File: vmifusky.c

package info (click to toggle)
cpl-plugin-vimos 4.1.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 28,228 kB
  • sloc: ansic: 169,271; cpp: 16,177; sh: 4,344; python: 3,678; makefile: 1,138; perl: 10
file content (614 lines) | stat: -rw-r--r-- 17,479 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/* $Id: vmifusky.c,v 1.2 2013-03-25 11:43:04 cgarcia Exp $
 *
 * This file is part of the VIMOS Pipeline
 * Copyright (C) 2002-2004 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*
 * $Author: cgarcia $
 * $Date: 2013-03-25 11:43:04 $
 * $Revision: 1.2 $
 * $Name: not supported by cvs2svn $
 */

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <pilmessages.h>

#include "vmimage.h"
#include "vmmatrix.h"
#include "vmifutable.h"
#include "vmobjecttable.h"
#include "vmmath.h"
#include "vmfit.h"
#include "vmifusky.h"


#define MEDIAN  1
#define AVERAGE 2
#define SUB_STEP 10.

#define PSEUDOSLIT 400


VimosImage *
VmIfuSky(VimosImage *imageData, VimosIfuTable *ifuTable,
         VimosObjectTable *objectTable, char *Combine, int quadNo)
{
  int objNumber, groupFibs;
  int j, k, kk, in, li, io, uu, skyObjs;
  int imageXlen, imageYlen;
  int Comb_Meth = MEDIAN;
  int nGroups, gn, xArrayLen;

  int nDeadFibs, nGoodFibs, never, used, nTotGood, nTotDead, i;

  int numBins, pp, index1, last1, tot;

  float ave, sigma, histoStep, histoXMax, histoYMax;
  float minimum, maximum, threshold, wLenInc;
  char comment[80];
  char modName[] = "VmIfuSky";

  VimosIntArray *sortIndex, *checkFibs;
  VimosIntArray *fiberNum, *fiberNumSort;
  VimosFloatArray *skySpec, *spatSpec, *tmpSpec;
  VimosFloatArray *spectralFlux, *spectralFluxSort;
  VimosFloatArray *histoArray, *histoXArray;


  VimosImage *skyData;

  VimosIfuQuad *ifuQuads;
  VimosIfuSlit  *ifuSlits;
  VimosIfuFiber *ifuFibers;
  VimosObjectObject *objects;

  pilMsgInfo (modName, "Computing Sky Spectra");

  if (!strcmp(Combine,"MEDIAN"))
    {
     Comb_Meth = MEDIAN;
    }
  else if (!strcmp(Combine, "AVERAGE"))
    {
     Comb_Meth = AVERAGE;
    }
  else
    {
     pilMsgError(modName, "Unable to set Combine parameter");
     return NULL;
    }

  /* get sizes: imageXlen is the length of spectra in wavelength */  
  imageXlen = imageData->xlen;
  imageYlen = imageData->ylen;

  /* read wavelength increment in spectra */
  readFloatDescriptor(objectTable->descs,"ESO PRO WLEN INC",&wLenInc,comment);

  /* read number of fiber groups (same for each slit), a different sky */
  /* spectrum is to be computed for each group */
  readIntDescriptor(ifuTable->descs,"ESO PRO SKYGROUP",&nGroups,comment);

  /* create output image for sky spectra: X and Y sizes are same as input */
  skyData = newImageAndAlloc(imageXlen, imageYlen);

  /* initialize skyData to zero everywhere, so that for dead fibers the */
  /* sky spectrum will be zero */
  for (i=0; i<(imageXlen*imageYlen); i++) skyData->data[i] = 0.;

  /* explicit initialization */
  skySpec = NULL;
  histoArray = NULL;
  histoXArray = NULL;
  spectralFlux = NULL;
  spectralFluxSort = NULL;
  fiberNum = NULL;
  fiberNumSort = NULL;
  sortIndex = NULL;
  spatSpec = NULL;

  /* define the "mean" sky spectrum */
  skySpec=newFloatArray(imageXlen);

