disp_bottom, spa_bottom, disp_top, spa_top;
slit_it->get_extent_pix(disp_bottom, spa_bottom, disp_top, spa_top);
spa_bottom = std::max(0, spa_bottom);
spa_top = std::min(ny - 1, spa_top);
for (j = start_pixel; j < end_pixel; j++)
{
for (int yint = spa_bottom; yint <= spa_top; yint++)
{
if (slit_mask_data[j + nx*yint] == CPL_BINARY_0)
continue;
/*
* The line:
* value = sdata[j + nx*yint];
* should be equivalent to:
* value = npseudo*(top-yint)/(top-bot);
*/
value = sdata[j + nx*yint]; /* Spatial coordinate on rectified space */
ivalue = std::floor(value); /* Nearest spatial pixels: */
fvalue = value - ivalue; /* ivalue and ivalue+1 */
if (ivalue < npseudo && ivalue >= 0) {
vtop = xdata[j + nx*(npseudo-ivalue)];
vbot = xdata[j + nx*(npseudo-ivalue-1)];
wdata[j + nx*yint] = vtop*(1-fvalue) + vbot*fvalue;
}
else if (ivalue == npseudo)
wdata[j + nx*yint] = xdata[j]; //j+nx*(npseudo-npseudo)
}
}
cpl_polynomial_delete(polytop);
cpl_polynomial_delete(polybot);
cpl_mask_delete(slit_mask_whole);
}
//TODO: What happens with inter-slit flux conservation. In principle the overall level
//difference across slits should be conserved.
cpl_image_delete(rectified);
cpl_image_divide(flat_im, smo_flat);
if(flat_err != NULL)
cpl_image_divide(flat_err, smo_flat);
m_normalisation_image = mosca::image(smo_flat, true);
return 0;
}
//TODO: This is probably not the best place for this. It is a static function in
//order to be used directly by vimos_science_map_disp_profile
int vimos::flat_normaliser::get_middle_slit_valid_calib
(const mosca::wavelength_calibration& wave_cal,
int slit_end_pos, int slit_begin_pos)
{
int slit_mean_pos = slit_begin_pos + (slit_end_pos - slit_begin_pos) / 2;
int slit_pos_good_wavecal = -1;
//Try to find a slit position with valid wavelength calibration
//First from the middle to the top
for(int i_pos = slit_mean_pos; i_pos <= slit_end_pos; i_pos++)
if(wave_cal.has_valid_cal(i_pos))
{
slit_pos_good_wavecal = i_pos;
break;
}
//If not successful, try from the middle to the bottom
if(slit_pos_good_wavecal == -1)
for(int i_pos = slit_mean_pos; i_pos >= slit_begin_pos; i_pos--)
if(wave_cal.has_valid_cal(i_pos))
{
slit_pos_good_wavecal = i_pos;
break;
}
if(slit_pos_good_wavecal == -1)
throw std::runtime_error("Slit doesn't have any good wavelength calibration");
return slit_pos_good_wavecal;
}
const mosca::image& vimos::flat_normaliser::get_normalisation_image() const
{
return m_normalisation_image;
}
const std::vector<std::vector<float> >& vimos::flat_normaliser::get_wave_profiles() const
{
return m_wave_profiles;
}
static
void dump_vector(const std::vector<float>& v){
std::stringstream ss;
for(const auto& e : v){
ss<< e <<" ";
}
cpl_msg_info(cpl_func, "For FLAT SED normalization the following widths are used %s", ss.str().c_str());
}
std::vector<float> vimos::flat_normaliser::get_wave_profiles_norm
(double mflat_exptime,
const std::vector<float>& slit_widths,
const std::vector<float>& slit_lengths) const
{
if(m_wave_profiles_norm.size() != slit_widths.size() ||
m_wave_profiles_norm.size() != slit_lengths.size())
throw std::invalid_argument("Vector sizes do not match");
std::vector<float> wave_profiles_norm_scaled;
dump_vector(slit_widths);
for(size_t i = 0; i < m_wave_profiles_norm.size(); ++i)
{
float scale = mflat_exptime * slit_widths[i];
if(scale == 0 )
scale = 1; //In some cases the length has been detected as 0.
wave_profiles_norm_scaled.push_back(m_wave_profiles_norm[i] / scale);
}
return wave_profiles_norm_scaled;
}
cpl_image * vimos::flat_normaliser::get_wave_profiles_im() const
{
cpl_image * wave_profiles_im =
cpl_image_new(m_wave_profiles.front().size(), m_wave_profiles.size(),
CPL_TYPE_FLOAT);
float * wave_profiles_data = cpl_image_get_data_float(wave_profiles_im);
for(size_t i_slit = 0 ; i_slit < m_wave_profiles.size(); ++i_slit)
{
wave_profiles_data =
std::copy(m_wave_profiles[i_slit].begin(),
m_wave_profiles[i_slit].end(), wave_profiles_data);
}
return wave_profiles_im;
}
cpl_image * vimos::flat_normaliser::get_wave_profiles_im_mapped
(const vimos::detected_slits& det_slits,
const mosca::wavelength_calibration& wave_cal,
double firstLambda, double lastLambda, double dispersion) const
{
int nl = (lastLambda - firstLambda) / dispersion;
cpl_image * mapped_flat_sed =
cpl_image_new(nl, m_wave_profiles.size(), CPL_TYPE_FLOAT);
for(size_t i_slit = 0; i_slit < det_slits.size(); ++i_slit)
{
int slit_begin_pos =
det_slits[i_slit].get_position_spatial_corrected();
int slit_end_pos = slit_begin_pos +
det_slits[i_slit].get_length_spatial_corrected();
if(slit_begin_pos != -1)
{
int slit_pos_good_wavecal = vimos::flat_normaliser::get_middle_slit_valid_calib
(wave_cal, slit_end_pos, slit_begin_pos);
for(cpl_size i_wave = 0; i_wave < nl; ++i_wave)
{
const auto& p = m_wave_profiles[i_slit];
double wave = firstLambda + i_wave * dispersion;
double pixel = wave_cal.get_pixel(slit_pos_good_wavecal, wave);
int i_pix = std::ceil(pixel+0.5);
if(i_pix>= 0 && i_pix <m_wave_profiles.front().size())
cpl_image_set(mapped_flat_sed, i_wave+1, i_slit+1,
p[i_pix]);
}
}
}
return mapped_flat_sed;
}
|