File: image_normalisation.tcc

package info (click to toggle)
cpl-plugin-vimos 4.1.7%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 29,888 kB
  • sloc: ansic: 189,758; cpp: 16,237; sh: 4,309; python: 3,678; makefile: 1,241; perl: 10
file content (137 lines) | stat: -rw-r--r-- 5,667 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
 * This file is part of the FORS Data Reduction Pipeline
 * Copyright (C) 2002-2010 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * image_normalisation.cpp
 *
 *  Created on: 2014 3 28
 *      Author: cgarcia
 */

#include <cpl.h>
#include <vector>
#include <iostream>
#include <iterator>
#include <numeric>
#include <exception>
#include <algorithm>
#include "image_normalisation.h"
#include "vector_utils.h"
#include "profile_providers.h"

/*--------------- Private functions declaration ---------------*/
template<typename  T,
         typename SpatialProfileProviderType,
         typename DispersionProfileProviderType>
static mosca::image image_normalise_internal(const mosca::image& slit_image,
    const mosca::image& slit_image_weight,
    const SpatialProfileProviderType& spa_profile_provider,
    const DispersionProfileProviderType& disp_profile_provider,
    std::vector<T>& slit_spa_norm_profile, std::vector<T>& slit_disp_norm_profile);

const char* mosca::no_flux_exception::what() const throw()
{
    const char* ret =
            "The sum of all the flux contributions for the provided slit "
            "is zero, making normalisation not possible";
    return ret;
}


template<typename  T>
mosca::image mosca::image_normalise(const mosca::image& slit_image,
const mosca::image& slit_image_weight,
int spa_smooth_radius, int disp_smooth_radius, int disp_smooth_radius_aver,
int spa_fit_polyorder, int disp_fit_nknots, double fit_threshold,
std::vector<T>& slit_spa_norm_profile, std::vector<T>& slit_disp_norm_profile)
{
    spatial_profile_provider<T> spa_profile_provider{slit_image, slit_image_weight, spa_smooth_radius, spa_fit_polyorder, fit_threshold};
    dispersion_profile_provider<T> disp_profile_provider{slit_image, slit_image_weight, disp_smooth_radius, disp_smooth_radius_aver, disp_fit_nknots, fit_threshold};

    return image_normalise_internal<T>(slit_image, slit_image_weight,
            spa_profile_provider, disp_profile_provider,
            slit_spa_norm_profile, slit_disp_norm_profile);
}


template<typename  T>
mosca::image mosca::image_normalise_spa_local(const mosca::image& slit_image,
 const mosca::image& slit_image_weight,
 int spa_smooth_radius, int disp_smooth_radius, int disp_smooth_radius_aver,
 int spa_fit_polyorder, int disp_fit_nknots,
 double fit_threshold,
 bool normalise_spa_local,
 std::vector<T>& slit_spa_norm_profile,
 std::vector<T>& slit_disp_norm_profile)
{
    if(!normalise_spa_local)
        return image_normalise(slit_image, slit_image_weight, spa_smooth_radius, disp_smooth_radius, disp_smooth_radius_aver, spa_fit_polyorder,
                disp_fit_nknots, fit_threshold, slit_spa_norm_profile, slit_disp_norm_profile);

    local_spatial_profile_provider<T> spa_profile_provider{slit_image, slit_image_weight, spa_smooth_radius, spa_fit_polyorder, fit_threshold};
    dispersion_profile_provider<T> disp_profile_provider{slit_image, slit_image_weight, disp_smooth_radius, disp_smooth_radius_aver, disp_fit_nknots, fit_threshold};

    return image_normalise_internal<T>(slit_image, slit_image_weight,
            spa_profile_provider, disp_profile_provider,
            slit_spa_norm_profile, slit_disp_norm_profile);
}

/*--------------- Private functions implementation ---------------*/

template<typename  T,
         typename SpatialProfileProviderType,
         typename DispersionProfileProviderType>
static mosca::image image_normalise_internal(const mosca::image& slit_image,
    const  mosca::image& slit_image_weight,
    const SpatialProfileProviderType& spa_profile_provider,
    const DispersionProfileProviderType& disp_profile_provider,
    std::vector<T>& slit_spa_norm_profile, std::vector<T>& slit_disp_norm_profile){

    if(slit_image.size_x() != slit_image_weight.size_x() ||
       slit_image.size_y() != slit_image_weight.size_y())
        throw std::invalid_argument("image and weight sizes do not match");

    if(slit_image.dispersion_axis() != slit_image_weight.dispersion_axis() ||
       slit_image.spatial_axis() != slit_image_weight.spatial_axis())
        throw std::invalid_argument("image and weight orientation do not match");

    slit_spa_norm_profile = spa_profile_provider.get_average_linear_profile();
    slit_disp_norm_profile = disp_profile_provider.get_average_linear_profile();

    cpl_size nx = slit_image.size_x();
    cpl_size ny = slit_image.size_y();
    mosca::image result(nx, ny, mosca::type_trait<T>::cpl_eq_type,
                        slit_image.dispersion_axis());
    T * p_res = result.get_data<T>();
    const T * p_weight = slit_image_weight.get_data<T>();
    for (cpl_size y = 0; y< ny; ++y)
    {
        for (cpl_size x = 0; x< nx; ++x, ++p_res, ++p_weight)
        {
            if(*p_weight != 0){
                *p_res = disp_profile_provider.get(x, y) * spa_profile_provider.get(x, y);
            }
            else{
                *p_res = 1;
            }
        }
    }

    return result;
}