1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
|
/* $Id: vmifufibers.c,v 1.3 2013-07-11 11:27:43 cgarcia Exp $
*
* This file is part of the VIMOS Pipeline
* Copyright (C) 2002-2004 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* $Author: cgarcia $
* $Date: 2013-07-11 11:27:43 $
* $Revision: 1.3 $
* $Name: not supported by cvs2svn $
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pilmessages.h>
#include <piltranslator.h>
#include "vmimage.h"
#include "vmimageset.h"
#include "vmmatrix.h"
#include "vmtable.h"
#include "vmifutable.h"
#include "vmgrismtable.h"
#include "vmextractiontable.h"
#include "vmobjecttable.h"
#include "vmmath.h"
#include "vmfit.h"
#include "vmifufibers.h"
#define PSEUDOSLIT 400
#define DO_LINE 1
#define DO_CONTINUUM 2
#define NTERMS 6
#define NPOINTS 13
#define HALFPOINTS ((NPOINTS -1)/2)
#define THE_SKY_LINE 5577.1
/* conversion factor between FWHM and SIGMA for a gaussian function */
#define FWHM_TO_SIGMA 2.35482
/* gaussians are computed in the range [-NSIGMA*sigma ; +NSIGMA*sigma] */
#define NSIGMA 10.0
/* parameter used to set the number of adjacent fibers (per side, except
beginning and end of the pseudoslit, see code) that we consider are
crosstalk-contributing to the flux of a given fiber */
#define HOWMANYFIBS 2
/* noise (of the theoretical profiles) * LIMIT defines the threshold
for cosmic rejection */
#define LIMIT 5.0
int
VmIfuComputePSF(VimosImage *imageData, VimosIfuTable *ifuTable,
VimosObjectTable *objectTable, char *toBeFitted,
int nIntervals, int quadNo)
{
int i,j,k,l,ii, uu;
int numSkyLines, skyPixInc, skyPix, skyLowPix;
int Fit, numQuant, stepInt, totalGrouped;
int nGoodFibs, nDeadFibs, nTotGood, nTotBad;
int specLen;
float *coeffs, skyLam, psfy, step;
float XRefPixVal, YRefPixVal, XRefPix, YRefPix, lambdaInc, skyPixIncF;
char modName[] = "VmIfuComputePSF";
char comment[80];
VimosIntArray *frequency, *numGrouped;
VimosFloatArray *skyLines, *lineSigma, *psfYLimit, *anX, *anY;
VimosFloatArray *objectPsfY, *sortObjectPsfY, *tmpObjectPsfY;
VimosIfuQuad *ifuQuads;
VimosIfuSlit *theIfuSlits;
VimosIfuFiber *theIfuFibers;
VimosObjectObject *objects;
pilMsgInfo (modName, "Computing PSF groups");
puts("WARNING! LAMBDA of SKY LINES in ANGSTROMS!");
/* initialize this option to fit only one line */
Fit = 0;
if (!strncmp(toBeFitted,"ONE",3))
{
Fit = 0;
}
else if (!strncmp(toBeFitted,"ALL",3))
{
Fit = 1;
}
else
{
pilMsgError(modName, "Unable to set fit parameter");
return EXIT_FAILURE;
}
switch(Fit)
{
default:
case 0 :
{
numSkyLines = 1;
skyLines = newFloatArray(1);
skyLines->data[0] = THE_SKY_LINE;
/* define the array with the sigma of each sky line, to be computed */
lineSigma = newFloatArray(numSkyLines);
break;
}
case 1 :
{
readSkyLines(objectTable->descs, &numSkyLines, &skyLines);
/* define the array with the sigma of each sky line, to be computed */
lineSigma = newFloatArray(numSkyLines);
break;
}
}
specLen = imageData->xlen;
/* define how many quantiles must be computed for grouping fibers in */
/* each pseudoslit */
/* if > 5 intervals (4 quantiles) default to 5 intervals */
if (nIntervals > 5)
{
nIntervals = 5;
pilMsgInfo(modName,"N. of intervals greater than 5, DEFAULTING to 5");
}
/* write keyword in IFU Table, will be used by VmIfuSky */
writeIntDescriptor(&ifuTable->descs, "ESO PRO SKYGROUP",
nIntervals, "");
/* By definition, (n-1) variate-values divide the total frequency in n */
/* intervals */
numQuant = nIntervals - 1;
frequency = newIntArray(numQuant);
/* initialize array with values corresponding to the selected quantiles */
/* and set first value to zero: this is used for first interval */
psfYLimit = newFloatArray(nIntervals);
psfYLimit->data[0] = 0.;
/* array for the total number of fibers grouped in each PSFY interval */
numGrouped = newIntArray(nIntervals);
/* setting frequency step. REMEMBER: frequency range from 1 to 400, this */
/* is taken into account later when evaluating the quantile (when defining */
/* the rank of the kth-smallest) */
for (i=1; i<numQuant; i++)
{
frequency->data[i] = frequency->data[i-1] + stepInt;
}
/* read descriptors from the Object Table */
/* FROM DRS DOCUMENT: */
/* Value of reference pixel in X (packed-spectra format): nm */
/*
readFloatDescriptor(objectTable->descs, "CRVAL1", &XRefPixVal, comment);
readFloatDescriptor(objectTable->descs, "CRVAL2", &YRefPixVal, comment);
readFloatDescriptor(objectTable->descs, "CRPIX1", &XRefPix, comment);
readFloatDescriptor(objectTable->descs, "CRPIX2", &YRefPix, comment);
*/
/* FROM DRS DOCUMENT: */
/* WARNING: Wavelength step (packed-spectra format): Angstroms */
/*
readFloatDescriptor(objectTable->descs, "CDELT1", &lambdaInc, comment);
*/
/* READ THESE DESCRIPTORS FROM IMAGE DATA, NOT OBJECT TABLE */
/* FROM DRS DOCUMENT:
Value of reference pixel in X (packed-spectra format): A */
readFloatDescriptor(imageData->descs, "CRVAL1", &XRefPixVal, comment);
readFloatDescriptor(imageData->descs, "CRVAL2", &YRefPixVal, comment);
readFloatDescriptor(imageData->descs, "CRPIX1", &XRefPix, comment);
readFloatDescriptor(objectTable->descs, "CRPIX2", &YRefPix, comment);
/* FROM DRS DOCUMENT: */
/* WARNING: Wavelength step (packed-spectra format): Angstroms */
readFloatDescriptor(imageData->descs, "CDELT1", &lambdaInc, comment);
/* NOTE: VALUES IN HEADER ARE ALL IN ANGSTROMS (24/04/02)*/
/* WARNING! TRANSFORM lambdaInc from angstroms to nm for consistency */
/* lambdaInc = lambdaInc/10.;*/
/* initialize arrays that will be used to fit sky lines */
anX=newFloatArray(NPOINTS);
anY=newFloatArray(NPOINTS);
coeffs=floatVector(1,NTERMS);
/* initialize counters for total number of good fibers and dead fibers on */
/* this image */
nTotGood = 0;
nTotBad = 0;
/* start loop to compute fluxes of sky lines for all the 1600 spectra */
/* loop on the IFU Table */
ifuQuads = ifuTable->quads;
while (ifuQuads)
{
/* take the pseudoslits in the quadrant this image refers to */
if (ifuQuads->quadNo == quadNo)
{
theIfuSlits = ifuQuads->ifuSlits;
while(theIfuSlits)
{
/* counters for dead fibers and used fibers in this slit */
nDeadFibs = 0;
nGoodFibs = 0;
/* count how many good fibers (not dead ones) in this slit */
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
if (theIfuFibers->fiberTrans != -1.) nGoodFibs +=1;
theIfuFibers = theIfuFibers->next;
}
/* initialize working arrays */
objectPsfY = newFloatArray(nGoodFibs);
sortObjectPsfY = newFloatArray(nGoodFibs);
tmpObjectPsfY = newFloatArray(nGoodFibs);
pilMsgInfo(modName,"%d fibers used for PSF grouping on this image",
nGoodFibs);
/* total frequency is no. of good fibers in the slit */
/* step in frequency for the quantiles */
step = ( (float)nGoodFibs ) / ( (float)nIntervals );
/* take integer part */
stepInt = (int)step ;
/* if step it is not integer, set frequency of first quantile */
/* to stepInt+1 and use stepInt to set the frequencies of other */
/* quantiles */
if ( (step-((float)stepInt)) != 0.0 ) frequency->data[0]=stepInt+1;
if ( (step-((float)stepInt)) == 0.0 ) frequency->data[0] = stepInt;
/* rewind */
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
/* if it is not a dead fiber */
if ( (theIfuFibers->fiberTrans) != -1.)
