File: cpl_image_basic.c

package info (click to toggle)
cpl 7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,240 kB
  • sloc: ansic: 126,133; sh: 4,181; makefile: 640
file content (4168 lines) | stat: -rw-r--r-- 146,572 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
/* $Id: cpl_image_basic.c,v 1.208 2013-07-24 09:45:53 llundin Exp $
 *
 * This file is part of the ESO Common Pipeline Library
 * Copyright (C) 2001-2008 European Southern Observatory
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * $Author: llundin $
 * $Date: 2013-07-24 09:45:53 $
 * $Revision: 1.208 $
 * $Name: not supported by cvs2svn $
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

/*-----------------------------------------------------------------------------
                                   Includes
 -----------------------------------------------------------------------------*/

#include <complex.h>

#include "cpl_image_basic_impl.h"

#include "cpl_image_io_impl.h"

#include "cpl_memory.h"
#include "cpl_vector.h"
#include "cpl_image_stats.h"
#include "cpl_stats_impl.h"
#include "cpl_image_bpm.h"
#include "cpl_image_iqe.h"
#include "cpl_mask_impl.h"
#include "cpl_tools.h"
#include "cpl_errorstate.h"
#include "cpl_error_impl.h"
#include "cpl_math_const.h"
#include "cpl_image_defs.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include <complex.h>
#include <assert.h>
#include <errno.h>
/* for SIZE_MAX, intptr_t */
#include <stdint.h>


/*-----------------------------------------------------------------------------
                                   Defines
 -----------------------------------------------------------------------------*/

#define CPL_IMAGE_BASIC_ASSIGN              1
#define CPL_IMAGE_BASIC_ASSIGN_LOCAL        2
#define CPL_IMAGE_BASIC_THRESHOLD           3
#define CPL_IMAGE_BASIC_ABS                 4
#define CPL_IMAGE_BASIC_AVERAGE             5
#define CPL_IMAGE_BASIC_SUBMIN              6
#define CPL_IMAGE_BASIC_EXTRACT             7
#define CPL_IMAGE_BASIC_EXTRACTROW          8
#define CPL_IMAGE_BASIC_EXTRACTCOL          9
#define CPL_IMAGE_BASIC_COLLAPSE_MEDIAN     11
#define CPL_IMAGE_BASIC_ROTATE_INT_LOCAL    12
#define CPL_IMAGE_BASIC_FLIP_LOCAL          15
#define CPL_IMAGE_BASIC_MOVE_PIXELS         16
#define CPL_IMAGE_BASIC_OP_SCALAR           21
#define CPL_IMAGE_BASIC_SQRT                22
#define CPL_IMAGE_BASIC_DECLARE             23

#define CPL_IMAGE_BASIC_OPERATE             24
#define CPL_IMAGE_BASIC_DIVIDE              25
#define CPL_IMAGE_BASIC_OPERATE_LOCAL       26
#define CPL_IMAGE_BASIC_DIVIDE_LOCAL        27
#define CPL_IMAGE_BASIC_HYPOT               28

#define CPL_IMAGE_ADDITION(a,b,c)           a = (b) + (c)
#define CPL_IMAGE_ADDITIONASSIGN(a,b)       a += (b)
#define CPL_IMAGE_SUBTRACTION(a,b,c)        a = (b) - (c)
#define CPL_IMAGE_SUBTRACTIONASSIGN(a,b)    a -= (b)
#define CPL_IMAGE_MULTIPLICATION(a,b,c)     a = (b) * (c)
#define CPL_IMAGE_MULTIPLICATIONASSIGN(a,b) a *= (b)
#define CPL_IMAGE_DIVISION(a,b,c)           a = (b) / (c)
#define CPL_IMAGE_DIVISIONASSIGN(a,b)       a /= (b)
#define CPL_IMAGE_MINABS(a,b,c)             a = CPL_MATH_ABS1(b) < CPL_MATH_ABS2(c) ? (b) : (c)
  
