File: vmmossphotcalib.c

package info (click to toggle)
cpl-plugin-vimos 4.1.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 28,228 kB
  • sloc: ansic: 169,271; cpp: 16,177; sh: 4,344; python: 3,678; makefile: 1,138; perl: 10
file content (644 lines) | stat: -rw-r--r-- 18,418 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/* $Id: vmmossphotcalib.c,v 1.2 2013-03-25 11:43:04 cgarcia Exp $
 *
 * This file is part of the VIMOS Pipeline
 * Copyright (C) 2002-2004 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*
 * $Author: cgarcia $
 * $Date: 2013-03-25 11:43:04 $
 * $Revision: 1.2 $
 * $Name: not supported by cvs2svn $
 */

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#include <pilmemory.h>
#include <pilmessages.h>
#include <cpl_msg.h>
#include <piltranslator.h>

#include "vmimage.h"
#include "vmmatrix.h"
#include "vmtable.h"
#include "vmgrismtable.h"
#include "vmextractiontable.h"
#include "vmmath.h"
#include "vmfit.h"
#include "vmdistmodels.h"
#include "vmmossphotcalib.h"
#include "vmimgutils.h"
#include "cpl.h"


static int
polint2(float xa[], float ya[], int nDat, float x, float *y, float *dy)
{
  char modName[] = "polint2";
  int i,m,ns=0;
  float den,dif,dift,ho,hp,w;
  float *c,*d;

  dif=fabs(x-xa[0]);
  c = (float *) cpl_calloc(nDat, sizeof(float));
  d = (float *) cpl_calloc(nDat, sizeof(float));
  for (i=0; i<nDat; i++) 
  {
    if ( (dift=fabs(x-xa[i])) < dif) 
    {
      ns=i;
      dif=dift;
    }
    c[i]=ya[i];
    d[i]=ya[i];
  }
  *y=ya[ns--];
  for (m=0; m<nDat-1; m++) 
  {
    for (i=0; i<nDat-m-1; i++) 
    {
      ho=xa[i]-x;
      hp=xa[i+m+1]-x;
      w=c[i+1]-d[i];
      if ( (den=ho-hp) == 0.0)
      {
	cpl_msg_error(modName,"Error: two identical x values");
	return EXIT_FAILURE;
      }
      den=w/den;
      d[i]=hp*den;
      c[i]=ho*den;
    }
    *y += (*dy=(2*ns < (nDat-m) ? c[ns+1] : d[ns--]));
  }
  cpl_free(d);
  cpl_free(c);
  return EXIT_SUCCESS;
}


static double *
readCalSphotModel(VimosDescriptor *desc, int modelDeg)
{
  const char modName[] = "readCalSphotModel";
  char       comment[80];
  double     dValue;
  double    *coeffs;
  int        i;

  coeffs = cpl_malloc((modelDeg+1)*sizeof(double)) ;
  for (i = 0; i <= modelDeg; i++)
  {
    if (readDoubleDescriptor(desc, pilTrnGetKeyword("SphotModel", i), 
			     &dValue, comment) == VM_FALSE) {
      cpl_free(coeffs);
      coeffs = NULL;
      cpl_msg_error(modName, "Cannot read descriptor %s", 
		  pilTrnGetKeyword("SphotModel", i)); 
    }
    else {
      coeffs[i] = dValue;
    }
  }    
  return coeffs;
}


static VimosBool
writeCalSphotModel(double *modelCoeffs, int modelDeg, VimosDescriptor *desc)
{
  const char modName[] = "writeCalSphotModel";
  int        i;

  if (writeIntDescriptor(&desc, pilTrnGetKeyword("SphotOrder"), 
                         modelDeg, "") == VM_FALSE) {
    cpl_msg_error(modName, "Descriptor %s not found", 
                pilTrnGetKeyword("SphotOrder"));
    return VM_FALSE;
  }

  for (i = 0; i <= modelDeg; i++)
  {
    if (writeDoubleDescriptor(&desc, pilTrnGetKeyword("SphotModel", i), 
			      modelCoeffs[i], "") == VM_FALSE) {
      cpl_msg_error(modName, "Descriptor %s not found", 
		  pilTrnGetKeyword("SphotModel", i));
      return VM_FALSE;
    }
  }
  return VM_TRUE;
}

static VimosFloatArray *
resample1D(VimosFloatArray *input, float startLambda, float delLambda,
           float firstLambda, float lastLambda, float newDelLambda)
{
  char     modName[] = "resample1D";
  int      i, j;
  int      nPixIn;
  int      nPixOut;
  int      pix;
  float    lambda;
  float    flux;
  float    outFlux;
  float    sigma;
  
