File: vimos_response.cc

package info (click to toggle)
cpl-plugin-vimos 4.1.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 28,228 kB
  • sloc: ansic: 169,271; cpp: 16,177; sh: 4,344; python: 3,678; makefile: 1,138; perl: 10
file content (447 lines) | stat: -rw-r--r-- 19,839 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
 * This file is part of the VIMOS Data Reduction Pipeline
 * Copyright (C) 2002-2010 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * vimos_response.cpp
 *
 *  Created on: 2014 4 2
 *      Author: cgarcia
 */

#include <stdexcept>
#include <vector>
#include <sstream>
#include <cmath>
#include <vimos_response.h>
#include "extinction.h"
#include "spec_std_star.h"
#include "response.h"
#include "vimos_dfs.h"
#include "vimos_flat_normalise.h"

#define MAX_COLNAME      (80)

cpl_table * vimos_compute_response
(cpl_image *spectra, cpl_image * mapped_flat_sed,
 cpl_propertylist *flat_sed_header, cpl_table *objects,
 double startwave, double dispersion, double gain,
 double exptime, cpl_table *ext_table, double airmass, cpl_table *flux_table,
 const std::vector<double>& ignored_waves,
 const std::vector<std::pair<double, double> >& ignored_wave_ranges,
 int nknots, int degree, cpl_table *& response_interp,
 double& flat_sed_norm_factor,
 const vimos::detected_slits& det_slits)
{

    cpl_image *spectrum       = NULL; // Extracted standard star spectrum
    cpl_table *response_table;
    int        nx, ny;


    if (spectra == NULL || ext_table == NULL || flux_table == NULL) 
        throw std::invalid_argument("Empty spectra, ext_table or flux_table");

    if (!cpl_table_has_column(ext_table, "WAVE")) 
        throw std::invalid_argument("Column WAVE in atmospheric extinction table");

    if (!cpl_table_has_column(ext_table, "EXTINCTION")) 
        throw std::invalid_argument("Column EXTINCTION in atmospheric extinction table");

    if (!cpl_table_has_column(flux_table, "WAVE")) 
        throw std::invalid_argument("Column WAVE in standard star flux table");

    if (!cpl_table_has_column(flux_table, "FLUX")) 
        throw std::invalid_argument("Column FLUX in standard star flux table");

    if (gain < 0.1) 
        throw std::invalid_argument("Invalid gain factor (<0.1)");

    if (exptime < 0.001) 
        throw std::invalid_argument("Invalid exposure time (<0.001)");

    if (dispersion < 0.001) 
        throw std::invalid_argument("Invalid dispersion (<0.001)");

    if (nknots < 2 && degree < 0 ) 
        throw std::invalid_argument("Number of knots in spline fitting the " 
                                    "instrument response must be at least 2");

    if (degree < 1 && nknots < 0)
        throw std::invalid_argument("Order of the polynomial fitting the " 
                                    "instrument response must be at least 1");

    nx = cpl_image_get_size_x(spectra);
    ny = cpl_image_get_size_y(spectra);

    /*
     * Find brightest spectrum and duplicate it.
     */
    cpl_size obj_slit = -1;
    {
        cpl_size        maxpos_x, maxpos_y;
        cpl_image *brights = cpl_image_collapse_create(spectra, 1);

        cpl_image_get_maxpos(brights, &maxpos_x, &maxpos_y);

        if(mapped_flat_sed != NULL)
        {
            /* Identify the slit of this object which will be stored in obj_slit*/
            //TODO: Move it away from here. It is also repeated in the science photometric correction
            size_t nslits = cpl_table_get_nrow(objects);
            int   maxobjects = 1;
            char  name[MAX_COLNAME];
            snprintf(name, MAX_COLNAME, "object_%d", maxobjects);
            while (cpl_table_has_column(objects, name)) {
                maxobjects++;
                snprintf(name, MAX_COLNAME, "object_%d", maxobjects);
            }
            maxobjects--;
            obj_slit = -1;
            for (cpl_size i_slit = 0; i_slit < (cpl_size)nslits; i_slit++) {
                for (int i_obj = 1; i_obj <= maxobjects; i_obj++) {
                    snprintf(name, MAX_COLNAME, "row_%d", i_obj);
                    if (cpl_table_is_valid(objects, name, i_slit))
                    {
                        int null;
                        int idx_obj = 
                            cpl_table_get_int(objects, name, i_slit, &null);
                        if (maxpos_y == idx_obj+1)
                            obj_slit = i_slit;
                    }
                }
            }
        }
        