/*-----------------------------------------------------------------------------
                            Private Function prototypes
 -----------------------------------------------------------------------------*/

static double cpl_vector_get_noise(const cpl_vector *, cpl_size);
static double cpl_vector_get_fwhm(const cpl_vector *, cpl_size, double);
static cpl_error_code cpl_fft(double *, double *, const unsigned *, int, int);

/* Declare and define the 8 hypot functions */
#define CPL_OPERATION CPL_IMAGE_BASIC_HYPOT

#define CPL_TYPE_T1 CPL_TYPE_FLOAT
#define CPL_TYPE1  float

#define CPL_TYPE_T2 CPL_TYPE_FLOAT
#define CPL_TYPE_T3 CPL_TYPE_FLOAT
#define CPL_TYPE2  float
#define CPL_TYPE3  float
#define CPL_HYPOT hypotf

#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3
#undef CPL_HYPOT


#define CPL_TYPE_T2 CPL_TYPE_FLOAT
#define CPL_TYPE_T3 CPL_TYPE_DOUBLE
#define CPL_TYPE2  float
#define CPL_TYPE3  double
#define CPL_HYPOT hypot
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3

#define CPL_TYPE_T2 CPL_TYPE_DOUBLE
#define CPL_TYPE_T3 CPL_TYPE_FLOAT
#define CPL_TYPE2  double
#define CPL_TYPE3  float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3

#define CPL_TYPE_T2 CPL_TYPE_DOUBLE
#define CPL_TYPE_T3 CPL_TYPE_DOUBLE
#define CPL_TYPE2  double
#define CPL_TYPE3  double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3

#undef CPL_TYPE_T1
#undef CPL_TYPE1
#define CPL_TYPE_T1 CPL_TYPE_DOUBLE
#define CPL_TYPE1  double
#undef CPL_HYPOT

#define CPL_TYPE_T2 CPL_TYPE_FLOAT
#define CPL_TYPE_T3 CPL_TYPE_FLOAT
#define CPL_TYPE2  float
#define CPL_TYPE3  float
#define CPL_HYPOT hypotf

#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3
#undef CPL_HYPOT

#define CPL_TYPE_T2 CPL_TYPE_FLOAT
#define CPL_TYPE_T3 CPL_TYPE_DOUBLE
#define CPL_TYPE2  float
#define CPL_TYPE3  double
#define CPL_HYPOT hypot
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3

#define CPL_TYPE_T2 CPL_TYPE_DOUBLE
#define CPL_TYPE_T3 CPL_TYPE_FLOAT
#define CPL_TYPE2  double
#define CPL_TYPE3  float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3

#define CPL_TYPE_T2 CPL_TYPE_DOUBLE
#define CPL_TYPE_T3 CPL_TYPE_DOUBLE
#define CPL_TYPE2  double
#define CPL_TYPE3  double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T2
#undef CPL_TYPE_T3
#undef CPL_TYPE2
#undef CPL_TYPE3

#undef CPL_TYPE_T1
#undef CPL_TYPE1
#undef CPL_HYPOT
#undef CPL_OPERATION


/* Declare and define the C-type dependent functions */
#define CPL_OPERATION CPL_IMAGE_BASIC_DECLARE

#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS

#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS

#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS

#undef CPL_OPERATION

#ifdef __SSE3__
#include <pmmintrin.h>
#endif
#ifdef __SSE2__
#include <xmmintrin.h>

#ifdef __clang__
#    define cpl_m_from_int64 (__m64)
#  else
#    define cpl_m_from_int64 _m_from_int64
#  endif
#endif