{
/* for each fiber, start a loop on the objects */
objects = objectTable->objs;
/* initialize counter of objects in this IFU image */
l = 0;
while (objects)
{
/* if current fiber correspond to this object spectrum */
if (objects->IFUslitNo == theIfuSlits->ifuSlitNo &&
objects->IFUfibNo == theIfuFibers->fibNo )
{
/* cleanup the lineSigma array for this object */
for (k=1; k<=numSkyLines; k++)
{
lineSigma->data[k-1] = 0.0;
}
/* loop on sky lines for this spectrum */
for (k=1; k<=numSkyLines; k++)
{
/* initialize arrays for fitting sky lines */
for (uu=0; uu<NPOINTS; uu++)
{
anX->data[uu] = 0.0;
anY->data[uu] = 0.0;
}
for (uu=1; uu<=NTERMS; uu++) coeffs[uu]=0.0;
/*NOTE: HEADER VALUES ARE IN ANGSTROMS (24/04/02)*/
/* WARNING! LAMBDA of SKY LINES is in ANGSTROMS: */
/* convert to nm */
/* skyLam = skyLines->data[k-1]/10.;*/
skyLam = skyLines->data[k-1];
/* determine pixel position of this sky line */
skyPixIncF = (ABS(skyLam - XRefPixVal)) / lambdaInc;
/* cast to integer: truncation */
skyPixInc = (int)(skyPixIncF);
/* NOT THIS: rounding to next integer, i.e. 9.0=9 */
/* and 9.1 = 10 */
/* if ((skyPixIncF/((float)skyPixInc))>0.)
skyPixInc+=1;
*/
/* position of sky line in pixels */
if ((skyLam-XRefPixVal) >=0.)
skyPix=XRefPix+skyPixInc;
if ((skyLam-XRefPixVal) <0.)
skyPix=XRefPix-skyPixInc;
/* lower pixel for working arrays */
skyLowPix = skyPix - HALFPOINTS;
/* create working arrays */
for (j=0; j<NPOINTS; j++)
{
anX->data[j] = skyLam - (HALFPOINTS+j)*lambdaInc;
/*
anY->data[j]=imageData->data[objects->rowNum] +
skyLowPix + j;
*/
anY->data[j] = imageData->data[skyLowPix + j +
(objects->rowNum)*specLen];
}
fit1DGauss(anX,anY,coeffs,NTERMS);
if (coeffs[1]<0.0 || coeffs[2]<0.0 || coeffs[3]<0.0)
{
pilMsgInfo(modName, "Slit: %3d, Fib: %3d - Negative value: coeffs[1]=%10.6f coeffs[2]=%10.6f, coeffs[3]=%10.6f\n", theIfuSlits->ifuSlitNo, theIfuFibers->fibNo, coeffs[1], coeffs[2], coeffs[3]);
}
/* WARNING!!! VERIFY THIS! we go from 1 to nterms*/
lineSigma->data[k-1] = coeffs[3];
} /* end loop on sky lines */
/* evaluate mean sigma for this object: use median */
/* from medianWirth */
if (numSkyLines != 1)
{
objectPsfY->data[l]=medianWirth(lineSigma->data,
numSkyLines);
}
else
{
objectPsfY->data[l] = lineSigma->data[0];
if (lineSigma->len != 1)
pilMsgError(modName,"Wrong number of elements!");
}
/* update IFU table for this fiber: write sigmaY */
theIfuFibers->sigmaY = objectPsfY->data[l];
} /* end if this object correspond to current fiber */
objects = objects->next;
/* increment object counter */
l++;
} /* end loop on objects in this IFU image */
/* just to be sure ... */
if (l != (PSEUDOSLIT*4))
{
pilMsgError(modName,"WRONG no. of spectra in this image");
pilMsgInfo(modName,"SLit: %4d FIB: %4d OBJ: %4d",
theIfuSlits->ifuSlitNo,
theIfuFibers->fibNo, objects->rowNum);
}
} /* end if it is not a dead fiber */
else if ( (theIfuFibers->fiberTrans) == -1.)
{
nDeadFibs += 1;
}
theIfuFibers = theIfuFibers->next;
} /* end loop on fibers for this pseudoslit */
/* start to compute PSFY group for this pseudoslit */
/* for the moment copy the original, to test... */
for (ii=0; ii<nGoodFibs; ii++)
sortObjectPsfY->data[ii] = objectPsfY->data[ii];
/* sort in ascending order */
sort(nGoodFibs, sortObjectPsfY->data);
/* this is because kth_smallest modifies the input array */
for (ii=0; ii<nGoodFibs; ii++)
tmpObjectPsfY->data[ii] = sortObjectPsfY->data[ii];
/* define the values corresponding to the selected quantiles */
/* first element of psfYLimit already initialized to zero, here
set the others */
/* NOTE: the values in frequency->data[ii] are defined by means */
/* of nGoodFibs. The rank in the tmpObjectPsfY array follows the */
/* usual array indexing and goes from 0 to (nGoodFibs-1) => */
/* rank set to (frequency->data[ii]-1) */
for (ii=0; ii<numQuant; ii++)
psfYLimit->data[ii+1] = kthSmallest(tmpObjectPsfY->data,
nGoodFibs, (frequency->data[ii]-1));
/* loop on fibers to define the psfY group and write the */
/* Sky_Group parameter in the IFU Table */
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
if (theIfuFibers->fiberTrans != -1.)
