1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
/* $Id: vmfit.h,v 1.2 2013-03-25 11:43:04 cgarcia Exp $
*
* This file is part of the VIMOS Pipeline
* Copyright (C) 2002-2004 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* $Author: cgarcia $
* $Date: 2013-03-25 11:43:04 $
* $Revision: 1.2 $
* $Name: not supported by cvs2svn $
*/
#ifndef VM_FIT_H
#define VM_FIT_H
#include <pilmacros.h>
#include <vmtypes.h>
#include <vmmatrix.h>
PIL_BEGIN_DECLS
/*---------------------------------------------------------------------------
Function : fit_1d_poly()
In : requested polynomial degree
a list of pixel positions + number of pixels in the list
(out) mean squared error, set to NULL if you do not want
to compute it.
Out : newly allocated array containing fit coefficients
Job : fit a polynomial to a list of pixel positions
Notice :
The fitted polynomial is such that:
y = c[0] + c[1].x + c[2].x^2 + ... + c[n].x^n
So requesting a polynomial of degree n will return n+1
coefficients. Beware that with such polynomials, two
input points shall never be on the same vertical!
---------------------------------------------------------------------------*/
double *fit1DPoly(int polyDeg, VimosDpoint *list, int np,
double *meanSquaredError);
/*---------------------------------------------------------------------------
Function : fit_surface_polynomial()
In : list of pixels, # of pixels in the list.
character string indicating which coefficients should be
taken into account, maximum polynomial degree.
Out : double * (table of fitted coefficients)
number of coefficients returned
mean squared error for the fit.
Job : fit a 2d surface with a polynomial in (x,y).
Notice : To define which coefficients should be computed, either
provide NULL for the control string and the maximal
polynomial degree, or fill up the control string as
follows:
The control string contains (int,int) couples. The first
integer specifies the degree for X, the second one the
degree for Y. Couples are given in parentheses, integers
separated by a comma, with no blanks within the
parentheses. Couples are separated from other couples by
one blank character. Example: to compute the fit for an
equation of type:
P(x,y) = c[0] + c[1].x + c[2].x^2 + c[3].x.y
You would provide the following control string:
"(0,0) (1,0) (2,0) (1,1)"
(0,0) is degx=0 and degy=0 -> constant term c[0]
(1,0) is degx=1 and degy=0 -> term in x c[1]
(2,0) is degx=2 and degy=0 -> term in x^2 c[2]
(1,1) is degx=1 and degy=1 -> term in x.y c[3]
The maximal polynomial degree indicates the highest sum
for X and Y degrees. Example: for poly_deg=3, only the
following terms can be computed:
1 x x^2 x^3
y x.y x^2.y
y^2 x.y^2
y^3
If you do not provide any control string, use NULL as
argument and set the polynomial degree to what you wish,
all terms satisfying the condition (degx+degy<=polydeg)
will be taken into account for the fit.
---------------------------------------------------------------------------*/
double *fitSurfacePolynomial(VimosPixel *surface, int np,
char *controlString, int polyDeg, int *ncoeffs,
double *meanSquaredError);
/*------------------------------------------------------------------------
Function : fitSurPolErrors
In : list of pixels, # of pixels in the list.
Out : fitted coefficients
error on each coefficient
Notice : This routine uses fitSurfacePolynomial to fine coefficients
and then also computes the error on each coefficient
using a jacknife algorithm
Added by BG and MS, based on an MS program
---------------------------------------------------------------------------*/
void fitSurPolErrors(VimosPixel *poly,int ndat,double *a_all,double *b_all,double *c_all,double *sa,double *sb,double *sc);
/*------------------------------------------------------------------------
Function : fit_surface_matrix()
In : list of pixels, # of pixels in the list.
character string indicating which coefficients should be
taken into account, maximum polynomial degree.
Out : double * (table of fitted coefficients)
number of coefficients returned
mean squared error for the fit.
Notice : This is very similar to the previous function, but with an
important difference: the definition of "degree of the fit"
is made according to the size of the matrix used in the fit,
and not to a polynomial degree. Thus 2nd degree fit means
that all terms in the series "x^2, x^2 y, X^2 y^2" will
be used.