  /* this array will be used to check that a given fiber is not used in more */
  /* than one group...one never knows...Final values will be: 0 for fibers */
  /* use once; <0 for fibers used more than once; 1 for fibers never used */
  /* (dead ones) */
  checkFibs= newIntArray(PSEUDOSLIT);


  /* buffer to be used to compute integrated flux */
  tmpSpec=newFloatArray(imageXlen);

  objNumber = 0;

  /* counters for total n. of good and dead fibers on this image */
  nTotGood = 0;
  nTotDead = 0;

  /* loop on the IFU Table */
  ifuQuads = ifuTable->quads;
  while (ifuQuads)
    {
     /* take the pseudoslits in the quadrant this image refers to */
     if (ifuQuads->quadNo == quadNo)
       {
        ifuSlits = ifuQuads->ifuSlits;
        while(ifuSlits)
          {
	   /* count total number of dead fibs in this slit, for later check */
	   nDeadFibs = 0;
	   ifuFibers = ifuSlits->fibers;
	   while(ifuFibers)
	     {
	      if (ifuFibers->fiberTrans == -1.) nDeadFibs +=1;
	      ifuFibers = ifuFibers->next;
	     }

	   /* set the values in checkFibs to 1, they will be decremented */
	   /* later */
	   for (uu=0; uu<checkFibs->len; uu++) checkFibs->data[uu] = 1;  

	   /* counter for total number of good fibers in this slit */
	   used = 0;

	   /* for each group in the slit */
	   for (gn=1; gn<=nGroups; gn++)
	      {
	       pilMsgInfo(modName,"SLIT: %3d GROUP: %3d \n",
			  ifuSlits->ifuSlitNo,gn);

	       /* cleanup previous allocations, if they exist */
	       deleteIntArray(fiberNum);
	       deleteIntArray(fiberNumSort);
	       deleteIntArray(sortIndex);
	       deleteFloatArray(spatSpec);
	       deleteFloatArray(spectralFlux);
	       deleteFloatArray(spectralFluxSort);
	       deleteFloatArray(histoXArray);
	       deleteFloatArray(histoArray);

	       histoArray = NULL;
	       histoXArray = NULL;
	       spectralFlux = NULL;
	       spectralFluxSort = NULL;
	       fiberNum = NULL;
	       fiberNumSort = NULL;
	       sortIndex = NULL;
	       spatSpec = NULL;


	       /* initialize sky spectrum for this group */
	       for (k=0; k<imageXlen; k++) skySpec->data[k] = 0.;

	       /* counter for number of objects/fibers in the group */
	       groupFibs = 0;

	       /* take GOOD fibers in the slit and count those belonging to */
	       /* this group: this is needed for setting the size of */
	       /* the fiberNum and spectralFlux arrays (see below) */
	       ifuFibers = ifuSlits->fibers;
	       while(ifuFibers)
		 {
		  if ( (ifuFibers->sigmaYGroup == gn) &&
		       (ifuFibers->fiberTrans != -1.) ) groupFibs++;
	          ifuFibers = ifuFibers->next;
		 }
	       pilMsgInfo(modName,"Slit: %d, n. good fibs: %d",
			  ifuSlits->ifuSlitNo, groupFibs);

	       /* initialize arrays for fiber number in slit and integrated */ 
	       /* flux. Set also arrays for SORTED fiber number and */
	       /* integrated flux */

	       fiberNum=newIntArray(groupFibs);
	       fiberNumSort=newIntArray(groupFibs);
	       sortIndex=newIntArray(groupFibs);
	       spectralFlux=newFloatArray(groupFibs);
	       spectralFluxSort=newFloatArray(groupFibs);

	       
	       for (pp=0; pp<groupFibs; pp++)
		 {
		  fiberNum->data[pp] = 0;
		  fiberNumSort->data[pp] = 0;
		  sortIndex->data[pp] = 0;
		  spectralFlux->data[pp] = 0.0;
		  spectralFluxSort->data[pp] = 0.0;
		 }