{
psfy = theIfuFibers->sigmaY;
/* check if psfY belong to a given interval BUT last one */
for (ii=0; ii<nIntervals-1; ii++)
{
if ( (psfy > psfYLimit->data[ii]) &&
(psfy <= psfYLimit->data[ii+1]) )
{
theIfuFibers->sigmaYGroup = ii+1;
numGrouped->data[ii] += 1;
}
}
/* last one interval */
if (psfy > psfYLimit->data[nIntervals-1])
{
theIfuFibers->sigmaYGroup = nIntervals;
numGrouped->data[nIntervals-1] += 1;
}
}
else if (theIfuFibers->fiberTrans == -1.)
{
theIfuFibers->sigmaYGroup = -1;
}
theIfuFibers = theIfuFibers->next;
} /* end loop on fibers for this pseudoslit */
for (ii=0; ii<nIntervals-1; ii++)
totalGrouped += numGrouped->data[ii];
if (totalGrouped != nGoodFibs)
{
pilMsgError(modName,"WRONG grouping: n. of grouped fibs != n. "
"of good fibs in pseudoslit %d",
theIfuSlits->ifuSlitNo);
return EXIT_FAILURE;
}
pilMsgInfo(modName,"Done slit no. %3d ",theIfuSlits->ifuSlitNo);
if ( (totalGrouped + nDeadFibs) != PSEUDOSLIT )
{
pilMsgError(modName,
"ERROR: %d good fibs and %d dead fibs for slit %d",
totalGrouped,nDeadFibs,theIfuSlits->ifuSlitNo);
return EXIT_FAILURE;
}
/* cleanup previous allocations for this slit*/
deleteFloatArray(objectPsfY);
deleteFloatArray(sortObjectPsfY);
deleteFloatArray(tmpObjectPsfY);
/* increment counter of total n. of good fibers on this image */
nTotGood += totalGrouped;
nTotBad += nDeadFibs;
theIfuSlits = theIfuSlits->next;
} /* end loop on pseudoslits for this quadrant */
} /* end if this is the right quadrant */
ifuQuads = ifuQuads->next;
} /* end loop on quadrants in the IFU table */
if ((nTotGood+nTotBad) != (4*PSEUDOSLIT))
{
pilMsgError(modName,"Wrong number of fibers considered in this image");
return EXIT_FAILURE;
}
deleteFloatArray(anX);
deleteFloatArray(anY);
freeFloatVector(coeffs,1,NTERMS);
deleteFloatArray(skyLines);
deleteFloatArray(lineSigma);
deleteFloatArray(psfYLimit);
deleteObjectObject(objects);
deleteIntArray(frequency);
deleteIntArray(numGrouped);
deleteIfuQuad(ifuQuads);
deleteIfuSlit(theIfuSlits);
deleteIfuFiber(theIfuFibers);
return EXIT_SUCCESS;
}
VimosImage *
VmIfuCrossTalk(VimosImage *imageData, VimosIfuTable *ifuTable,
VimosExtractionTable *extractionTable,
float wLenStart, float wLenEnd, int xLen, int yLen,
int quadNum)
{
int numFibers, numRows, fibNum;
int firstX, whereZero, lowerPix, upperPix, countCosmic, left, right;
int jj, ii, i, j, k, l, ll, m, n, peakCentX, start;
VimosUlong32 peak, pminY, pmaxY;
float sigma, z, noise, diff, tmpGauss;
double x, y, maxY, minY;
char modName[] = "VmIfuCrossTalk";
VimosIntArray *startXPeak, *startYPeak, *endXPeak, *endYPeak, *numRowsArray;
VimosFloatArray *moduleProfile, *medModuleProfile, *medModuleProfile2;
VimosFloatArray *crossCut, *normCrossCut, *crossCut2, *normCrossCut2;
VimosFloatArray *tmpNormCrossCut, *tmpNormCrossCut2, *xFWHMArray, *startX;
VimosFloatArray *takeThis, *medianPeaks2, *medianPeaks, *peakX;
VimosImage *peakImage, *startXImage, *crossTalkMap;
VimosExtractionSlit *extSlits;
VimosIfuQuad *ifuQuads;
VimosIfuSlit *theIfuSlits;
VimosIfuFiber *theIfuFibers;
VimosImage *outData;
pilMsgInfo (modName, "Start computing cross-talk correction...");
/* create output image and initialize to zero, then overwrite on it
the cross-dispersion cuts corrected for crosstalk */
outData = newImageAndAlloc(xLen, yLen);
for (j=0; j<yLen; j++)
{
for (k=0; k<xLen; k++)
{
outData->data[k + j*xLen] = 0.0;
}
}
/* define two VimosImage (Y size equal to the input, as many columns as the
fibers in this pseudoslit) images containing one the position of the first
X pixel and the other the position of the peak of each fiber along Y */
startXImage = newImageAndAlloc(PSEUDOSLIT, yLen);
peakImage = newImageAndAlloc(PSEUDOSLIT, yLen);
/* define the crosstalk map image. For each cross dispersion cut a, a
crosstalk map is computed. Each row of the crosstalk map contains the
crosstalk contribution of one fiber of the cross-dispersion cut */
crossTalkMap = newImageAndAlloc(xLen, PSEUDOSLIT);
/* define the array for the cross dispersion cut and for cosmic-cleaned
cross dispersion cut*/
crossCut = newFloatArray(imageData->xlen);
crossCut2 = newFloatArray(xLen);
/* define normalized crossCut to compute medians, and crossCut2 to
re-compute medians */
normCrossCut = newFloatArray(xLen);
normCrossCut2 = newFloatArray(xLen);
/* define temporary files for medianWirth: copies of normCrossCut and
normCrossCut2 */
tmpNormCrossCut = newFloatArray(xLen);
tmpNormCrossCut2 = newFloatArray(xLen);
/* working array to store rows of peakXImage (during cross-cut loop) */
peakX = newFloatArray(PSEUDOSLIT);
/* define array containing the peak fluxes obtained by the median process */
medianPeaks = newFloatArray(PSEUDOSLIT);
/* define array containing the peak fluxes obtained by the median process:
this is for when re-computing medians */
medianPeaks2 = newFloatArray(PSEUDOSLIT);
/* define theoretical gaussian profile for the pseudoslit */
moduleProfile = newFloatArray(xLen);
/* define a second theoretical gaussian profile for the pseudoslit, will have
each gaussian scaled to the fiber peak flux */
medModuleProfile = newFloatArray(xLen);
/* define the theoretical gaussian profile for the pseudoslit, with each
gaussian scaled to the fiber peak flux: determined by second pass of
median process */
medModuleProfile2 = newFloatArray(xLen);
/* starting X position of each fiber along a cross dispersion cut */
startX = newFloatArray(PSEUDOSLIT);
/* work array to be used for crosstalk correction */
takeThis = newFloatArray(xLen);
/* define "left" and "right" as the number of adjacent fibers to consider on
