File: hdrl_fit.c

package info (click to toggle)
cpl-plugin-xshoo 2.8.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 18,168 kB
  • sloc: ansic: 146,236; sh: 11,433; python: 2,342; makefile: 1,024
file content (511 lines) | stat: -rw-r--r-- 18,621 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/*
 * This file is part of the HDRL
 * Copyright (C) 2014 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

/*-----------------------------------------------------------------------------
                                   Includes
-----------------------------------------------------------------------------*/

#include "hdrl_types.h"
#include "hdrl_image.h"
#include "hdrl_imagelist.h"
#include "hdrl_utils.h"
#include "hdrl_fit.h"

#include <cpl.h>
#include <math.h>
#include <assert.h>

/*----------------------------------------------------------------------------*/
/**
  @defgroup hdrl_fit     Fitting
 */
/*----------------------------------------------------------------------------*/

/**@{*/


/*-----------------------------------------------------------------------------
                                   Static
 -----------------------------------------------------------------------------*/

/** @cond PRIVATE */

cpl_matrix * cpl_matrix_product_normal_create(const cpl_matrix * self);
cpl_error_code cpl_matrix_product_transpose(cpl_matrix * self,
                                            const cpl_matrix * ma,
                                            const cpl_matrix * mb);

typedef struct {
    /* input design matrix of fit */
    cpl_matrix * design;
    /* coefficient row matrix */
    cpl_matrix * coef;
    /* covariance matrix of coefficients */
    cpl_matrix * cov;
} hdrl_ls_fit_result;


/* ---------------------------------------------------------------------------*/
/**
 * @brief create least squares fit result structure
 * @return  fit result structure
 */
/* ---------------------------------------------------------------------------*/
static hdrl_ls_fit_result * hdrl_ls_fit_result_create(void)
{
    return cpl_calloc(1, sizeof(hdrl_ls_fit_result));
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief delete least squares fit result structure
 * @param fit result structure, may be NULL
 */
/* ---------------------------------------------------------------------------*/
static void hdrl_ls_fit_result_delete(hdrl_ls_fit_result * r)
{
    if (r == NULL)
        return;
    cpl_matrix_delete(r->design);
    cpl_matrix_delete(r->coef);
    cpl_matrix_delete(r->cov);
    cpl_free(r);
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief get fitted values from a least squares fit result
 * @param r fit result structure
 * @return vector containing the fitted values
 */
/* ---------------------------------------------------------------------------*/
static cpl_vector * hdrl_ls_fit_result_get_fitted_values(
      const hdrl_ls_fit_result * r)
{
    cpl_matrix * fvalues = cpl_matrix_product_create(r->design, r->coef);
    cpl_vector * res = cpl_vector_wrap(cpl_matrix_get_nrow(fvalues),
                                       cpl_matrix_get_data(fvalues));
    cpl_matrix_unwrap(fvalues);
    return res;
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief get fit residuals from a least squares fit result
 * @param r    fit result structure
 * @param data data which from which the fitted values are subtracted
 * @return vector of residuals
 */
/* ---------------------------------------------------------------------------*/
static cpl_vector * hdrl_ls_fit_result_get_residuals(
      const hdrl_ls_fit_result * r,
      const cpl_vector * data)
{
    cpl_vector * fval = hdrl_ls_fit_result_get_fitted_values(r);
    cpl_vector * res = cpl_vector_duplicate(data);
    cpl_vector_subtract(res, fval);
    cpl_vector_delete(fval);
    return res;
}


/* ---------------------------------------------------------------------------*/
/**
 * @brief get squared chi of a least squares fit result
 * @param r      fit result structure
 * @param data   data of the fit
 * @param errors errors of the fit
 * @return  squared chi statistic of the fit
 *
 * the chi square is computed as:
 * sum_i(1/sigma_i^2 * residual_i ^ 2)
 */
/* ---------------------------------------------------------------------------*/
static double hdrl_ls_fit_result_get_chi2(
      const hdrl_ls_fit_result * r,
      const cpl_vector * data,
      cpl_vector * errors)
{
    cpl_vector * fval = hdrl_ls_fit_result_get_residuals(r, data);
    /* mse = sum(sqrt(weights) * residuals ** 2) / df */
    cpl_vector_divide(fval, errors);
    cpl_vector_multiply(fval, fval);
    double mswd = cpl_vector_get_sum(fval);

    cpl_vector_delete(fval);
    return mswd;
}

/* ---------------------------------------------------------------------------*/
/**
 * @brief get degrees of freedom of a least squares fit
 * @param r fit result structure
 * @return degrees of freedom
 */
/* ---------------------------------------------------------------------------*/
static cpl_size hdrl_ls_fit_result_get_residual_dof(const hdrl_ls_fit_result * r)
{
    return cpl_matrix_get_nrow(r->design) - cpl_matrix_get_ncol(r->design);
}