#if defined __SSE2__ || defined __SSE3__

#if defined __SSE3__
#define CPL_MM_ADDSUB_PS(a, b) _mm_addsub_ps(a, b)
#define CPL_MM_ADDSUB_PD(a, b) _mm_addsub_pd(a, b)
#else
        /* faster than multiplying with 1,-1,1,-1 */
#define CPL_MM_ADDSUB_PS(a, b) \
    _mm_add_ps(a, _mm_xor_ps(b, (__m128)_mm_set_epi32(0x0u, 0x80000000u, \
                                                      0x0u, 0x80000000u)))
#define CPL_MM_ADDSUB_PD(a, b) \
  _mm_add_pd(a, _mm_xor_pd(b, (__m128d)_mm_set_epi64(cpl_m_from_int64(0x0llu), \
                                                     cpl_m_from_int64(0x8000000000000000llu))))
#endif

static cpl_error_code cpl_image_multiply_fcomplex_sse_(cpl_image       *,
                                                       const cpl_image *)
    CPL_ATTR_NONNULL;
static cpl_error_code cpl_image_multiply_dcomplex_sse_(cpl_image       *,
                                                       const cpl_image *)
    CPL_ATTR_NONNULL;
#endif

/*-----------------------------------------------------------------------------
                            Function codes
 -----------------------------------------------------------------------------*/

#define CPL_OPERATION CPL_IMAGE_BASIC_ASSIGN
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Add two images.
  @param    image1  first operand
  @param    image2  second operand
  @return   1 newly allocated image or NULL on error

  Creates a new image, being the result of the operation, and returns it to
  the caller. The returned image must be deallocated using cpl_image_delete().
  The function supports images with different types among CPL_TYPE_INT, 
  CPL_TYPE_FLOAT and CPL_TYPE_DOUBLE. The returned image type is the one of the 
  first passed image.

  The bad pixels map of the result is the union of the bad pixels maps of
  the input images.
  
  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the input images have different sizes
  - CPL_ERROR_TYPE_MISMATCH if the second input image has complex type
    while the first one does not
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_add_create(
        const cpl_image *   image1, 
        const cpl_image *   image2) 
{
#define CPL_OPERATOR CPL_IMAGE_ADDITION
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Subtract two images.
  @param    image1  first operand
  @param    image2  second operand
  @return   1 newly allocated image or NULL on error
  @see      cpl_image_add_create()
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_subtract_create(
        const cpl_image *   image1, 
        const cpl_image *   image2) 
{
#define CPL_OPERATOR CPL_IMAGE_SUBTRACTION
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Multiply two images.
  @param    image1  first operand
  @param    image2  second operand
  @return   1 newly allocated image or NULL on error
  @see      cpl_image_add_create()
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_multiply_create(
        const cpl_image *   image1, 
        const cpl_image *   image2)
{
#define CPL_OPERATOR CPL_IMAGE_MULTIPLICATION
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
}

/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    Create the minimum of two images.
  @param    image1  first operand
  @param    image2  second operand
  @return   1 newly allocated image or NULL on error
  @see      cpl_image_add_create()
  @note For each pixel position the new value is the one with the
        absolute minimum
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_min_create(
        const cpl_image *   image1, 
        const cpl_image *   image2)
{
#define CPL_OPERATOR CPL_IMAGE_MINABS
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
}
#undef CPL_OPERATION
 
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Divide two images.
  @param    image1  first operand
  @param    image2  second operand
  @return   1 newly allocated image or NULL on error
  @see      cpl_image_add_create()
  @see      cpl_image_divide()
     The result of division with a zero-valued pixel is marked as a bad
     pixel.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the input images have different sizes
  - CPL_ERROR_TYPE_MISMATCH if the second input image has complex type
    while the first one does not
  - CPL_ERROR_DIVISION_BY_ZERO is all pixels in the divisor are zero
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_divide_create(const cpl_image * image1, 
                                    const cpl_image * image2)
{