the two sides of the fiber which is undergoing crosstalk correction */
left = HOWMANYFIBS;
right = HOWMANYFIBS;
/* for each IFU pseudoslit, check on the image the maximum/minimum Y pixel
for all fibers, to determine which is the Y coordinate where to start with
the cross dispersion cuts. This is done using wLenStart, wLenEnd, and the
inverse dispersion solution, ccdX[0] and ifuPeakX in extraction table */
ifuQuads = ifuTable->quads;
while(ifuQuads)
{
/* take the right quadrant in the IFU table */
if (ifuQuads->quadNo == quadNum)
{
/* if this is the right quadrant, take pseudoslits */
theIfuSlits = ifuQuads->ifuSlits;
while(theIfuSlits)
{
theIfuFibers = theIfuSlits->fibers;
/* initialize fiber counter */
numFibers = 0;
/* initialize arrays for x,y lower and upper limits of peak
position for each fiber (i.e. at wLenStart and wLenEnd) */
startXPeak = newIntArray(PSEUDOSLIT);
startYPeak = newIntArray(PSEUDOSLIT);
endXPeak = newIntArray(PSEUDOSLIT);
endYPeak = newIntArray(PSEUDOSLIT);
/* initialize the arrays with fwhm and numRows for all fibers in
the pseudoslit */
xFWHMArray = newFloatArray(PSEUDOSLIT);
numRowsArray = newIntArray(PSEUDOSLIT);
/* initialize min/max in Y for all the fibers in that pseudoslit */
maxY = 0.;
minY = (double)yLen;
/* initialize startXImage and peakImage to -1.0 for the pseudoslit*/
for (jj=0; jj<yLen; jj++)
{
for (ll=0; ll<PSEUDOSLIT; ll++)
{
startXImage->data[ll +jj*PSEUDOSLIT] = -1.0;
peakImage->data[ll +jj*PSEUDOSLIT] = -1.0;
}
}
while(theIfuFibers)
{
/* set the value of FWHM for the fibers */
xFWHMArray->data[numFibers] = theIfuFibers->fiberPwidth;
/* take slits from the extraction table */
extSlits = extractionTable->slits;
while(extSlits)
{
/* if the extraction slit correspond to the IFU fiber... */
if ( (extSlits->IFUslitNo == theIfuSlits->ifuSlitNo) &&
(extSlits->IFUfibNo == theIfuFibers->fibNo) )
{
/* take the fiber sequential number in the pseudoslit:
needed to write startXImage */
/* theIfuFibers->fibNo goes from 1 to 400, fibNum goes from
0 to 399 */
fibNum = theIfuFibers->fibNo - 1;
/* set the value of numRows for the fiber */
numRows = extSlits->numRows;
numRowsArray->data[fibNum] = numRows;
/* we need the value of the fiber peak X pixel WITH
RESPECT to firstX, to get the right invDis and crvPol */
/* this is the first pixel in the fiber */
firstX = (int)(extSlits->ccdX->data[0]);
/* this is the fiber peak X pixel WITH RESPECT to firstX
cast to integer (truncation) */
/* NOTE: this casting is needed to get the right pixel
in the slit (in the range from 0 to numRows-1) */
/* CHECK THIS !!!!! */
peakCentX = (int)(extSlits->IFUfibPeakX) - firstX;
/* PER PROVARE A COMPILARE: */
/*peakCentX = 0.;*/
y = 0.;
x = 0.;
/* compute peak Y position at wLenStart */
y = extSlits->ccdY->data[peakCentX] +
computeDistModel1D(extSlits->invDis[peakCentX],
wLenStart);
/* check minimum */
if (y < minY) minY = y;
/* use curvature polinomial to get peak x */
x = extSlits->ccdX->data[peakCentX] +
computeDistModel1D(extSlits->crvPol[peakCentX], y);
/* cast to integer (truncation) */
startXPeak->data[fibNum] = x;
startYPeak->data[fibNum] = y;
y = 0.;
x = 0.;
/* compute peak Y position at wLenEnd */
y = extSlits->ccdY->data[peakCentX] +
computeDistModel1D(extSlits->invDis[peakCentX],
wLenEnd);
/* check maximum */
if (y > maxY) maxY = y;
/* use curvature polinomial to get peak x */
x = extSlits->ccdX->data[peakCentX] +
computeDistModel1D(extSlits->crvPol[peakCentX],y);
/* cast to integer (truncation) */
endXPeak->data[fibNum] = x;
endYPeak->data[fibNum] = y;
/* check if endYPeak > yLen: if so, set it to last pixel
(yLen-1). For endXPeak: being the fiber peak , it's
always less than xLen ? */
if (endYPeak->data[fibNum] >= yLen)
endYPeak->data[fibNum] = (yLen - 1);
/* increment fiber counter */
numFibers += 1;
} /* end if the extraction slit = the IFU fiber */
extSlits = extSlits->next;
} /* end loop on extraction slits */
/* ...just to check ...*/
if ( (maxY > (double)yLen) || (minY < 0.) )
pilMsgError(modName,
"%3d: ERROR! Wrong max. Y pixel for pseudoslit",
theIfuSlits->ifuSlitNo);
theIfuFibers = theIfuFibers->next;
} /* end loop on fibers for this IFU pseudoslit */
if ((numFibers) != PSEUDOSLIT)
pilMsgError(modName,
"ERROR! total of: %5d fibers for the pseudoslit: %3d",
numFibers, theIfuSlits->ifuSlitNo);
/* take the integer min/max in Y (truncation) */
pminY = (VimosUlong32) minY;
pmaxY = (VimosUlong32) maxY;
/* if pmaxY > image size, set it to image size */
if (pmaxY >= (VimosUlong32)yLen) pmaxY = (yLen - 1);
/* now restart loop on fibers and extraction slits to compute,
between pminY and pmaxY for each fiber: 1) peakCentX along
dispersion and write it in peakImage 2) firstX and write it in
startXImage (needed for evaluating median fluxes) */
/* initialize fiber counter */
numFibers = 0;
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
/* take slits from the extraction table */
extSlits = extractionTable->slits;
while(extSlits)
{
/* if the extraction slit correspond to the IFU fiber... */
if ( (extSlits->IFUslitNo == theIfuSlits->ifuSlitNo) &&
(extSlits->IFUfibNo == theIfuFibers->fibNo) )
{
/* this is the first pixel in the fiber : NOT NEEDED HERE*/
firstX = (int)(extSlits->ccdX->data[0]);
fibNum = theIfuFibers->fibNo - 1;
/* CHECK THE LIMITS FOR THIS LOOP */
for (jj=pminY; (VimosUlong32)jj<=pmaxY; jj++)
{
peakImage->data[fibNum + jj*PSEUDOSLIT] =
extSlits->ccdX->data[peakCentX] +
computeDistModel1D(extSlits->crvPol[peakCentX],jj);
startXImage->data[fibNum + jj*PSEUDOSLIT] =
extSlits->ccdX->data[0] +