/* ---------------------------------------------------------------------------*/
/**
 * @brief return prediction interval for the data
 *
 * @param r       fit result
 * @param data    data
 * @param errors  errors
 * @return        vector of symmetric prediction interval for data
 *
 * The prediction interval is the one sigma area in which new measurements from
 * the same setup are going to lie. It is not the error of the fitted
 * coefficients which is much smaller due to the use of all values from data to
 * compute them.
 */
/* ---------------------------------------------------------------------------*/
static inline cpl_vector * hdrl_ls_fit_result_get_fit_interval(
      const hdrl_ls_fit_result * r,
      const cpl_vector * data,
      cpl_vector * errors)
{
    /* mse = sum(sqrt(weights) * residuals ** 2) / df */
    double mse = hdrl_ls_fit_result_get_chi2(r, data, errors) /
        hdrl_ls_fit_result_get_residual_dof(r);
    /* var = mse / weights */
    cpl_vector  * serror = cpl_vector_duplicate(errors);
    cpl_vector_multiply(serror, serror);
    cpl_vector_multiply_scalar(serror, mse);
    cpl_vector_power(serror, 0.5);

    /* TODO: accounting for covariance missing
     * + (exog * np.dot(covb, exog.T).T).sum(axis=1) */

    return serror;
}

/* ---------------------------------------------------------------------------*/
/**
* @brief generic 1d vandermonde matrix
*
* @param sample  sampling positions
* @param degree  degree of polynomial
* @param func    function evaluating polynomials from [0, degree] at
*                sampling point
* @return matrix containing the vandermonde matrix
*/
/* ---------------------------------------------------------------------------*/
static cpl_matrix * vander1d(
          const cpl_vector * sample,
          cpl_size           degree,
          void (*func)(double, double *, size_t))
{
    const size_t nr = cpl_vector_get_size(sample);
    const size_t nc = degree + 1;
    cpl_matrix * V = cpl_matrix_new(nr, nc);
    double * v = cpl_matrix_get_data(V);
    const double * d = cpl_vector_get_data_const(sample);
    for (size_t i = 0; i < nr; i++) {
        func(d[i], &v[i*nc], nc);
    }

    return V;
}

static void polynomial(double x, double * p, size_t ncoefs)
{
    p[0] = 1.;
    for (size_t i = 1; i < ncoefs; i++) {
        p[i] = pow(x, i);
    }
}

/* ---------------------------------------------------------------------------*/
/**
 * @internal
 * @brief get vandermonde matrix for a 1d polynomial
 * @param sample  sampling positions
 * @param degree  degree of polynomial
 * @return matrix containing the vandermonde matrix
 */
/* ---------------------------------------------------------------------------*/
static cpl_matrix * polyvander1d(
        const cpl_vector * sample,
        cpl_size           degree)
{
    return vander1d(sample, degree, &polynomial);
}

/* ---------------------------------------------------------------------------*/
/**
 * @internal
 * @brief perform a least squares fit
 * @param design  design matrix
 * @param values  data to fit
 * @param errors  errors of data
 * @return fit result structure
 *         must be deleted with hdrl_ls_fit_result_delete()
 */
/* ---------------------------------------------------------------------------*/
static hdrl_ls_fit_result * fit(
         const cpl_matrix * design,
         const cpl_vector * values,
         const cpl_vector * errors)
{
    hdrl_ls_fit_result * r = hdrl_ls_fit_result_create();
    r->design = cpl_matrix_duplicate(design);
    if (errors) {
        assert(cpl_matrix_get_nrow(design) == cpl_vector_get_size(errors));
        /* weight response and design */
        cpl_vector * vrhs = cpl_vector_duplicate(errors);
        cpl_vector_power(vrhs, -1);
        cpl_matrix * wdesign = cpl_matrix_duplicate(design);
        for (size_t i = 0; i < (size_t)cpl_vector_get_size(errors); i++) {
            double w = cpl_vector_get(vrhs, i);
            for (size_t j = 0; j < (size_t)cpl_matrix_get_ncol(wdesign); j++) {
                cpl_matrix_set(wdesign, i, j,
                               cpl_matrix_get(wdesign, i, j) * w);
            }
        }

        cpl_vector_multiply(vrhs, values);
        cpl_matrix * rhs = cpl_matrix_wrap(cpl_vector_get_size(vrhs), 1,
                                           cpl_vector_get_data(vrhs));