#define CPL_OPERATION CPL_IMAGE_BASIC_DIVIDE

    cpl_image               *   self;
    cpl_mask                *   zeros;
    cpl_binary              *   pzeros;
    cpl_size                    nzero = 0;

    cpl_ensure(image1     != NULL,       CPL_ERROR_NULL_INPUT,         NULL);
    cpl_ensure(image2     != NULL,       CPL_ERROR_NULL_INPUT,         NULL);
    cpl_ensure(image1->nx == image2->nx, CPL_ERROR_INCOMPATIBLE_INPUT, NULL);
    cpl_ensure(image1->ny == image2->ny, CPL_ERROR_INCOMPATIBLE_INPUT, NULL);

    /* Create the map of zero-divisors */
    zeros = cpl_mask_new(image2->nx, image2->ny);
    pzeros = cpl_mask_get_data(zeros);

    /* Switch on the first passed image type */
    switch (image1->type) {
    case CPL_TYPE_INT: {
        const int * p1 = (const int *)image1->pixels;
        int       * pout = (int *)cpl_malloc(image1->nx * image1->ny *
                                             sizeof(*pout));

        /* Switch on the second passed image type */
        switch (image2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            cpl_free(pout);
            (void)cpl_error_set_(CPL_ERROR_TYPE_MISMATCH);
            pout = NULL;
        }
        self = pout ? cpl_image_wrap_int(image1->nx, image1->ny, pout) : NULL;
        break;
    }

    case CPL_TYPE_FLOAT: {
        const float * p1   = (const float *)image1->pixels;
        float       * pout = (float *)cpl_malloc(image1->nx * image1->ny *
                                                 sizeof(*pout));

        /* Switch on the second passed image type */
        switch (image2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            cpl_free(pout);
            (void)cpl_error_set_(CPL_ERROR_TYPE_MISMATCH);
            pout = NULL;
        }
        self = pout ? cpl_image_wrap_float(image1->nx, image1->ny, pout) : NULL;
        break;
    }

    case CPL_TYPE_DOUBLE: {
        const double * p1   = (const double *)image1->pixels;
        double       * pout = (double *)cpl_malloc(image1->nx * image1->ny *
                                                 sizeof(*pout));

        /* Switch on the second passed image type */
        switch (image2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            cpl_free(pout);
            (void)cpl_error_set_(CPL_ERROR_TYPE_MISMATCH);
            pout = NULL;
        }
        self = pout ? cpl_image_wrap_double(image1->nx, image1->ny, pout) : NULL;
        break;
    }

    case CPL_TYPE_FLOAT_COMPLEX: {
        const float complex * p1   = (const float complex *)image1->pixels;
        float complex       * pout = (float complex *)cpl_malloc(image1->nx *
                                                                 image1->ny *
                                                                 sizeof(*pout));

        /* Switch on the second passed image type */
        switch (image2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT_COMPLEX
#define CPL_TYPE   float complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE_COMPLEX
#define CPL_TYPE   double complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            cpl_free(pout);
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
            pout = NULL;
        }
        self = pout ? cpl_image_wrap_float_complex(image1->nx, image1->ny, pout)
            : NULL;
        break;
    }

    case CPL_TYPE_DOUBLE_COMPLEX: {
        const double complex * p1   = (const double complex *)image1->pixels;
        double complex       * pout = (double complex *)cpl_malloc(image1->nx *
                                                                 image1->ny *
                                                                 sizeof(*pout));

        /* Switch on the second passed image type */
        switch (image2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT_COMPLEX
#define CPL_TYPE   float complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE_COMPLEX
#define CPL_TYPE   double complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE


        default:
            cpl_free(pout);
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
            pout = NULL;
        }
        self = pout ? cpl_image_wrap_double_complex(image1->nx, image1->ny,
                                                    pout) : NULL;
        break;
    }
    default:
        (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
        self = NULL;
    }

    if (nzero == image1->nx * image1->ny) {
        cpl_image_delete(self);
        (void)cpl_error_set_(CPL_ERROR_DIVISION_BY_ZERO);
        self = NULL;
    }

    if (self == NULL) {
        cpl_mask_delete(zeros);
    } else {
        /* Handle bad pixels map */
        if (image1->bpm == NULL && image2->bpm == NULL) {
            self->bpm = NULL;
        } else if (image1->bpm == NULL) {
            self->bpm = cpl_mask_duplicate(image2->bpm);
        } else if (image2->bpm == NULL) {
            self->bpm = cpl_mask_duplicate(image1->bpm);
        } else {
            self->bpm = cpl_mask_duplicate(image1->bpm);
            cpl_mask_or(self->bpm, image2->bpm);
        }