computeDistModel1D(extSlits->crvPol[0],jj);
/* check that, for some fibers, "tracing" betweeen
min-max does not give pixels out of the CCD size */
if (peakImage->data[fibNum + jj*PSEUDOSLIT] < 0)
peakImage->data[fibNum + jj*PSEUDOSLIT] = 0;
if (peakImage->data[fibNum + jj*PSEUDOSLIT]
>= xLen) peakImage->data[fibNum +
jj*PSEUDOSLIT] = xLen-1;
if (startXImage->data[fibNum + jj*PSEUDOSLIT] < 0)
startXImage->data[fibNum + jj*PSEUDOSLIT] = 0;
if (startXImage->data[fibNum + jj*PSEUDOSLIT]
>= xLen) startXImage->data[fibNum +
jj*PSEUDOSLIT] = xLen-1;
}
/* increment fiber counter */
numFibers += 1;
}
extSlits = extSlits->next;
} /* end loop on extraction slits */
theIfuFibers = theIfuFibers->next;
} /* end loop on fibers for this IFU pseudoslit */
if ((numFibers) != PSEUDOSLIT)
pilMsgError(modName,
"ERROR! total no. of: %5d fibers for pseudoslit: %3d",
numFibers, theIfuSlits->ifuSlitNo);
/* some checks, maybe redundant */
for (m=0; m<PSEUDOSLIT; m++)
{
for (jj=pminY; (VimosUlong32)jj<=pmaxY; jj++)
{
if (peakImage->data[m + jj*PSEUDOSLIT] == -1.0)
puts("ERROR in peakImage!");
if (startXImage->data[m + jj*PSEUDOSLIT] == -1.0)
puts("ERROR in startXImage!");
}
} /* end check on limits for each fiber */
/**********************************************************/
/* now we can start with the actual cross-dispersion cuts */
/* for this pseudoslit */
/**********************************************************/
/* TO BE CHECKED: we have (pmaxY-pminY+1) cross disp. cuts to be
done for this pseudoslit, so set loop from =pminY to <=pmaxY */
/* counter for rows in peakImage */
i = 0;
for (j=pminY; (VimosUlong32)j<=pmaxY; j++)
{
/* some initializations, just to be safe..*/
/* CHECK THAT THESE NUMBERS DO NOT PRODUCE MISTAKES */
for (k=0; k<xLen; k++)
{
crossCut->data[k] = 0.0;
crossCut2->data[k] = 0.0;
normCrossCut->data[k] = 0.0;
normCrossCut2->data[k] = 0.0;
moduleProfile->data[k] = 0.0;
medModuleProfile->data[k] = 0.0;
medModuleProfile2->data[k] = 0.0;
}
for (l=0; l<PSEUDOSLIT; l++)
{
startX->data[l] = 0.0;
peakX->data[l] = 0.0;
medianPeaks->data[l] = 0.0;
medianPeaks2->data[l] = 0.0;
}
/* now read crossCut values from input image */
for (k=0; k<xLen; k++)
crossCut->data[k] = imageData->data[k + j*xLen];
/* get fiber peaks and first Xpixels for cross-dispersion cut */
for (l=0; l<PSEUDOSLIT; l++)
{
startX->data[l] = startXImage->data[l + j*PSEUDOSLIT];
peakX->data[l] = peakImage->data[l + j*PSEUDOSLIT];
}
/* create module profile */
for (l=0; l<PSEUDOSLIT; l++)
{
/* take peak, cast to integer (truncation) */
peak = (VimosUlong32) (peakX->data[l]);
/* this is the relation between FWHM and sigma */
sigma = xFWHMArray->data[l] / FWHM_TO_SIGMA ;
/* for each fiber, compute the gaussian in the range
(-10sigma, +10sigma) around the peak X pixel */
lowerPix = peak - ( (VimosUlong32)( sigma*NSIGMA) );
if (lowerPix < 0) lowerPix = 0;
upperPix = peak + ( (VimosUlong32)( sigma*NSIGMA) );
if (upperPix >= xLen) upperPix = xLen -1;
for (k=lowerPix; k<upperPix; k++)
{
z = (pow (((float)k - (float)peak), 2.) )
/ (2. * (pow(sigma,2.)));
tmpGauss = exp(-z);
moduleProfile->data[k] += tmpGauss;
}
}
/* normalize crossCut array to the theoretical module profile */
for (k=0; k<xLen; k++)
normCrossCut->data[k] = crossCut->data[k] /
moduleProfile->data[k];
/* for the i-th fiber on the normalized crosscut, take its
numRows[i] pixels and do the median to estimate peak flux */
for (l=0; l<PSEUDOSLIT; l++)
{
/* cast to integer (truncation) */
start = (VimosUlong32) (startX->data[l]);
/* in principle, this re-initialization for each fiber is
not needed but, since medianWirth modifies the input
array, do it just to be safe*/
for(k=0; k<xLen; k++) tmpNormCrossCut->data[k]=
normCrossCut->data[k];
/* for each fiber, apply medianWirth to numRows pixels in
the tmpcrosscut array, starting from the first pixel
belonging to the fiber */
/* CHECK THIS!!! */
medianPeaks->data[l] = medianWirth(
&tmpNormCrossCut->data[start],
numRowsArray->data[l]);
}
/* now recompute the theoretical module profile, this time
scaling each gaussian to its peak flux */
for (l=0; l<PSEUDOSLIT; l++)
{
/* take peak, cast to integer (truncation) */
peak = (VimosUlong32) (peakX->data[l]);
/* this is the relation between FWHM and sigma */
sigma = xFWHMArray->data[l] / FWHM_TO_SIGMA ;
/* for each fiber, compute the gaussian in the range
(-10sigma, +10sigma) around the peak X pixel */
lowerPix = peak - ( (VimosUlong32)( sigma*NSIGMA) );
if (lowerPix < 0) lowerPix = 0;
upperPix = peak + ( (VimosUlong32)( sigma*NSIGMA) );
if (upperPix >= xLen) upperPix = xLen -1;
for (k=lowerPix; k<upperPix; k++)
{
z = ( pow(((float)k - (float)peak), 2.) )
/ (2. * (pow(sigma,2.)));
tmpGauss = medianPeaks->data[l] * exp(-z);
medModuleProfile->data[k] += tmpGauss;
}
}
/* compare medModuleProfile with crossCut to find out if
there are any cosmics... In case, substitute pixel value
in crossCut with the pixel value in medModuleProfile */
countCosmic = 0;
for (k=0; k<xLen; k++)
{
noise = sqrt(medModuleProfile->data[k]);
diff = abs(crossCut->data[k] - medModuleProfile->data[k]);
if (diff > (noise * LIMIT))
{
crossCut2->data[k] = medModuleProfile->data[k];
countCosmic ++;
}
}
/******************************************************/
/* done cosmic cleaning */
/******************************************************/
/* now on the "new" crossCut array make a second step to
evaluate the medians and recompute medModuleProfile */
/* first normalize crossCut2 to theoretical module profile */
for (k=0; k<xLen; k++)
normCrossCut2->data[k] = crossCut2->data[k] /