  VimosFloatArray *outSpectrum, *inputLambda;

  nPixIn = input->len;

  if (firstLambda < startLambda)
  {
    cpl_msg_error(modName, 
		"Lower output wavelength smaller than lower input one");
    return NULL;
  }
  if (lastLambda > (startLambda + (float) nPixIn * delLambda))
  {
    cpl_msg_error(modName, 
		"Upper output wavelength larger than upper input one");
    return NULL;
  }
    
  nPixOut = (int) ((lastLambda - firstLambda) / newDelLambda);
  outSpectrum = newFloatArray(nPixOut);
  inputLambda = newFloatArray(nPixIn);
  
  for (i=0; i<nPixIn; i++)
  {  
    inputLambda->data[i] = startLambda + delLambda * (float) i;
    input->data[i] /= delLambda;
  }  

  /* interpolation of the input spectrum, on a wavelength scale one/fourth 
     of the required output one */
  for (i=0; i<nPixOut; i++)
  {
    lambda = firstLambda + newDelLambda * (float) i;
    pix = (int) ((lambda - startLambda) / delLambda);
    outFlux = 0.;

    if (pix < 2)
    {
      /* special case for the first two pixels */
      for (j=0; j<4; j++)
      {
	polint2(inputLambda->data, input->data, 3, lambda, &flux, &sigma);
	outFlux += flux * newDelLambda / 4.;
	lambda += (float) j * newDelLambda / 4.;
      }
    }
    else if (pix > (nPixIn - 2))
    {
      /* special case for the last two pixels */
      for (j=0; j<4; j++)
      {
	polint2(&inputLambda->data[nPixIn-4], &input->data[nPixIn-4], 3, 
	       lambda, &flux, &sigma);
	outFlux += flux * newDelLambda / 4.;
	lambda += (float) j * newDelLambda / 4.;
      }
    }
    else
    {
      /* general case */
      for (j=0; j<4; j++)
      {
	polint2(&inputLambda->data[pix-2], &input->data[pix-2], 4, lambda, 
	       &flux, &sigma);
	outFlux += flux * newDelLambda / 4.;
	lambda += (float) j * newDelLambda / 4.;
      }
    }
    outSpectrum->data[i] = outFlux;
  }

  return outSpectrum;
}


int
VmSpCalPhot(VimosImage *inputImage, VimosTable *sphotStdTable, int stdRow,
            int sensFuncDeg)
{
  char     modName[] = "VmSpCalPhot";
  int      constDLambda=1;
  int      i,j;
  int      nStdPoints;
  int      delLambdaNew;
  int      nConstDLambda;
  int      stdDLambda;
  int      inpSpecLen;
  int      firstFlux;
  int      lastFlux;
  int      nInt;
  int      nBins;
  int      pix;
  float    specDLambda;
  float    specStartLambda;
  float    firstLambda;
  float    lastLambda;
  float    newDLambda;
  float    lambda;
  float    magStd;
  float    expTime;
  float    ratio;
  float    specCounts;
  float    stdFlux;
  double   dValue;
  double   fitRms;
  double  *sensFuncCoeffs = NULL;
  char     comment[80];

  float    fnuZero = 3.68e-20;  /*absolute flux zero point, from IRAF */
  float    vLight = 2.9979246e18; /* speed of light in Angstrom/sec */
  
  VimosColumn  *lambdaCol, *magCol, *delLambdaCol;
  VimosFloatArray *inputSpectrum, *resampSpectrum;
  VimosDpoint *sensFunc = NULL;