        /* Handle division by zero in the BPM */
        if (nzero != 0) {
            if (self->bpm == NULL) {
                self->bpm = zeros;
            } else {
                cpl_mask_or(self->bpm, zeros);
                cpl_mask_delete(zeros);
            }
        } else {
            cpl_mask_delete(zeros);
        }

        if (image1->type != CPL_TYPE_INT && image2->type != CPL_TYPE_INT) {
            cpl_tools_add_flops( image1->nx * image1->ny - nzero);
        }
    }

    return self;

#undef CPL_OPERATION

}

#define CPL_OPERATION CPL_IMAGE_BASIC_ASSIGN_LOCAL
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Add two images, store the result in the first image.
  @param    im1     first operand.
  @param    im2     second operand.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  
  The first input image is modified to contain the result of the operation.

  The bad pixel map of the first image becomes the union of the bad pixel 
  maps of the input images.
  
  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the input images have different sizes
  - CPL_ERROR_TYPE_MISMATCH if the second input image has complex type
    while the first one does not
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_add(
        cpl_image       *   im1, 
        const cpl_image *   im2)
{
#define CPL_OPERATOR CPL_IMAGE_ADDITIONASSIGN
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Subtract two images, store the result in the first image.
  @param    im1     first operand.
  @param    im2     second operand.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  @see      cpl_image_add()
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_subtract(
        cpl_image       *   im1, 
        const cpl_image *   im2)
{
#define CPL_OPERATOR CPL_IMAGE_SUBTRACTIONASSIGN
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Multiply two images, store the result in the first image.
  @param    im1     first operand.
  @param    im2     second operand.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  @see      cpl_image_add()
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_multiply(
        cpl_image       *   im1, 
        const cpl_image *   im2)
{
    /* Faster version of code generated with gcc -ffast-math */
    /* (NaNs and other float specials are no longer IEEE compliant) */
#if (defined __SSE3__ || defined __SSE2__)
    cpl_ensure_code(im1     != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(im2     != NULL, CPL_ERROR_NULL_INPUT);

    if (im1->type == CPL_TYPE_FLOAT_COMPLEX &&
        im2->type == CPL_TYPE_FLOAT_COMPLEX) {
        cpl_ensure_code(im1->nx == im2->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(im1->ny == im2->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_image_multiply_fcomplex_sse_(im1, im2);
        return CPL_ERROR_NONE;
    }
        else if (im1->type == CPL_TYPE_DOUBLE_COMPLEX &&
                 im2->type == CPL_TYPE_DOUBLE_COMPLEX) {
        cpl_ensure_code(im1->nx == im2->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(im1->ny == im2->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_image_multiply_dcomplex_sse_(im1, im2);
        return CPL_ERROR_NONE;
    }
    else
#endif
    {
#define CPL_OPERATOR CPL_IMAGE_MULTIPLICATIONASSIGN
#include "cpl_image_basic_body.h"
#undef CPL_OPERATOR
    }
}
#undef CPL_OPERATION

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Divide two images, store the result in the first image.
  @param    im1     first operand.
  @param    im2     second operand.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  @see      cpl_image_add()
  @note
     The result of division with a zero-valued pixel is marked as a bad
     pixel. 