moduleProfile->data[k];
/* recompute medians for each fiber */
for (l=0; l<PSEUDOSLIT; l++)
{
/* cast to integer (truncation) */
start = (VimosUlong32) (startX->data[l]);
/* in principle, this re-initialization for each fiber is
not needed but, since medianWirth modifies the input
array, do it just to be safe*/
for(k=0; k<xLen; k++) tmpNormCrossCut2->data[k]=
normCrossCut2->data[k];
/* for each fiber, apply medianWirth to numRows pixels in
the tmpcrosscut array, starting from the first pixel
belonging to the fiber */
/* CHECK THIS!!! */
medianPeaks2->data[l] = medianWirth(
&tmpNormCrossCut2->data[start],
numRowsArray->data[l]);
} /* end loop to recompute medians of peak fluxes */
/* last, recompute the theoretical module profile, scaling
each gaussian to the new peak flux */
/* THIS PROFILE WILL NOT BE USED IN THE COMPUTATIONS BELOW,
BUT IT CAN BE USEFUL DURING TEST PHASE (WILL DISAPPEAR
LATER?) */
for (l=0; l<PSEUDOSLIT; l++)
{
/* take peak, cast to integer (truncation) */
peak = (VimosUlong32) (peakX->data[l]);
/* this is the relation between FWHM and sigma */
sigma = xFWHMArray->data[l] / FWHM_TO_SIGMA ;
/* for each fiber, compute the gaussian in the range
(-10sigma, +10sigma) around the peak X pixel */
lowerPix = peak - ( (VimosUlong32)( sigma*NSIGMA) );
if (lowerPix < 0) lowerPix = 0;
upperPix = peak + ( (VimosUlong32)( sigma*NSIGMA) );
if (upperPix >= xLen) upperPix = xLen -1;
for (k=lowerPix; k<upperPix; k++)
{
z = ( pow(((float)k - (float)peak), 2.) )
/ (2. * (pow(sigma,2.)));
tmpGauss = medianPeaks2->data[l] * exp(-z);
medModuleProfile2->data[k] += tmpGauss;
}
} /* end loop to compute final theoretical profile */
/* initialize the crosstalk map */
for (l=0; l<PSEUDOSLIT; l++)
{
for (k=0; k<xLen; k++)
crossTalkMap->data[k + l*xLen] = 0.0;
}
/* start writing the crosstalk map */
for (l=0; l<PSEUDOSLIT; l++)
{
/* take peak, cast to integer (truncation) */
/* WARNING!!!!! CHECK IF PEAKX IS OK!!!! */
peak = (VimosUlong32) (peakX->data[l]);
/* this is the relation between FWHM and sigma */
sigma = xFWHMArray->data[l] / FWHM_TO_SIGMA ;
/* for each fiber, compute the gaussian in the range
(-10sigma, +10sigma) around the peak X pixel */
lowerPix = peak - ( (VimosUlong32)( sigma*NSIGMA) );
if (lowerPix < 0) lowerPix = 0;
upperPix = peak + ( (VimosUlong32)( sigma*NSIGMA) );
if (upperPix >= xLen) upperPix = xLen -1;
for (k=lowerPix; k<upperPix; k++)
{
z = ( pow(((float)k - (float)peak), 2.) )
/ (2. * (pow(sigma,2.)));
crossTalkMap->data[k+l*xLen] =
medianPeaks2->data[l] * exp(-z);
}
} /* end loop to write the crosstalk map for this cut */
/************************/
/* crosstalk correction */
/************************/
/* take each fiber in the cross-dispersion cut */
for (m=0; m<PSEUDOSLIT; m++)
{
/* this is to count how many times it happens that the
crosstalk subtraction gives a value <0 of the data */
whereZero = 0;
/* "left" and "right" are the number of adjacent fibers to
consider on the two sides of the fiber which is
undergoing crosstalk correction */
/* WARNING!!! CHECK THIS PARAMETRIZATION! */
/* limit for first fibers... */
if (m < HOWMANYFIBS) left = m;
/* limit for last fibers... */
if ( (m + HOWMANYFIBS) >= PSEUDOSLIT )
right = (PSEUDOSLIT - m -1);
/* take the pixels of the fiber in the crosscut */
for (n=(m-left); n<=(m+right) && n!=m; n++)
{
/* initialize working array for the crosstalk
contribution of this fiber */
for (k=0; k<xLen; k++) takeThis->data[k] = 0.0;
for (k=0; k<xLen; k++)
takeThis->data[k] = crossTalkMap->data[k + n*xLen];
/* subtract crosstalk given by takeThis from the cross
dispersion pixels corresponding to the m-th fiber */
/* take numRows for the fiber to be corrected */
numRows = numRowsArray->data[m];
/* WARNING!!! CHECK startX!!!! */
/* cast to integer (truncation) */
/* WARNING!!! CHECK THE m INDEX (PREVIOUSLY I WROTE l)*/
start = (VimosUlong32) (startX->data[m]);
/* actual correction */
for (ii=start; ii<=(start+numRows -1); ii++)
{
crossCut2->data[ii] -= takeThis->data[ii];
/* if less than zero, set to zero. This can happen
due to possonian noise */
if (crossCut2->data[ii] < 0.0)
{
crossCut2->data[ii] = 0.0;
whereZero += 1;
}
}
} /* end loop on +/- 2 fibers on each side */
} /* done crosstalk corr. for this cross-dispersion cut */
/* now, overwrite the "new" (corrected) cross-dispersion cut
in the output image */
for (ii=0; ii<xLen; ii++)
{
outData->data[ii + j*xLen] = crossCut2->data[ii];
}
/* counter for rows in peakXImage: incremented */
i++;
} /* end loop on cross-dispersion cuts for this IFU pseudoslit */
/* just to check */
if ((VimosUlong32)i != (pmaxY - pminY +1))
{
pilMsgError(modName,
"ERROR! %5d cross-dispersion cuts done for pseudoslit: %5ld",
i, theIfuSlits->ifuSlitNo);
pilMsgError(modName,
" while the evaluated (pmaxY - pminY +1) is: %5ld",
(pmaxY - pminY +1));
return NULL;
}
else if ((VimosUlong32)i == (pmaxY - pminY +1))
{
pilMsgInfo(modName,
"%5ld cross dispersion cuts done for pseudoslit %3d",
i, theIfuSlits->ifuSlitNo);
}
else
{
pilMsgError(modName,"Unable to compute no. of cross-disp. cuts");
return NULL;
}
deleteIntArray(startXPeak);
deleteIntArray(startYPeak);
deleteIntArray(endXPeak);
deleteIntArray(endYPeak);
deleteFloatArray(xFWHMArray);
deleteIntArray(numRowsArray);
theIfuSlits = theIfuSlits->next;
} /* end loop on IFU pseudoslits */
} /* end "if the quadrant is the right one" */
ifuQuads = ifuQuads->next;
} /* end loop on IFU quadrants */
pilMsgInfo(modName, "Done crosstalk correction");
/* cleaning up */
deleteFloatArray(moduleProfile);
deleteFloatArray(medModuleProfile);