  /* read in the input spectrum */
  readDoubleDescriptor(inputImage->descs, pilTrnGetKeyword("ExposureTime"), 
		       &dValue, comment);
  expTime = (float) dValue;
  readDoubleDescriptor(inputImage->descs, pilTrnGetKeyword("Cdelt",1), 
		       &dValue, comment);
  specDLambda = (float) dValue;
  readDoubleDescriptor(inputImage->descs, pilTrnGetKeyword("Crval",1), 
		       &dValue, comment);
  specStartLambda = (float) dValue;
  readIntDescriptor(inputImage->descs,pilTrnGetKeyword("Naxis",1),&inpSpecLen,
		    comment);

  inputSpectrum = newFloatArray(inpSpecLen);

  for (i=0; i<inpSpecLen; i++)
    inputSpectrum->data[i] = inputImage->data[i+stdRow*inpSpecLen];

  /* read in the spectrophotometric standard table columns */
  lambdaCol = findColInTab(sphotStdTable, "LAMBDA");
  magCol = findColInTab(sphotStdTable, "MAG");
  delLambdaCol = findColInTab(sphotStdTable, "DELTA_LAMBDA");
  nStdPoints = delLambdaCol->len;

  /* find out if the wavelength sampling of the spectrophotometric standard 
     is constant, or if we must work over fractions of the table separately */
  for (i=1; i<nStdPoints; i++)
  {
    stdDLambda = delLambdaCol->colValue->fArray[0];
    if (delLambdaCol->colValue->fArray[i]!=stdDLambda)
    {
      constDLambda=0;
      delLambdaNew=i;
      nConstDLambda=i;
    }
  }

  /* constant sampling, so we can work with the whole spectrum at once */
  if (constDLambda)
  {
    /* determine resampling factor for the input spectrum */
    ratio = (float) stdDLambda / specDLambda;
    if (ratio >= 2.)
    {
      newDLambda = stdDLambda / (int) ratio;
      nInt = (int) ratio;
    }
    else if (ratio < 2. && ratio >= 1.5)
    {    
      newDLambda = stdDLambda / 2.;
      nInt = 2;
    }
    else if (ratio < 1.5 && ratio >= 0.8)
    {    
      newDLambda = (float) stdDLambda;
      nInt = 1;
    }
    else
    {
      /* if the sampling of the standard star if at a higher resolution than
	 our spectrum, we cannot use the table */
      cpl_msg_error(modName, "Mismatch between standard Table and spectrum");
      return EXIT_FAILURE;
    }
  
    /* find first pixel with flux > 0 in spectrum, and first wavelength 
       matching the table ones */
    i=0;
    while (inputSpectrum->data[i] < 1)
      i++;
    firstFlux = i;
    firstLambda = specStartLambda + specDLambda * (float) firstFlux;
    i=0;
    while (lambdaCol->colValue->fArray[i] < firstLambda)
      i++;
    firstLambda = lambdaCol->colValue->fArray[i];
    
    /* find last pixel with flux > 0 in spectrum, and last wavelength 
       matching the table ones */
    i=inpSpecLen-1;
    while (inputSpectrum->data[i] < 1)
      i--;
    lastFlux = i;
    lastLambda = specStartLambda + specDLambda * (float) lastFlux;
    i=0;
    while (lambdaCol->colValue->fArray[i] < lastLambda)
      i++;
    lastLambda = lambdaCol->colValue->fArray[i-1];
    
    /* resample the input spectrum */
    resampSpectrum = resample1D(inputSpectrum,specStartLambda,specDLambda,
				firstLambda,lastLambda,newDLambda);

    /* integrate the flux over the same table wavelength bins, compute
       the calibration flux, and the aperture sensitivity function */
    nBins = (int)((lastLambda - firstLambda) / stdDLambda);    
    sensFunc = newDpoint(nBins);

    for (i=0; i<nBins; i++)
    {
      specCounts = 0.;
      lambda = firstLambda + (float) (stdDLambda * i);
      for (j=0; j<nInt; j++)
      {
	pix = (int) ((lambda - firstLambda) / newDLambda);
	specCounts += resampSpectrum->data[pix+j];
      }

      /* normalize the counts to the exposure time and passband width */
      specCounts /= (expTime * stdDLambda);