	       /* begin selection of fibers and objects to compute sky */
	       /* spectrum for the given group */

	       li = 0;
	       ifuFibers = ifuSlits->fibers;
	       while(ifuFibers)
		 {
		  /* do not take dead fibers */
		  if (ifuFibers->fiberTrans != -1.)
		    {

		     /* take fiber if it is in the group */
		     if (ifuFibers->sigmaYGroup == gn)
		       {
			/* look for the object corresponding to the fiber */
			objects = objectTable->objs;

			while(objects)
			  {
			   /* if object is in the group compute integrated */
			   /* flux and save its fiber number */
			   if ( (objects->IFUslitNo == ifuSlits->ifuSlitNo) &&
				(objects->IFUfibNo == ifuFibers->fibNo) )
			     {
			      /* store the fiber number of this object */
			      fiberNum->data[li] = objects->IFUfibNo;

			      /* initialize */
			      for (in = 0; in < imageXlen; in++)
				tmpSpec->data[in] = 0.0;

			      /* take the spectrum of this object */
			      objNumber = objects->rowNum;
			      for (in = 0; in < imageXlen; in++)
				{
				 tmpSpec->data[in] = 
				   imageData->data[in+objNumber*imageXlen];
				}

			      /* compute integrated flux and store value */
			      spectralFlux->data[li] = 
				integrateSpectrum(tmpSpec,wLenInc);

			      /* decrement checkFibs to mark fibers already */
			      /* used for sky computation */
			      checkFibs->data[(objects->IFUfibNo)-1] -= 1;

			      /* increment counter for object */
			      li++;

			     } /* end if object is in the group */

			   objects = objects->next;
			  } /* end loop on objects */

		       } /* end if the fiber is in the group */


		    } /* end if it is a good fiber (not dead one) */

		  ifuFibers = ifuFibers->next;

		 } /* end loop on fibers */

	       /* pilMsgInfo(modName,"LI: %3d",li); */

	       if (li != groupFibs)
		 {
		   pilMsgError(modName,"ERROR!");
		   return NULL;
		 }

	       /* now for this fiber group we have have two arrays, one for */
	       /* integrated flux and one for fiber number, this last to */
	       /* identify objects later */

	       /* start operations on spectralFlux array to select fibers */
	       /* for sky computation : evaluate r.m.s. of integrated fluxes */
	       sigma = computeRMS(spectralFlux->data, spectralFlux->len);

	       /* set step for the flux histogram. SUB_STEP defined  as 10. */
	       histoStep = sigma / SUB_STEP;

	       /* sort arrays and get minimum and maximum flux */
	       Indexx(spectralFlux->len, spectralFlux->data, sortIndex->data);

	       /* sorting */
	       for (io=0; io<spectralFlux->len; io++)
		 {
		  index1 = sortIndex->data[io];
	          spectralFluxSort->data[io] = 
		    spectralFlux->data[index1];
		  fiberNumSort->data[io]= fiberNum->data[index1];
		 }

	       last1 = spectralFlux->len - 1;
	       minimum = spectralFluxSort->data[0];
	       maximum = spectralFluxSort->data[last1];

	       /* compute flux histogram */
	       numBins = (int)((maximum - minimum) / histoStep + 1.);
	       histoArray= newFloatArray(numBins);
	       histoXArray = newFloatArray(numBins);

	       for (io=0; io<numBins; io++)
		 {
		  histoXArray->data[io] = minimum + io*histoStep;
		 }
	       xArrayLen = histoXArray->len;


	       /*
		 if (ifuSlits->ifuSlitNo == 1)
		 {
		   for (pp=300; pp<400; pp++)
		     pilMsgInfo(modName,"%15.5f\n",spectralFlux->data[pp]);
		   pilMsgInfo(modName,"m: %10.5f M: %10.5f S: %10.5f\n",
		   minimum,maximum,histoStep);
		 }
	       */


	       computeHistogram(spectralFlux,xArrayLen,
				histoArray,minimum,maximum,
				histoStep);