deleteFloatArray(medModuleProfile2);
deleteFloatArray(takeThis);
deleteFloatArray(crossCut);
deleteFloatArray(normCrossCut);
deleteFloatArray(crossCut2);
deleteFloatArray(normCrossCut2);
deleteFloatArray(startX);
deleteFloatArray(medianPeaks);
deleteFloatArray(medianPeaks2);
deleteImage(peakImage);
deleteImage(startXImage);
deleteImage(crossTalkMap);
return outData;
}
int
VmIfuGetTransmission(VimosImageSet *imageSet,
VimosIfuTable *theMainIfuTable, char *toBeFitted)
{
int i,j,k;
int refL, refM, refFibNo, refSlitNo, refQuadNo, quad;
float refTrans, lineFlux, refLineFlux;
VimosFloatArray *anX, *anY;
float *coeffs, skyLam;
float XRefPixVal, YRefPixVal, XRefPix, YRefPix, lambdaInc, skyPixIncF;
int numSkyLines, skyPixInc;
int Fit=0;
int quadNo, ifuSlit, ifuFib;
int skyPix, skyLowPix;
VimosFloatArray *skyLines;
VimosIfuQuad *ifuQuads;
VimosIfuSlit *theIfuSlits;
VimosIfuFiber *theIfuFibers;
VimosSingleImage *ifuIma;
VimosObjectObject *ifuImaObj;
VimosObjectTable *ifuImaObjTab;
puts("WARNING! DEFINE THE REFERENCE PIXEL!");
puts("WARNING! LAMBDA of SKY LINES in ANGSTROMS!");
/* read L,M for the reference fiber */
/* IS IT OK TO READ THEM FROM IFU TABLE DESCRIPTORS? */
readIntDescriptor(theMainIfuTable->descs, "ESO PRO REF L", &refL, "");
readIntDescriptor(theMainIfuTable->descs, "ESO PRO REF M", &refM, "");
/* read sky lines from objectTable of first image */
if (toBeFitted == "ONE") Fit = 0;
if (toBeFitted == "ALL") Fit = 1;
switch(Fit)
{
default:
case 0 :
{
numSkyLines = 1;
skyLines = newFloatArray(1);
skyLines->data[0] = THE_SKY_LINE;
break;
}
case 1 :
{
readSkyLines(imageSet->images->objectTable->descs, &numSkyLines,
&skyLines);
break;
}
}
/* now get transmission for reference fiber: take the Standard IFU Table */
/* and look for ref fiber transmission, quadrant, slit and fiber number */
ifuQuads = theMainIfuTable->quads;
i = 0;
refTrans = 0.;
refFibNo = 0;
refSlitNo = 0;
refQuadNo = 0;
while(ifuQuads)
{
theIfuSlits = ifuQuads->ifuSlits;
while(theIfuSlits)
{
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
if ( (theIfuFibers->fiberL == refL) &&
(theIfuFibers->fiberM == refM) )
{
refTrans = theIfuFibers->fiberTrans;
refFibNo = theIfuFibers->fibNo;
refSlitNo = theIfuSlits->ifuSlitNo;
refQuadNo = ifuQuads->quadNo;
i++;
}
theIfuFibers = theIfuFibers->next;
}
theIfuSlits = theIfuSlits->next;
}
ifuQuads = ifuQuads->next;
}
/* check that we find just one reference fiber */
if (i != 1)
{
puts("error in selection of reference fiber");
return EXIT_FAILURE;
}
/* initialize arrays */
anX=newFloatArray(NPOINTS);
anY=newFloatArray(NPOINTS);
coeffs=floatVector(1,NTERMS);
/* now first call to evalLineFlux for the reference fiber and store */
/* the reference Line Flux */
ifuIma = imageSet->images;
while (ifuIma)
{
/* read the quadrant number for this image */
readIntDescriptor(ifuIma->theImage->descs, "ESO QUAD", &quad, "");
if (quad == refQuadNo)
{
ifuImaObjTab = ifuIma->objectTable;
/* read descriptors from each Object Table */
/* FROM DRS DOCUMENT:
Value of reference pixel in X (packed-spectra format): nm */
readFloatDescriptor(ifuImaObjTab->descs, "CRVAL1", &XRefPixVal, "");
readFloatDescriptor(ifuImaObjTab->descs, "CRVAL2", &YRefPixVal, "");
readFloatDescriptor(ifuImaObjTab->descs, "CRPIX1", &XRefPix, "");
readFloatDescriptor(ifuImaObjTab->descs, "CRPIX2", &YRefPix, "");
/* FROM DRS DOCUMENT:
WARNING: Wavelength step (packed-spectra format): Angstroms */
readFloatDescriptor(ifuImaObjTab->descs, "CDELT1", &lambdaInc, "");
/* WARNING! TRANSFORM lambdaInc from angstroms to nm for consistency */
lambdaInc = lambdaInc/10.;
ifuImaObj = ifuImaObjTab->objs;
while (ifuImaObj)
{
if ( (ifuImaObj->IFUslitNo == refSlitNo) &&
(ifuImaObj->IFUfibNo == refFibNo) )
{
refLineFlux = 0.;
/* loop on sky lines */
for (k=1; k<=numSkyLines; k++)
{
/* WARNING! EXPECTING LAMBDA of SKY LINES in ANGSTROMS */
skyLam = skyLines->data[k-1]/10.;
/* determine pixel position of this sky line */
skyPixIncF = (ABS(skyLam - XRefPixVal))/
lambdaInc;
/* cast to integer: truncation */
skyPixInc = (int)(skyPixIncF);
/* rounding to next integer, i.e. 9.0 = 9 and 9.1 = 10 */
/* NO MORE USED:*/
/* if ( (skyPixIncF/((float)skyPixInc))>0.) skyPixInc+=1; */
/* position of sky line in pixels */
if ((skyLam-XRefPixVal) >= 0.) skyPix = XRefPix + skyPixInc;
if ((skyLam-XRefPixVal) < 0.) skyPix = XRefPix - skyPixInc;
/* lower pixel for working arrays */
skyLowPix = skyPix - (HALFPOINTS);
/* create working arrays */
for (j=0; j<NPOINTS; j++)
{
anX->data[j] = skyLam - (HALFPOINTS+j)*lambdaInc;
anY->data[j] = ifuIma->theImage->data[ifuImaObj->rowNum]+
skyLowPix + j;
}
refLineFlux += evalLineFlux(anX,anY,coeffs,NTERMS);
}
/* ended loop on sky lines, evaluate mean flux */
refLineFlux /= (float)numSkyLines;
}
ifuImaObj = ifuImaObj->next;
}
}
ifuIma = ifuIma->next;
}
/* now start loop to compute relative fiber trans for all 6400 fibers */
ifuIma = imageSet->images;
while (ifuIma)
{
ifuImaObjTab = ifuIma->objectTable;
/* read quadrant number */
readIntDescriptor(ifuImaObjTab->descs, "ESO PRO QUAD", &quadNo, "");
ifuImaObj = ifuImaObjTab->objs;
while (ifuImaObj)
{
ifuSlit = ifuImaObj->IFUslitNo;
ifuFib = ifuImaObj->IFUfibNo;
/* loop on sky lines */
for (k=1; k<=numSkyLines; k++)
{
/* cleanup previous allocations, if they exist */
deleteFloatArray(anX);
deleteFloatArray(anY);
freeFloatVector(coeffs,1,NTERMS);
/* initialize arrays */
anX=newFloatArray(NPOINTS);
anY=newFloatArray(NPOINTS);
coeffs=floatVector(1,NTERMS);
/* WARNING! EXPECTING LAMBDA of SKY LINES in ANGSTROMS */
skyLam = skyLines->data[k-1]/10.;