---------------------------------------------------------------------------*/
double *fitSurfaceMatrix(VimosPixel *surface, int np,
char *controlString, int polyDeg, int *ncoeffs,
double *meanSquaredError);
/*---------------------------------------------------------------------------
Function : buildup_polytab_from_string()
In : control string,
polynomial degree,
allocated table to fill in for x degrees,
allocated table to fill in for y degrees,
-> degx_tab and degy_tab must have allocated at least
(1+poly_deg)*(2+poly_deg)/2 integers
Out : number of coefficients found
Job : translates a control string into a list of polynomial
degrees for x and y.
Notice : returns -1 in case of error.
A control string is given as:
"(int,int) (int,int) [...] (int,int)"
each couple (int,int) represents the degree in x and y
to be computed for the fit. Couples are given in
parentheses and separated by commas, without any space
between the parentheses.
Couples are separated from each other by any number of
blank characters (at least one is required).
The following is a valid control string:
"(0,0) (1,2) (2,1) (1,1)"
The following are invalid control strings:
"(0, 0)" blanks in parentheses
"( 0 , 0 )" blanks in parentheses
"(0,0)(1,2)" no blank between couples
---------------------------------------------------------------------------*/
int buildupPolytabFromString(char *s, int polyDeg, int *degxTab, int *degyTab);
/*---------------------------------------------------------------------------
Function : fit_slope_robust()
In : list of dpoints, # of points in the list
Out : pointer to (newly allocated) 3 doubles
y = c[0] + c[1] * x
c[2] is the median squared error
Job : fit a slope to a list of points
Notice : very robust - up to 50% outliers in input
---------------------------------------------------------------------------*/
double *fitSlopeRobust(VimosDpoint *list, int np);
char *createVimosCtrlStr(int xord, int yord);
VimosBool stupidLinearFit(double *x, double *y, int np,
double *a, double *b, double *adev, double *bdev);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
These are functions for fitting & c. (NR- or IDL- like)
------------------------------------------------------------------------------
*/
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void gaussFunc(float anX, float coeffs[], float *yFit, float derY[],
int nTerms)
Description:
Computes the sum of a gaussian + variable continuum
as described by the function:
F(x)= A0 * EXP(-z^2 / 2) + A3 + A4*x + A5*x^2
with:
z = (x - A1) / A2
where:
A0 = height of exponential
A1 = center of exonential
A2 = sigma (the width)
A3 = constant term
A4 = linear term
A5 = quadratic term
Input:
float anX
x value
float coeffs[]
Array of A* coefficients
float *yFit
Computed f(x)
float derY[]
Partial derivatives with respect to the A*
int nTerms
Number of A coefficients one wants to fit. Default to 6.
Updates:
15 Jun 00: Created (AZ)
------------------------------------------------------------------------------
*/
void gaussFunc(float anX, float coeffs[], float *yFit, float derY[],
int nTerms);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void gaussJordan(float **a, int n, float **b, int m)
Description:
Gauss-Jordan elimination (gaussj from NR). Used by LevenMar
Input:
float **a
Input matrix
int n
Dimension of the input matrix [1...n][1...n]
float **b
Input m right-hand sided vectors
int m
Dimension of the m right-hand sided vectors [1...n][1...m]
Updates:
16 Jun 00: Created (AZ)
------------------------------------------------------------------------------
*/
void gaussJordan(float **a, int n, float **b, int m);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void minimizeChisq(float x[], float y[], float sig[], int n, float coeffs[],
int nToFit[], int nTerms, float **alpha, float beta[],
float *chisq,
void (*gaussFunc)(float, float [], float *, float [], int))
Description:
Evaluates the linearized fitting matrix and vector beta and calculates Chi
square (mrqcof from NR). Used by levenMar
Input:
float x[]
Input x data points
float y[]
Input y data points
float sig[]
Individual standard deviations on data points
int n
Dimension of x and y arrays (number of data points)
float coeffs[]
Coefficients of the non-linear function, to be best-fitted
int nToFit[]
Array to select which coefficients are to be fitted (nToFit[i]=1 fit,
nToFit[i]=0 don't fit)
int nTerms
Number of coefficients of the non-linear function
float **alpha
Fitting matrix
float beta[]
Beta vector
float *chisq
Chi square
void (*gaussFunc)(float, float [], float *, float [], int)
Updates:
16 Jun 00: Created (AZ)
------------------------------------------------------------------------------
*/
void minimizeChisq(float x[], float y[], float sig[], int n, float coeffs[],
int nToFit[], int nTerms, float **alpha, float beta[],
float *chisq,
void (*gaussFunc)(float, float [], float *, float [], int));
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void expandCovar(float **covar, int nTerms, int nToFit[], int nFit)
Description:
Expand the covariance matrix (covsrt from NR). Used by levenMar
Input:
float **covar
Covariance matrix
int nTerms
Number of coefficients of the function to be fitted
int nToFit[]
Array to select which coefficients are to be fitted (nToFit[i]=1 fit,
nToFit[i]=0 don't fit)
int nFit
Number of nToFit terms different from zero (i.e. how many to be fitted)
Updates:
16 Jun 00: Created (AZ)
------------------------------------------------------------------------------
*/
void expandCovar(float **covar, int nTerms, int nToFit[], int nFit);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void levenMar(float x[], float y[], float sig[], int n, float coeffs[],
int nToFit[], int nTerms, float **covar, float **alpha,
float *chisq, float *aLambda);
Description:
Levenberg-Marquardt method. (modified mrqmin from NR)
It attempts to reduce the chi-square of a fit between a set of data points
(x[i],y[i]) and a non-linear function that depends on NTERMS coefficients.