	       /*
	       if (ifuSlits->ifuSlitNo == 1)
		 {
		   for (pp=0; pp<histoArray->len; pp++)
		     pilMsgInfo(modName,"%15.5f\n",histoArray->data[pp]);
		 }
	       */

	       tot = 0.;

	       for (pp=0; pp<xArrayLen; pp++)
		 {
		  /* pilMsgInfo(modName,"I: %3d X: %15.5f  Y: %15.5f\n",pp,
		     histoXArray->data[pp],histoArray->data[pp]);
		  */
		  tot += histoArray->data[pp];
		 }
	       /* pilMsgInfo(modName,"TOT: %4d\n", tot); */
	       if (tot != groupFibs)
		 {
		  pilMsgError(modName,"Wrong no. of histogram elements");
		  return NULL;
		 }


	       /* look for maximum in the histogram */
	       histoYMax = histoArray->data[0];
	       histoXMax = histoXArray->data[0];
	       for (io = 1; io < histoArray->len ; io++)
		  {
		   if (histoArray->data[io] > histoYMax)
		     {
		      histoYMax = histoArray->data[io];
		      /* save max flux */
		      histoXMax = histoXArray->data[io];
		     }
		  }

	       /* define threshold as: */
	       /* ("midpoint flux" + (10% of "midpoint flux")) */
	       threshold=(histoXMax+(histoStep/2.)) + 
		           0.1*(histoXMax+(histoStep/2.));

	       /* look into the sorted flux array and find where flux starts */
	       /* to be >= than threshold, to count number of "good" fibers */
	       /* for sky determination */
	       skyObjs = 0;
	       for (io=0; io<spectralFluxSort->len ; io++)
		 {
		  if (spectralFluxSort->data[io] < threshold) skyObjs++;
		 }


	       /* start the actual computation of the sky spectrum for this */
	       /* group of fiber */

	       /* first create the "spatial" sky: each element is the flux */
	       /* at a given pixel from each one of the selected fibers */

	       /* work array for the spatial sky spectrum */
	       spatSpec = newFloatArray(skyObjs);

	       /* for each pixel along wavelength */
	       for (k=0; k<imageXlen; k++)
		  {
		   /* initialize spatial sky spectrum */
		   for (kk=0; kk<skyObjs; kk++) spatSpec->data[kk] = 0.;

		   /* restart loop on objects */
		   objects = objectTable->objs;

		   /* index for spatSpec array, -->MUST<-- go from 0 to */
		   /* (skyObjs-1) */
		   j = 0;
		   while(objects)
		     {
		      /* if the object is in the right slit */
		      if (objects->IFUslitNo == ifuSlits->ifuSlitNo)
			{
			 /* check if it is in the "sky fibers" list */
			 /* as we use sorted arrays we know we must stop */
			 /* at the "skyObjs" fiber in the array */
			 for (io=0; io<skyObjs; io++)
			    {
			     if (objects->IFUfibNo == fiberNumSort->data[io])
			       {
				objNumber = objects->rowNum;
			        spatSpec->data[j] = 
			          imageData->data[k+objNumber*imageXlen];
			        /* increment counter */
			        j++;

			       } /* end if this object is ok for sky */
			    } /* end loop on fibers to be used for sky comp. */
			} /* end if object is in the slit */

		      objects = objects->next;
		    } /* end loop on objects */

		   /* start combining spatSpec to get the sky value at each */
		   /* Y pixel */
		   ave = 0.;
		   switch (Comb_Meth)
		     {
		     case AVERAGE:
		       {
			for (kk=0; kk<skyObjs; kk++) ave += spatSpec->data[kk];
			ave /= ((float)skyObjs);
			break;
		       }
		    default:
		    case MEDIAN:
		      {
		       ave = medianWirth(spatSpec->data, skyObjs);
		       break;
		      }
		     }

		   /* write pixel value in the sky spectrum for this group */
		   skySpec->data[k] = ave;

		  } /* end loop on lambda: sky spectrum completed */

	       pilMsgInfo(modName,"group: %d, n. used for sky: %d",
			  gn,skyObjs);