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the input images have different sizes
  - CPL_ERROR_TYPE_MISMATCH if the second input image has complex type
    while the first one does not
  - CPL_ERROR_DIVISION_BY_ZERO is all pixels in the divisor are zero
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_divide(cpl_image       *   im1, 
                                const cpl_image *   im2)
{
#define CPL_OPERATION CPL_IMAGE_BASIC_DIVIDE_LOCAL

    cpl_mask       * zeros;
    cpl_binary     * pzeros;
    cpl_size         nzero = 0;

    cpl_ensure_code(im1     != NULL,    CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(im2     != NULL,    CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(im1->nx == im2->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(im1->ny == im2->ny, CPL_ERROR_INCOMPATIBLE_INPUT);

    assert( im1->pixels );
    assert( im2->pixels );

    /* Create the zeros map */
    /* Do not modify im1->bpm now, in case of failure below */
    if (im1->bpm != NULL) {
        zeros = im1->bpm;
    } else if (im2->bpm != NULL) {
        zeros = cpl_mask_duplicate(im2->bpm);
    } else {
        zeros = cpl_mask_new(im1->nx, im1->ny);
    }

    pzeros = cpl_mask_get_data(zeros);

    /* Switch on the first passed image type */
    switch (im1->type) {
    case CPL_TYPE_INT: {
        int * p1 = (int *)im1->pixels;

        /* Switch on the second passed image type */
        switch (im2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            if (zeros != im1->bpm) cpl_mask_delete(zeros);
            return cpl_error_set_(CPL_ERROR_TYPE_MISMATCH);
        }
        break;
    }

    case CPL_TYPE_FLOAT: {
        float * p1 = (float *)im1->pixels;

        /* Switch on the second passed image type */
        switch (im2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            if (zeros != im1->bpm) cpl_mask_delete(zeros);
            return cpl_error_set_(CPL_ERROR_TYPE_MISMATCH);
        }
        break;
    }
    case CPL_TYPE_DOUBLE: {
        double * p1 = (double *)im1->pixels;

        /* Switch on the second passed image type */
        switch (im2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            if (zeros != im1->bpm) cpl_mask_delete(zeros);
            return cpl_error_set_(CPL_ERROR_TYPE_MISMATCH);
        }
        break;
    }
    case CPL_TYPE_FLOAT_COMPLEX: {
            float complex * p1 = (float complex *)im1->pixels;

            /* Switch on the second passed image type */
            switch (im2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT_COMPLEX
#define CPL_TYPE   float complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE_COMPLEX
#define CPL_TYPE   double complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

            default:
                if (zeros != im1->bpm) cpl_mask_delete(zeros);
                return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
            }
            break;
    }
    case CPL_TYPE_DOUBLE_COMPLEX: {
        double complex * p1 = (double complex *)im1->pixels;

        /* Switch on the second passed image type */
        switch (im2->type) {
#define CPL_TYPE_T CPL_TYPE_INT
#define CPL_TYPE   int
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT
#define CPL_TYPE   float
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE
#define CPL_TYPE   double
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_FLOAT_COMPLEX
#define CPL_TYPE   float complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

#define CPL_TYPE_T CPL_TYPE_DOUBLE_COMPLEX
#define CPL_TYPE   double complex
#include "cpl_image_basic_body.h"
#undef CPL_TYPE_T
#undef CPL_TYPE

        default:
            if (zeros != im1->bpm) cpl_mask_delete(zeros);
            return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
        }
        break;
    }

    default:
        if (zeros != im1->bpm) cpl_mask_delete(zeros);
        return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    if (nzero == im1->nx * im1->ny) {
        if (zeros != im1->bpm) cpl_mask_delete(zeros);
        return cpl_error_set_(CPL_ERROR_DIVISION_BY_ZERO);
    }

    if (im1->type != CPL_TYPE_INT && im2->type != CPL_TYPE_INT) {
        cpl_tools_add_flops( im1->nx * im1->ny - nzero);
    }

    /* Handle bad pixels map */
    if (im1->bpm != NULL && im2->bpm != NULL && im1->bpm != im2->bpm) {
        /* assert( im1->bpm == zeros ); */
        cpl_mask_or(im1->bpm, im2->bpm);
    } else if (im1->bpm != zeros) {