        /* solve Ax = b */
        /* cpl_matrix_solve_normal(design, rhs) + covariance */
        {
            cpl_matrix * At  = cpl_matrix_transpose_create(wdesign);
            cpl_matrix * AtA = cpl_matrix_product_normal_create(At);

            /* RRt = AtA */
            cpl_matrix_decomp_chol(AtA);
            /* solve for pseudo inverse: (RRt)P=At*/
            cpl_matrix_solve_chol(AtA, At);
            /* compute solution to system Ax=b -> x=Pb */
            r->coef = cpl_matrix_product_create(At, rhs);
            /* compute covariance matrix cov(b) = PPt */
            r->cov = cpl_matrix_new(cpl_matrix_get_ncol(At),
                                    cpl_matrix_get_ncol(At));
            cpl_matrix_product_transpose(r->cov, At, At);

            cpl_matrix_delete(At);
            cpl_matrix_delete(AtA);
        }

        cpl_matrix_unwrap(rhs);
        cpl_vector_delete(vrhs);
        cpl_matrix_delete(wdesign);
    }
    else {
        cpl_vector * vrhs = cpl_vector_duplicate(values);
        cpl_matrix * rhs = cpl_matrix_wrap(cpl_vector_get_size(vrhs), 1,
                                           cpl_vector_get_data(vrhs));
        r->coef = cpl_matrix_solve_normal(design, rhs);
        cpl_matrix_unwrap(rhs);
        cpl_vector_delete(vrhs);
    }
    return r;
}

/* ---------------------------------------------------------------------------*/
/**
 * @internal
 * @brief perform 1d polynomial least squares fit
 *
 * @param sample  sampling points
 * @param values  values to fit
 * @param errors  errors to fit
 * @param degree  degree of polynomial to fit
 * @return fit result structure
 *         must be deleted with hdrl_ls_fit_result_delete()
 * @see fit, polyvander1d
 */
/* ---------------------------------------------------------------------------*/
static hdrl_ls_fit_result * polyfit1d(
         const cpl_vector * sample,
         const cpl_vector * values,
         const cpl_vector * errors,
         int degree)
{
    cpl_matrix * design = polyvander1d(sample, degree);
    hdrl_ls_fit_result * r = fit(design, values, errors);
    cpl_matrix_delete(design);
    return r;
}
/** @endcond */

/* ---------------------------------------------------------------------------*/
/**
 * @brief weighted least squares polynomial fit of each pixel of a imagelist
 *
 * @param list      imagelist to fit, the 1/errors^2 are used as the weights of
 *                  the fit
 * @param samplepos vector of sample position of each image in the list
 * @param degree    degree of the fit starting from 0
 * @param coef      output coefficient hdrl_imagelist, the data contains the
 *                  coefficient the error contains the diagonal element of the
 *                  covariance matrix
 * @param chi2      output double cpl_image, contains the chi2 of the fit
 * @param dof       output double cpl_image, contains the degrees of freedom of
 *                  the residuals
 *
 *  @note the errors only need to be relative correct, if the are wrong by a
 *        constant the real errors of the data points can be estimated by
 *        multiplying the squared errors with chi2/dof
 *        The fitting method uses normal equation so the function should not be
 *        used for badly conditioned data.
 */
/* ---------------------------------------------------------------------------*/
cpl_error_code
hdrl_fit_polynomial_imagelist(const hdrl_imagelist * list,
                              const cpl_vector * samplepos,
                              const int degree,
                              hdrl_imagelist ** coef,
                              cpl_image ** chi2,
                              cpl_image ** dof)
{
    cpl_ensure_code(degree >= 0, CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(list && samplepos && coef, CPL_ERROR_NULL_INPUT);
    // TODO test
    cpl_ensure_code(cpl_vector_get_size(samplepos) ==
                    hdrl_imagelist_get_size(list),
                    CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(cpl_vector_get_size(samplepos) ==
                    hdrl_imagelist_get_size(list),
                    CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(hdrl_imagelist_get_size(list) > 0,
                    CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(hdrl_imagelist_get_size(list) >= degree + 1,
                    CPL_ERROR_INCOMPATIBLE_INPUT);
    intptr_t nx = hdrl_imagelist_get_size_x(list);
    intptr_t ny = hdrl_imagelist_get_size_y(list);
    size_t noz = degree + 1;