	       /* restart to write the computed sky spectrum in skyData */
	       /* image at the rows corresponding to each object belonging */
	       /* to this group */
	       objects = objectTable->objs;

	       while(objects)
		 {
		  if (objects->IFUslitNo == ifuSlits->ifuSlitNo)
		    {
		     /* if the object is in the group: this time use the */
		     /* whole range, groupFibs instead of skyObjs, to write */
		     /* this sky spectrum for all the fibers in the group */
		     for (io=0; io<groupFibs; io++)
		        {
			 if (objects->IFUfibNo == fiberNumSort->data[io])
			   {
		            /* write this sky spectrum in skyData at the */
		            /* same row as object */
			    objNumber = objects->rowNum;
			    for (kk=0; kk<imageXlen; kk++)
			        skyData->data[kk + objNumber*imageXlen] = 
				                         skySpec->data[kk];
			   }

			} /* end loop on groupFibs */

		    } /* end if object is in the right slit */

		  objects = objects->next;
		 } /* end loop on objects */
		  

	       for (pp=0; pp<groupFibs; pp++)
		 {
		  spectralFluxSort->data[pp] = 0.0;
		 }

	       /* increment total number of good fibers for this slit */
	       used += groupFibs;

	      } /* close loop on groups for this slit */

	   /* check that every fiber is not used more than once for sky */
	   /* computation in this slit, and count how many fibers are never */
	   /* used (dead ones) */
	   never = 0;
	   nGoodFibs = 0;
	   for (uu=0; uu<checkFibs->len; uu++)
	      {
	       if (checkFibs->data[uu] != 0)
		 {
		  if (checkFibs->data[uu] < 0) 
		    {
		     pilMsgInfo(modName,"Slit %d: Fib %d used more than once",
				ifuSlits->ifuSlitNo, uu+1);
		    }
		  else if (checkFibs->data[uu] > 0)
		    {
		     never += 1;
		     pilMsgInfo(modName,"Slit %3: Fiber no. %d never used",
				ifuSlits->ifuSlitNo, uu+1);
		    }
		 }
	       else if (checkFibs->data[uu] == 0) nGoodFibs += 1;
	      }
	   /* some checks */
	   if (never != nDeadFibs)
	     {
	      pilMsgError(modName,"Wrong n. of dead fibers in pseudoslit %d",
			  ifuSlits->ifuSlitNo);
	      return NULL;
	     }
	   if (used != nGoodFibs)
	     {
	      pilMsgError(modName,"Wrong n. of good fibers in pseudoslit %d",
			  ifuSlits->ifuSlitNo);
	      return NULL;
	     }
	   if ((never+used) != (PSEUDOSLIT))
	     {
	      pilMsgError(modName,"ERROR! n. of good fibers + n. of dead "
                          "fibers in pseudoslit %d != 400",
			  ifuSlits->ifuSlitNo);
	      return NULL;
	     }

	   pilMsgInfo(modName,"slit: %d, Dead: %d, Good: %d",
			  ifuSlits->ifuSlitNo, never, used);
	   pilMsgInfo(modName,"\n");

	   nTotGood += used;
	   nTotDead += never;

	   ifuSlits = ifuSlits->next;
	  }  /* close loop on slits */

       } /* end if is the right quadrant */

     ifuQuads = ifuQuads->next;
    } /* end loop on ifu quadrants */

  /* some more checks */
  if ( (nTotGood+nTotDead) != (PSEUDOSLIT*4) )
    {
     pilMsgError(modName,"Wrong total n. of fibers used in this image");
     return NULL;
    }

  copyAllDescriptors(imageData->descs, &(skyData->descs)); 

  deleteFloatArray(tmpSpec);
  deleteIfuQuad(ifuQuads);
  deleteIfuSlit(ifuSlits);
  deleteIfuFiber(ifuFibers);
  deleteObjectObject(objects);
  deleteFloatArray(skySpec);
  deleteIntArray(checkFibs);

  return skyData;

}