        
        cpl_image_delete(brights);
        spectrum = cpl_image_extract(spectra, 1, maxpos_y, nx, maxpos_y);
    }
    /* Divide the target spectrum by the corresponding slit profile */
    //TODO: This modifies the observed standard spectra. The correction should be applied only at response computation time.
    //It has an impact, since the resp.observed_flux() is saved in the response product.
    cpl_image * spectrum_sedcorr = NULL;
    if(mapped_flat_sed != NULL)
    {
        spectrum_sedcorr = cpl_image_duplicate(spectrum);
        for (int i_pix = 0; i_pix < nx; i_pix++)
        {
            int   null;
            double profile_val  = cpl_image_get(mapped_flat_sed, i_pix+1, obj_slit+1, &null);
            if(profile_val != 0)
                cpl_image_set(spectrum_sedcorr, i_pix+1, 1, 
                        cpl_image_get(spectrum_sedcorr, i_pix+1, 1, &null) / profile_val);
        }
        std::ostringstream norm_key;
        norm_key<< "ESO QC FLAT SED_"<<det_slits[obj_slit].slit_id()<<" NORM";
        flat_sed_norm_factor = 
          cpl_propertylist_get_double(flat_sed_header, norm_key.str().c_str());
        if(cpl_error_get_code() == CPL_ERROR_DATA_NOT_FOUND)
        {
            cpl_image_delete(spectrum_sedcorr);
            std::string error_msg("Could not find keyword in flat sed: ");
            throw std::runtime_error(error_msg+norm_key.str());
        }
    }

    /* Prepare response computation */
    mosca::spec_std_star std_star(flux_table);
    mosca::response resp;
    mosca::response resp_sedcorr;

    /*
     * Convert standard star spectrum in electrons per second per Angstrom.
     */
    cpl_image_multiply_scalar(spectrum, gain / exptime / dispersion);

    /* Cast to a mosca::spectrum */
    mosca::spectrum std_obs_spectrum(spectrum, startwave, dispersion);

    /* Correct from atmospheric extinction */
    mosca::extinction atm_extinction(ext_table);
    mosca::spectrum std_extcorrect = 
            atm_extinction.correct_spectrum(std_obs_spectrum, airmass);

    /* Compute the normal response */
    resp.compute_response(std_extcorrect, std_star);

    /* Do the same for the SED correction */
    if(mapped_flat_sed != NULL)
    {
        /* Convert standard star spectrum in electrons per second per Angstrom. */
        cpl_image_multiply_scalar(spectrum_sedcorr, gain / exptime / dispersion);

        /* Cast to a mosca::spectrum */
        mosca::spectrum std_obs_spectrum_sedcorr(spectrum_sedcorr, startwave, dispersion);

        /* Correct from atmospheric extinction */
        mosca::spectrum std_extcorrect_sedcorr = 
                atm_extinction.correct_spectrum(std_obs_spectrum_sedcorr, airmass);

        //Compute the response with the SED correction
        resp_sedcorr.compute_response(std_extcorrect_sedcorr, std_star);
    }

    /* Fit the response */
    try
    {
        if(nknots > 0 )
            resp.fit_response_spline(nknots, ignored_waves, ignored_wave_ranges);
        else if(degree > 0 )
            resp.fit_response_pol(degree, ignored_waves, ignored_wave_ranges);
        if(mapped_flat_sed != NULL)
        {
            if(nknots > 0 )
                resp_sedcorr.fit_response_spline(nknots, ignored_waves, ignored_wave_ranges);
            else if(degree > 0 )
                resp_sedcorr.fit_response_pol(degree, ignored_waves, ignored_wave_ranges);
        }
    }
    catch (std::length_error& ex)
    {
        cpl_msg_error(cpl_func, "Too few points in response fitting");
        return NULL;
    }
    