    /* make sure image has a mask to avoid creation race later */
    *coef = hdrl_imagelist_new();
    if (chi2) {
        *chi2 = cpl_image_new(nx, ny, HDRL_TYPE_DATA);
        cpl_image_get_bpm(*chi2);
    }
    if (dof) {
        *dof = cpl_image_new(nx, ny, HDRL_TYPE_DATA);
        cpl_image_get_bpm(*dof);
    }
    for (size_t z = 0; z < noz; z++) {
        hdrl_image * img = hdrl_image_new(nx, ny);
        hdrl_image_get_mask(img);
        hdrl_imagelist_set(*coef, img, z);
    }
    cpl_imagelist * datal, *errorl;
    if (hdrl_imagelist_to_cplwrap(list, &datal, &errorl)) {
        goto fail;
    }
HDRL_OMP(omp parallel for shared(coef, chi2, dof))
    for (intptr_t y = 0; y < ny; y++) {
        cpl_vector * datav[nx];
        cpl_vector * errsv[nx];
        hdrl_imagelist_to_vector_row(datal, y + 1, datav);
        hdrl_imagelist_to_vector_row(errorl, y + 1, errsv);
        for (intptr_t x = 0; x < nx; x++) {
            /* all bad or less good than fit degrees */
            cpl_vector * data = datav[x];
            cpl_vector * errs = errsv[x];
            if (data == NULL || (size_t)cpl_vector_get_size(data) < noz) {
                for (size_t z = 0; z < noz; z++) {
                    hdrl_image * oimg = hdrl_imagelist_get(*coef, z);
                    hdrl_image_set_pixel(oimg, x + 1, y + 1,
                                         (hdrl_value){NAN, NAN});
                    hdrl_image_reject(oimg, x + 1, y + 1);
                }
                if (chi2) {
                    cpl_image_set(*chi2, x + 1, y + 1, NAN);
                    cpl_image_reject(*chi2, x + 1, y + 1);
                }
                if (dof) {
                    int n = data ? cpl_vector_get_size(data) - noz : -noz;
                    cpl_image_set(*dof, x + 1, y + 1, n);
                    cpl_image_reject(*dof, x + 1, y + 1);
                }
                cpl_vector_delete(data);
                cpl_vector_delete(errs);
                continue;
            }

            /* remove bad pixelse from sample positions, TODO, cleanup */
            cpl_vector * nsamppos;
            if (cpl_vector_get_size(data) != cpl_vector_get_size(samplepos)) {
                size_t j = 0;
                nsamppos = cpl_vector_new(cpl_vector_get_size(data));
                for (size_t i = 0; i < (size_t)hdrl_imagelist_get_size(list); i++) {
                    hdrl_image * img = hdrl_imagelist_get(list, i);
                    if (hdrl_image_is_rejected(img, x + 1, y + 1))
                        continue;
                    cpl_vector_set(nsamppos, j++, cpl_vector_get(samplepos, i));
                }
            }
            else {
                nsamppos = cpl_vector_duplicate(samplepos);
            }
            hdrl_ls_fit_result * r = polyfit1d(nsamppos, data, errs, degree);
            // TODO handle failure
            for (size_t z = 0; z < noz; z++) {
                hdrl_image * oimg = hdrl_imagelist_get(*coef, z);
                hdrl_image_set_pixel(oimg, x + 1, y + 1,
                         (hdrl_value){cpl_matrix_get(r->coef, z, 0),
                                      sqrt(cpl_matrix_get(r->cov, z, z))});
            }
            if (chi2) {
                cpl_image_set(*chi2, x + 1, y + 1,
                              hdrl_ls_fit_result_get_chi2(r, data, errs));
            }
            if (dof) {
                cpl_image_set(*dof, x + 1, y + 1,
                              hdrl_ls_fit_result_get_residual_dof(r));
            }
            hdrl_ls_fit_result_delete(r);
            cpl_vector_delete(data);
            cpl_vector_delete(errs);
            cpl_vector_delete(nsamppos);
        }
    }

    cpl_imagelist_unwrap(datal);
    cpl_imagelist_unwrap(errorl);

    return cpl_error_get_code();
fail:
    hdrl_imagelist_delete(*coef);
    *coef = NULL;
    if (chi2) {
        cpl_image_delete(*chi2);
        *chi2 = NULL;
    }
    if (dof) {
        cpl_image_delete(*dof);
        *dof = NULL;
    }
    return cpl_error_get_code();
}
/**@}*/