      /* compute the calibration flux from the tabulated mag */
      pix = (int) ((lambda - lambdaCol->colValue->fArray[0]) / stdDLambda);
      magStd = magCol->colValue->fArray[pix];
      stdFlux = fnuZero * pow(10., -0.4*magStd) * vLight / SQR(lambda);
      /* derive the sensitivity function */
      sensFunc[i].x = (double) lambda;
      sensFunc[i].y = (double) (2.5 * log10(specCounts / stdFlux));
    }
  }
  else
  {
    /* we must resample the spectrum in chunks of constant stdDLambda */
  }

  /* fit the sensitivity function with a polynomial, and write it
     in the spectrophotometric table */
  sensFuncCoeffs = fit1DPoly(sensFuncDeg, sensFunc, nBins, &fitRms);
  writeCalSphotModel(sensFuncCoeffs, sensFuncDeg, sphotStdTable->descs);

  return EXIT_SUCCESS;
}


VimosImage *
VmSpApplyPhotOld(VimosImage *inputImage, VimosTable *sphotStdTable)
{
  char     comment[80];
  int      imageXlen, imageYlen;
  int      sensFuncDeg;
  int      index;
  int      i, j;
  float    specDLambda;
  float    specStartLambda;
  float    lambda;
  float    expTime;
  float    normCounts;
  float    normFlux;
  float    sensValue;
  double   dValue;
  double   sensFunc;
  double  *sensFuncCoeffs = NULL;

  VimosImage  *outputImage;
  imageXlen = inputImage->xlen;
  imageYlen = inputImage->ylen;

  /* read in spectral parameters */
  readDoubleDescriptor(inputImage->descs, pilTrnGetKeyword("ExposureTime"), 
		       &dValue, comment);
  expTime = (float) dValue;
  readDoubleDescriptor(inputImage->descs, pilTrnGetKeyword("Cdelt",1), 
		       &dValue, comment);
  specDLambda = (float) dValue;
  readDoubleDescriptor(inputImage->descs, pilTrnGetKeyword("Crval",1), 
		       &dValue, comment);
  specStartLambda = (float) dValue;

  /* create output image */
  outputImage = newImageAndAlloc(imageXlen, imageYlen);
  copyAllDescriptors(inputImage->descs, &(outputImage)->descs);

  /* read in the order of the polynomial fit to the sensitivity function */
  readIntDescriptor(sphotStdTable->descs, pilTrnGetKeyword("SphotOrder"),
		    &sensFuncDeg, comment);
  /* read in the coefficients of the polynomial */
  sensFuncCoeffs = readCalSphotModel(sphotStdTable->descs, sensFuncDeg);

  /* loop over lambda (i.e. the image X axis) */
  for (i = 0; i < imageXlen; i++)
  {
    lambda = specStartLambda + (float) (specDLambda * i);

    /* re-construct the value of the sensitivity function */
    sensFunc = sensFuncCoeffs[0];
    for (j = 1; j <= sensFuncDeg; j++)
      sensFunc += sensFuncCoeffs[j] * ipow(lambda, j);
    sensFunc /= 2.5;
    sensValue = pow(10., (float) sensFunc);

    /* loop over the variuos spectra (i.e. the image Y axis) */
    for (j = 0; j < imageYlen; j++)
    {
      index = i + j * imageXlen;
      /* normalize the counts */
      normCounts = inputImage->data[index] / (expTime * specDLambda);
      /* compute the flux */
      normFlux = normCounts / sensValue;
      /* write it to the output image */
      outputImage->data[index] = normFlux;
    }
  }

  return outputImage;
}


VimosImage *
VmSpApplyPhot(VimosImage *image, VimosTable *sphotTable, VimosTable *atmTable)
{
  const char modName[] = "VmSpApplyPhot";

  double     *data;
  int         tlength;
  int         xlength = image->xlen;
  int         ylength = image->ylen;
  int         index   = 0;
  int         i, j;
  double      step, start, gain, time, airmass;
  VimosImage *extinction  = NULL;
  VimosImage *outputImage = NULL;


  if (!atmTable && !sphotTable) {
    cpl_msg_error(modName, 
                  "Missing both atmospheric extinction and response curves!");
    return NULL;
  }