    if(nknots > 0 && resp.nknots_used_response() != (size_t)nknots)
        cpl_msg_warning(cpl_func, "Number of nknots in response fitting too high. "
                "Changed to maximum: %zd", resp.nknots_used_response());
    if(nknots > 0 && resp.nknots_used_efficiency() != (size_t)nknots)
        cpl_msg_warning(cpl_func, "Number of nknots in efficiency fitting too high. "
                "Changed to maximum: %zd", resp.nknots_used_efficiency());
    if(degree > 0 && resp.degree_used_response() != (size_t)degree)
        cpl_msg_warning(cpl_func, "Degree in response fitting too high. "
                "Changed to maximum: %zd", resp.degree_used_response());
    if(degree > 0 && resp.degree_used_efficiency() != (size_t)degree)
        cpl_msg_warning(cpl_func, "Degree in efficiency fitting too high. "
                "Changed to maximum: %zd", resp.degree_used_efficiency());

    cpl_image_delete(spectrum); spectrum = NULL;

    /*
     * Assemble the product spectrophotometric response_table.
     */
    response_table = cpl_table_new(resp.wave_tab().size());

    cpl_table_new_column(response_table, "WAVE", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_table, "WAVE", "Angstrom");
    cpl_table_copy_data_double(response_table, "WAVE", &(resp.wave_tab()[0]));

    cpl_table_new_column(response_table, "STD_FLUX", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_table, "STD_FLUX", 
                              "10^(-16) erg/(cm^2 s Angstrom)");
    cpl_table_copy_data_double(response_table, "STD_FLUX", &(resp.flux_tab()[0]));

    cpl_table_new_column(response_table, "OBS_FLUX", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_table, "OBS_FLUX", "electron/(s Angstrom)");
    cpl_table_copy_data_double(response_table, "OBS_FLUX", &(resp.flux_obs()[0]));

    cpl_table_new_column(response_table, "RAW_EFFICIENCY", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_table, "RAW_EFFICIENCY", "electron/photon");
    cpl_table_copy_data_double(response_table, "RAW_EFFICIENCY", &(resp.efficiency_raw()[0]));

    cpl_table_new_column(response_table, "EFFICIENCY", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_table, "EFFICIENCY", "electron/photon");
    cpl_table_copy_data_double(response_table, "EFFICIENCY", &(resp.efficiency_fit()[0]));

    cpl_table_new_column(response_table, "RAW_RESPONSE", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_table, "RAW_RESPONSE", 
                              "10^(-16) erg/(cm^2 electron)");
    cpl_table_copy_data_double(response_table, "RAW_RESPONSE", &(resp.response_raw()[0]));

    cpl_table_new_column(response_table, "USED_FIT", CPL_TYPE_INT);
    int * used_fit = new int[resp.wave_tab().size()];
    for(size_t i_used = 0; i_used < resp.wave_tab().size(); ++i_used)
    {
        used_fit[i_used] = 1;
        for(size_t i_ignore = 0 ; i_ignore < resp.ignored_waves().size(); ++i_ignore)
        {
            if(resp.wave_tab()[i_used] == resp.ignored_waves()[i_ignore])
                used_fit[i_used] = 0;
        }
    }
    cpl_table_copy_data_int(response_table, "USED_FIT", used_fit);
    delete[] used_fit;

    bool inc_extrapolation = false;
    response_interp = cpl_table_new(resp.wave_obs(inc_extrapolation).size());
    cpl_table_new_column(response_interp, "WAVE", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_interp, "WAVE", "Angstrom");
    cpl_table_copy_data_double(response_interp, "WAVE", &(resp.wave_obs(inc_extrapolation)[0]));

    cpl_table_new_column(response_interp, "EFFICIENCY", CPL_TYPE_DOUBLE);
    cpl_table_set_column_unit(response_interp, "EFFICIENCY", "electron/photon");
    cpl_table_copy_data_double(response_interp, "EFFICIENCY", &(resp.efficiency_fit_obs(inc_extrapolation)[0]));