        /*
        assert( im1->bpm == NULL );
        assert( zeros    != NULL );
        */

        if (im2->bpm != NULL || nzero > 0) {
            im1->bpm = zeros;
        } else {
            cpl_mask_delete(zeros);
        }
    }

    return CPL_ERROR_NONE;
}

#undef CPL_OPERATION

#define CPL_OPERATION CPL_IMAGE_BASIC_OP_SCALAR
#define CPL_OPERATOR CPL_IMAGE_ADDITIONASSIGN
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Elementwise addition of a scalar to an image
  @param    self    Image to be modified in place.
  @param    scalar  Number to add
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
 
  Modifies the image by adding a number to each of its pixels.

  The operation is always performed in double precision, with a final
  cast of the result to the image pixel type.
  
  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_add_scalar(cpl_image * self,
                                    double      scalar)
{
    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);
    
    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_DOUBLE_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
    default:
        return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    return CPL_ERROR_NONE;
}
#undef CPL_OPERATOR

#define CPL_OPERATOR CPL_IMAGE_SUBTRACTIONASSIGN
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Elementwise subtraction of a scalar from an image
  @param    self    Image to be modified in place.
  @param    scalar  Number to subtract
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @see      cpl_image_add_scalar()
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_subtract_scalar(cpl_image * self,
                                         double      scalar)
{
    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);
    
    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_DOUBLE_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
    default:
        return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    return CPL_ERROR_NONE;
}
#undef CPL_OPERATOR

#define CPL_OPERATOR CPL_IMAGE_MULTIPLICATIONASSIGN
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Elementwise multiplication of an image with a scalar
  @param    self    Image to be modified in place.
  @param    scalar  Number to multiply with
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @see      cpl_image_add_scalar()
 */
/*----------------------------------------------------------------------------*/
    cpl_error_code cpl_image_multiply_scalar(cpl_image * self,
                                             double      scalar)
{
    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);
    
    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_DOUBLE_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
    default:
        return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    return CPL_ERROR_NONE;
}
#undef CPL_OPERATOR

#define CPL_OPERATOR CPL_IMAGE_DIVISIONASSIGN
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Elementwise division of an image with a scalar
  @param    self    Image to be modified in place.
  @param    scalar  Non-zero number to divide with
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @see      cpl_image_add_scalar()
 
  Modifies the image by dividing each of its pixels with a number.

  If the scalar is zero the image is not modified and an error is returned.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_DIVISION_BY_ZERO a division by 0 occurs
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_divide_scalar(cpl_image * self,
                                       double      scalar)
{

    cpl_ensure_code(self   != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(scalar != 0.0,  CPL_ERROR_DIVISION_BY_ZERO);
    
    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_DOUBLE_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
    default:
        return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    return CPL_ERROR_NONE;
}
#undef CPL_OPERATOR
#undef CPL_OPERATION

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Compute the elementwise logarithm of the image.
  @param    self   Image to be modified in place.
  @param    base   Base of the logarithm.
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
 
  Modifies the image by computing the base-scalar logarithm of each of its
  pixels.

  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  Pixels for which the logarithm is not defined are
  rejected and set to zero.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
  - CPL_ERROR_ILLEGAL_INPUT if base is non-positive
  - CPL_ERROR_DIVISION_BY_ZERO if the base equals 1
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_logarithm(cpl_image * self, double base)
{

    cpl_error_code error;

    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
    case CPL_TYPE_INT:
        error = cpl_image_logarithm_int(self, base);
        break;
    case CPL_TYPE_FLOAT:
        error = cpl_image_logarithm_float(self, base);
        break;
    case CPL_TYPE_DOUBLE:
        error = cpl_image_logarithm_double(self, base);
        break;
    default:
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE, "type='%s'. "
                                      "base=%g", cpl_type_get_name
                                      (cpl_image_get_type(self)), base);
    }

    return error ? cpl_error_set_where_() : CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Compute the elementwise exponential of the image.
  @param    self   Image to be modified in place.
  @param    base    Base of the exponential.
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
 
  Modifies the image by computing the base-scalar exponential of each of its
  pixels.