The non-linear function is provided by the function gaussFunc.
Recursively called until convergence is achieved.
Input:
float x[]
Input x data points
float y[]
Input y data points
float sig[]
Individual standard deviations on data points
int n
Dimension of x and y arrays (number of data points)
float coeffs[]
Coefficients of the non-linear function, to be best-fitted
int nToFit[]
Array to select which coefficients are to be fitted (nToFit[i]=1 fit,
nToFit[i]=0 don't fit)
int nTerms
Number of coefficients of the non-linear function
float **covar
Covariance matrix
float **alpha
Fitting matrix
float *chisq
Chi square
float *aLambda
Convergence parameter
Updates:
16 Jun 00: Created (AZ)
------------------------------------------------------------------------------
*/
void levenMar(float x[], float y[], float sig[], int n, float coeffs[],
int nToFit[], int nTerms, float **covar, float **alpha,
float *chisq, float *aLambda);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void fit1DGauss(VimosFloatArray *xArray, VimosFloatArray *yArray,
float coeffArray[], int nTerms)
Description:
Non-linear least squares fit with a function made of gaussian+variable
continuum. Uses Levenberg-Marquard minimization method for chi square.
See the function gaussFunc for details on the fitted function.
Input:
VimosFloatArray *xArray
Array of independent variables
VimosFloatArray *yArray
Array containing the dependent variable
float coeffArray[]
Array of NTERMS coefficients A, with initial estimates
int nTerms
number of coefficients A to be fitted
Updates:
15 Jun 00: Created (AZ)
23 Jun 00: Working (AZ)
------------------------------------------------------------------------------
*/
void fit1DGauss(VimosFloatArray *xArray, VimosFloatArray *yArray,
float coeffArray[], int nTerms);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
float evalYFit(float theX, float coeff[])
Description:
Given the coefficients A[] from fit1DGauss, given a value for theX,
it computes f(x) by using the same formula as in gaussFunc (i.e.
gaussian + variable continuum).
Needed by Romberg integration (rombergInt function).
Input:
float theX
X value where to compute the y according to the same formula as in gaussFunc
float coeff[]
Coefficients defining the function to be evaluated
Updates:
03 Jul 00: Created (AZ)
------------------------------------------------------------------------------
*/
float evalYFit(float theX, float coeff[]);
/*
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
float evalLineFlux(VimosFloatArray *anX, VimosFloatArray *anY,
float coeffs[], int nT)
Description:
Computes line flux. First it makes a fit with fit1DGauss (gaussian
+ variable continuum). Then it integrates the fitted function twice, one
for continuum+gaussian (using all coefficients from fit1DGauss) and one for
continuum alone (use only some of the coefficients). the difference between
integrated_continuum+gaussian and integrated_continuum gives the flux in
that line.
(Used to compute sky line intensity in VmIfuCalRel)
Input:
VimosFloatArray *anX
Array containing the independent variable X
VimosFloatArray *anY
Array containing the dependent variable Y
float coeffs[]
Array of coefficients from the fit in fit1DGauss
int nT
Size of coeffs[] = number of terms to be fitted by fit1DGauss
Updates:
03 Jul 00: Created (AZ)
14 Jul 00: Working (AZ)
------------------------------------------------------------------------------
*/
float evalLineFlux(VimosFloatArray *anX, VimosFloatArray *anY,
float coeffs[], int nT);
PIL_END_DECLS
#endif /* VM_FIT_H */
|