    if(mapped_flat_sed != NULL)
    {
        cpl_table_new_column(response_table, "OBS_FLUX_FFSED", CPL_TYPE_DOUBLE);
        cpl_table_set_column_unit(response_table, "OBS_FLUX_FFSED", "electron/(s Angstrom)");
        cpl_table_copy_data_double(response_table, "OBS_FLUX_FFSED", &(resp_sedcorr.flux_obs()[0]));

        cpl_table_new_column(response_table, "RAW_RESPONSE_FFSED", CPL_TYPE_DOUBLE);
        cpl_table_set_column_unit(response_table, "RAW_RESPONSE_FFSED", 
                                  "10^(-16) erg/(cm^2 electron)");
        cpl_table_copy_data_double(response_table, "RAW_RESPONSE_FFSED", &(resp_sedcorr.response_raw()[0]));

        cpl_table_new_column(response_table, "RESPONSE_FFSED", CPL_TYPE_DOUBLE);
        cpl_table_set_column_unit(response_table, 
                                  "RESPONSE_FFSED", "10^(-16) erg/(cm^2 electron)");
        cpl_table_copy_data_double(response_table, "RESPONSE_FFSED", &(resp_sedcorr.response_fit()[0]));

        cpl_table_new_column(response_interp, "RESPONSE_FFSED", CPL_TYPE_DOUBLE);
        cpl_table_set_column_unit(response_interp, 
                                  "RESPONSE_FFSED", "10^(-16) erg/(cm^2 electron)");
        cpl_table_copy_data_double(response_interp, "RESPONSE_FFSED", &(resp_sedcorr.response_fit_obs(inc_extrapolation)[0]));
    }
    else
    {
        cpl_table_new_column(response_table, "RESPONSE", CPL_TYPE_DOUBLE);
        cpl_table_set_column_unit(response_table, 
                                  "RESPONSE", "10^(-16) erg/(cm^2 electron)");
        cpl_table_copy_data_double(response_table, "RESPONSE", &(resp.response_fit()[0]));

        cpl_table_new_column(response_interp, "RESPONSE", CPL_TYPE_DOUBLE);
        cpl_table_set_column_unit(response_interp, 
                                  "RESPONSE", "10^(-16) erg/(cm^2 electron)");
        cpl_table_copy_data_double(response_interp, "RESPONSE", &(resp.response_fit_obs(inc_extrapolation)[0]));
    }

    return response_table;
}

int vimos_science_correct_flat_sed
(cpl_image *spectra,  cpl_table *objects,
 cpl_image * mapped_flat_sed,
 cpl_propertylist * flat_sed_header,
 cpl_propertylist * specphot_header,
 const vimos::detected_slits& det_slits)
{

    cpl_size nx = cpl_image_get_size_x(spectra);
    cpl_size nslits = cpl_table_get_nrow(objects);
    int   maxobjects = 1;
    char  name[MAX_COLNAME];
    snprintf(name, MAX_COLNAME, "object_%d", maxobjects);
    while (cpl_table_has_column(objects, name)) {
        maxobjects++;
        snprintf(name, MAX_COLNAME, "object_%d", maxobjects);
    }
    maxobjects--;
    //TODO: Move it away from here. It is also repeated in the science photometric correction
    for (cpl_size i_slit = 0; i_slit < nslits; i_slit++) {
        /* Get the proper normalisation factor. The flat sed has to be
         * normalises by the same normalisation factor applied in the
         * creation of specphot.
         * So the original factor applied to the flat sed has to be removed 
         * and then aaply the one in the specphot */
        std::ostringstream norm_key;
        norm_key<< "ESO QC FLAT SED_"<<det_slits[i_slit].slit_id()<<" NORM";
        double flat_sed_norm_orig =
            cpl_propertylist_get_double(flat_sed_header, norm_key.str().c_str());
        double specphot_flat_sed_norm = 
            cpl_propertylist_get_double(specphot_header, "ESO QC RESP FLAT SED_NORM");
        double flat_sed_final_norm_factor = specphot_flat_sed_norm / flat_sed_norm_orig ;