  if (sphotTable) {
    data = tblGetDoubleData(sphotTable, "RESPONSE");

    if (data == NULL) {
      cpl_msg_error(modName, "Missing RESPONSE column in input table");
      return NULL;
    }

    tlength = tblGetSize(sphotTable, "RESPONSE");

    if (xlength != tlength) {
      cpl_msg_error(modName, "Input table and input image are incompatible");
      return NULL;
    }
  }

  if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("Cdelt", 1), 
                       &step, NULL) == VM_FALSE) {
    cpl_msg_error(modName, "Descriptor %s not found", 
                  pilTrnGetKeyword("Cdelt", 1));
    return NULL;
  }

  if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("Crval", 1), 
                       &start, NULL) == VM_FALSE) {
    cpl_msg_error(modName, "Descriptor %s not found", 
                  pilTrnGetKeyword("Crval", 1));
    return NULL;
  }

/***
  if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("SummedExposureTime"),
                       &time, NULL) == VM_FALSE) {
***/
    if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("ExposureTime"),
                         &time, NULL) == VM_FALSE) {
      cpl_msg_error(modName, "Neither descriptor %s nor descriptor "
                    "%s were found", pilTrnGetKeyword("SummedExposureTime"),
                    pilTrnGetKeyword("ExposureTime"));
      return NULL;
    }
/***
  }
***/

  if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("Adu2Electron", 1),
                       &gain, NULL) == VM_FALSE) {
    cpl_msg_error(modName, "Descriptor %s not found", 
                  pilTrnGetKeyword("Adu2Electron", 1));
    return NULL;
  }

  if (atmTable) {

    /*
     * Airmass priorities... The airmass is read from ESO PRO AIRMASS,
     * to give precedence to the software airmass of a product that
     * was already airmass corrected. If ESO PRO AIRMASS is missing,
     * the airmass is computed from Ra, Dec, and time. If even this
     * fails, one last attempt to get the airmass from the standard
     * FITS keyword AIRMASS is made.
     */

    if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("AirMass"),
                             &airmass, NULL) == VM_FALSE) {
      if (VmComputeAirmass(image, &airmass) == EXIT_FAILURE) {
        if (readDoubleDescriptor(image->descs, pilTrnGetKeyword("Airmass"),
                             &airmass, NULL) == VM_FALSE) {
          cpl_msg_error(modName, "Descriptor %s not found", 
                        pilTrnGetKeyword("Airmass"));
          return NULL;
        }
      }
    }

    cpl_msg_info(modName, "Mean airmass: %.4f", airmass);

    /*
     * Map the atmospheric extinction factors to the same lambda sampling
     * of the extracted spectrum, and convert to actual flux loss.
     */

    extinction = newImageAndAlloc(xlength, 1);
    mapTable(extinction, start, step, atmTable, "WAVE", "EXTINCTION");
    constArithLocal(extinction, 0.4 * airmass, VM_OPER_MUL);

    for (i = 0; i < xlength; i++)
      if (extinction->data[i] > 0.0)
        extinction->data[i] = pow(10., extinction->data[i]);

  }

  /*
   * Create an output image from the reduced spectra, correcting
   * them to airmass = 0, and for the instrument response.
   */

  outputImage = newImageAndAlloc(xlength, ylength);
  copyAllDescriptors(image->descs, &(outputImage)->descs);

  if (atmTable && sphotTable) {
    for (i = 0; i < ylength; i++) {
      for (j = 0; j < xlength; j++) {
        outputImage->data[index] = image->data[index] 
                                 * extinction->data[j] 
                                 * data[j];
        index++;
      }
    }
  }
  else if (atmTable) {
    for (i = 0; i < ylength; i++) {
      for (j = 0; j < xlength; j++) {
        outputImage->data[index] = image->data[index] * extinction->data[j];
        index++;
      }
    }
  }
  else if (sphotTable) {
    for (i = 0; i < ylength; i++) {
      for (j = 0; j < xlength; j++) {
        outputImage->data[index] = image->data[index] * data[j];
        index++;
      }
    }
  }

  deleteImage(extinction);

  if (sphotTable)
    constArithLocal(outputImage, gain / time / step, VM_OPER_MUL);

  return outputImage;

}