/* determine pixel position of this sky line */
skyPixIncF = (ABS(skyLam - XRefPixVal))/
lambdaInc;
skyPixInc = (int)(skyPixIncF);
/* rounding to next integer, i.e. 9.0 = 9 and 9.1 = 10 */
if ( (skyPixIncF/((float)skyPixInc)) > 0.) skyPixInc += 1;
/* position of sky line in pixels */
if ((skyLam-XRefPixVal) >= 0.) skyPix = XRefPix + skyPixInc;
if ((skyLam-XRefPixVal) < 0.) skyPix = XRefPix - skyPixInc;
/* lower pixel for working arrays */
skyLowPix = skyPix - HALFPOINTS;
/* create working arrays */
for (j=0; j<NPOINTS; j++)
{
anX->data[j] = skyLam - (HALFPOINTS + j)*lambdaInc;
anY->data[j] = ifuIma->theImage->data[ifuImaObj->rowNum] +
skyLowPix + j;
}
lineFlux += evalLineFlux(anX,anY,coeffs,NTERMS);
}
/* ended loop on sky lines, evaluate mean flux */
lineFlux /= (float)numSkyLines;
/* loop on the Standard IFU Table to update fiber transmission */
ifuQuads = theMainIfuTable->quads;
while (ifuQuads)
{
if (ifuQuads->quadNo == quadNo)
{
theIfuSlits = ifuQuads->ifuSlits;
while(theIfuSlits)
{
if (theIfuSlits->ifuSlitNo == ifuSlit)
{
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
if (theIfuFibers->fibNo == ifuFib)
{
theIfuFibers->fiberTrans = (refTrans * lineFlux)/
refLineFlux;
}
theIfuFibers = theIfuFibers->next;
}
}
theIfuSlits = theIfuSlits->next;
}
}
ifuQuads = ifuQuads->next;
}
ifuImaObj = ifuImaObj->next;
}
ifuIma = ifuIma->next;
}
deleteFloatArray(anX);
deleteFloatArray(anY);
deleteFloatArray(skyLines);
freeFloatVector(coeffs,1,NTERMS);
deleteObjectTable(ifuImaObjTab);
return EXIT_SUCCESS;
}
VimosImage *
VmIfuApplyTransmission(VimosImage *imageData, VimosIfuTable *ifuTable,
VimosObjectTable *objectTable, int quadNum,
int imageXlen, int imageYlen)
{
int objNumber;
int i, k;
int outXlen, outYlen;
int refL, refM;
int nTotGood, nTotDead;
float refTrans, scal;
char modName[] = "VmIfuApplyTransmission";
char comment[80];
VimosImage *outData;
VimosIfuQuad *ifuQuads;
VimosIfuSlit *theIfuSlits;
VimosIfuFiber *theIfuFibers;
VimosObjectObject *objects;
pilMsgInfo (modName, "Apply Relative Transmission Correction");
/* WARNING: FIBERS TRANSMISSION IS CURRENTLY SCALED TO REFTRANS */
/* (TRANSMISSION OF THE REFERENCE FIBER): DO WE WANT TO SCALE ALL */
/* SPECTRA SO TO ALWAYS HAVE TRANSMISSION = 1 INSTEAD OF */
/* TRANSMISSION = REFTRANSMISSION ? */
puts("WARNING - fiber transm. scaled to transm. of reference fiber: do");
puts(" we want to scale to transm. = 1 for all spectra?");
/* output X size is the same as input */
outXlen = imageXlen;
/* Y size is the same as input */
outYlen = imageYlen;
/* create output image */
outData = newImageAndAlloc(outXlen, outYlen);
/* get the reference fiber L,M coordinates from IFU Table descriptors */
readIntDescriptor(ifuTable->descs, "ESO PRO REF L", &refL, comment);
readIntDescriptor(ifuTable->descs, "ESO PRO REF M", &refM, comment);
/* loop on IFU Table to find the transmission for the reference fiber */
i = 0;
refTrans = 0.;
ifuQuads = ifuTable->quads;
while(ifuQuads)
{
theIfuSlits = ifuQuads->ifuSlits;
while(theIfuSlits)
{
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
if ( (theIfuFibers->fiberL == refL) &&
(theIfuFibers->fiberM == refM) )
{
refTrans = theIfuFibers->fiberTrans;
i++;
}
theIfuFibers = theIfuFibers->next;
}
theIfuSlits = theIfuSlits->next;
}
ifuQuads = ifuQuads->next;
}
/* check that we find just one reference fiber */
if (i != 1)
{
pilMsgError(modName,"Error in selection of reference fiber");
return NULL;
}
/* one never knows... */
if (refTrans == -1.)
{
pilMsgError(modName,"Reference fiber is a dead fiber");
return NULL;
}
/* for each object in object table, look for the transmission in the IFU */
/* Table and scale the spectrum accordingly to the reference one */
objects = objectTable->objs;
/* object counter */
objNumber = 0;
/* counter for good and dead fibers on the image */
nTotGood = 0;
nTotDead = 0;
/* re-load the quadrants and select only the right one */
ifuQuads = ifuTable->quads;
while(ifuQuads)
{
if (ifuQuads->quadNo == quadNum)
{
/* if this is the right quadrant, take objects */
while (objects)
{
/* look at the slits in IFU Table */
theIfuSlits = ifuQuads->ifuSlits;
while(theIfuSlits)
{
/* if the IFU slit is the right one the look at the fibers */
if (objects->IFUslitNo == theIfuSlits->ifuSlitNo)
{
theIfuFibers = theIfuSlits->fibers;
while(theIfuFibers)
{
/* do not act on dead fibers */
if (theIfuFibers->fiberTrans != -1.)
{
/* if you match the object with the fiber */
if (objects->IFUfibNo == theIfuFibers->fibNo)
{
nTotGood += 1;
/* scale transmission to refTrans */
scal = refTrans / (theIfuFibers->fiberTrans);
/* loop to scale the spectrum */
objNumber = objects->rowNum;
for (k=0; k<imageXlen; k++)
{
/* set outData to imageData*scal */
outData->data[k + objNumber*imageXlen] =
imageData->data[k + objNumber*imageXlen]*scal;
}
}
} /* end if it is not a dead fiber */
else if ( (theIfuFibers->fiberTrans == -1.) &&
(objects->IFUfibNo == theIfuFibers->fibNo))
nTotDead += 1;
theIfuFibers = theIfuFibers->next;
}
}
theIfuSlits = theIfuSlits->next;
}
objects = objects->next;
}
}
ifuQuads = ifuQuads->next;
}
/* check */
pilMsgInfo(modName,"nTotGood + nTotDead, %d",(nTotGood + nTotDead) );
if ( (nTotGood + nTotDead) != 1600)
{
pilMsgError(modName,"Wrong number of good + dead fibers");
return NULL;
}
/* debug */
pilMsgInfo(modName,"N good: %d, N. dead: %d", nTotGood, nTotDead);
deleteIfuQuad(ifuQuads);
deleteIfuSlit(theIfuSlits);
deleteIfuFiber(theIfuFibers);
deleteObjectObject(objects);
copyAllDescriptors(imageData->descs, &(outData->descs));
return outData;
}
|