        for (int i_obj = 1; i_obj <= maxobjects; i_obj++) {
            snprintf(name, MAX_COLNAME, "row_%d", i_obj);
            if (cpl_table_is_valid(objects, name, i_slit))
            {
                int null;
                int idx_obj = cpl_table_get_int(objects, name, i_slit, &null);
                /* Divide the target spectrum by the corresponding slit profile */
                for (cpl_size i_pix = 0; i_pix < nx; i_pix++)
                {
                    double profile_val  = cpl_image_get(mapped_flat_sed, i_pix+1, i_slit+1, &null);
                    if(profile_val != 0)
                        cpl_image_set(spectra, i_pix+1, idx_obj+1, 
                                cpl_image_get(spectra, i_pix+1, idx_obj+1, &null) / profile_val *
                                flat_sed_final_norm_factor);
                    else    
                        cpl_image_set(spectra, i_pix+1, idx_obj+1, 0.);
                }
            }
        }
    }
    
    if(cpl_propertylist_get_bool(specphot_header, "ESO QC RESP FLAT SED CORR_SLITWID") &&
       !cpl_propertylist_get_bool(flat_sed_header, "ESO QC FLAT SED CORR_SLITWID"))
        cpl_msg_warning(cpl_func, "The flat SED used to compute the response "
                "includes in its normalisation factors the slit width. "
                "However, the flat SED used to correct the science doesn't. "
                "The flux calibration in this case cannot be performed, "
                "therefore stopping.");

    return 0;
}

int vimos_science_correct_flat_sed_mapped
(cpl_image *mapped_image,  cpl_table *objects,
 cpl_image * mapped_flat_sed,
 cpl_propertylist * flat_sed_header,
 cpl_propertylist * specphot_header,
 const vimos::detected_slits& det_slits)
{

    cpl_size nx = cpl_image_get_size_x(mapped_image);
    cpl_size nslits = cpl_table_get_nrow(objects);
    //TODO: Move it away from here. It is also repeated in the science photometric correction
    for (cpl_size i_slit = 0; i_slit < nslits; i_slit++) {
        /* Get the proper normalisation factor. The flat sed has to be
         * normalises by the same normalisation factor applied in the
         * creation of specphot.
         * So the original factor applied to the flat sed has to be removed 
         * and then aaply the one in the specphot */
        int null;
        std::ostringstream norm_key;
        norm_key<< "ESO QC FLAT SED_"<<det_slits[i_slit].slit_id()<<" NORM";
        double flat_sed_norm_orig =
            cpl_propertylist_get_double(flat_sed_header, norm_key.str().c_str());
        double specphot_flat_sed_norm = 
            cpl_propertylist_get_double(specphot_header, "ESO QC RESP FLAT SED_NORM");
        double flat_sed_final_norm_factor = specphot_flat_sed_norm / flat_sed_norm_orig ;

        int slit_start = cpl_table_get_int(objects, "position", i_slit, &null);
        int slit_length = cpl_table_get_int(objects, "length", i_slit, &null);
        for (int j_pix = slit_start; j_pix < slit_start + slit_length; j_pix++) 
        {
            /* Divide the target spectrum by the corresponding slit profile */
            for (cpl_size i_pix = 0; i_pix < nx; i_pix++)
            {
                double profile_val  = cpl_image_get(mapped_flat_sed, i_pix+1, i_slit+1, &null);
                if(profile_val != 0)
                    cpl_image_set(mapped_image, i_pix+1, j_pix+1, 
                            cpl_image_get(mapped_image, i_pix+1, j_pix+1, &null) / profile_val *
                            flat_sed_final_norm_factor);
                else    
                    cpl_image_set(mapped_image, i_pix+1, j_pix+1, 0.);
            }
        }
    }
    
    if(cpl_propertylist_get_bool(specphot_header, "ESO QC RESP FLAT SED CORR_SLITWID") &&
       !cpl_propertylist_get_bool(flat_sed_header, "ESO QC FLAT SED CORR_SLITWID"))
        cpl_msg_warning(cpl_func, "The flat SED used to compute the response "
                "includes in its normalisation factors the slit width. "
                "However, the flat SED used to correct the science doesn't. "
                "The flux calibration in this case cannot be performed, "
                "therefore stopping.");

    return 0;
}