  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  Pixels for which the power of the given base is not defined are
  rejected and set to zero.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported

 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_exponential(cpl_image * self, double base)
{

    cpl_error_code error;

    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
    case CPL_TYPE_INT:
        error = cpl_image_exponential_int(self, base);
        break;
    case CPL_TYPE_FLOAT:
        error = cpl_image_exponential_float(self, base);
        break;
    case CPL_TYPE_DOUBLE:
        error = cpl_image_exponential_double(self, base);
        break;
    default:
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE, "type='%s'. "
                                      "base=%g", cpl_type_get_name
                                      (cpl_image_get_type(self)), base);
    }

    return error ? cpl_error_set_where_() : CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Compute the elementwise power of the image.
  @param    self     Image to be modified in place.
  @param    exponent Scalar exponent.
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
 
  Modifies the image by lifting each of its pixels to exponent.

  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  Pixels for which the power to the given exponent is not defined are
  rejected and set to zero.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_power(cpl_image * self, double exponent)
{

    cpl_error_code error;

    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
    case CPL_TYPE_INT:
        error = cpl_image_power_int(self, exponent);
        break;
    case CPL_TYPE_FLOAT:
        error = cpl_image_power_float(self, exponent);
        break;
    case CPL_TYPE_DOUBLE:
        error = cpl_image_power_double(self, exponent);
        break;
    default:
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE, "type='%s'. "
                                      "exponent=%g", cpl_type_get_name
                                      (cpl_image_get_type(self)), exponent);
    }

    return error ? cpl_error_set_where_() : CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    The bit-wise and of two images with integer pixels
  @param    self     Pre-allocated image to hold the result
  @param    first    First operand, or NULL for an in-place operation
  @param    second   Second operand
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @note CPL_TYPE_INT is required
  @see cpl_mask_and() for the equivalent logical operation

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
  - CPL_ERROR_INVALID_TYPE if the passed image type is as required
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_and(cpl_image * self,
                             const cpl_image * first,
                             const cpl_image * second)
{
    cpl_ensure_code(self   != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(second != NULL, CPL_ERROR_NULL_INPUT);

    cpl_ensure_code(self->nx == second->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(self->ny == second->ny, CPL_ERROR_INCOMPATIBLE_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }
    if (cpl_image_get_type(second) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "second-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(second)));
    }

    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask(self, first, second);

    cpl_mask_and_((cpl_binary*)self->pixels,
                  first ? (const cpl_binary*)first->pixels : NULL,
                  (const cpl_binary*)second->pixels,
                  cpl_type_get_sizeof(CPL_TYPE_INT)
                  *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    The bit-wise or of two images with integer pixels
  @param    self     Pre-allocated image to hold the result
  @param    first    First operand, or NULL for an in-place operation
  @param    second   Second operand
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @note CPL_TYPE_INT is required
  @see cpl_mask_or() for the equivalent logical operation

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
  - CPL_ERROR_INVALID_TYPE if the passed image type is as required
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_or(cpl_image * self,
                            const cpl_image * first,
                            const cpl_image * second)
{
    cpl_ensure_code(self   != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(second != NULL, CPL_ERROR_NULL_INPUT);

    cpl_ensure_code(self->nx == second->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(self->ny == second->ny, CPL_ERROR_INCOMPATIBLE_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }
    if (cpl_image_get_type(second) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "second-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(second)));
    }

    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask(self, first, second);

    cpl_mask_or_((cpl_binary*)self->pixels,
                 first ? (const cpl_binary*)first->pixels : NULL,
                 (const cpl_binary*)second->pixels,
                 cpl_type_get_sizeof(CPL_TYPE_INT)
                 *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
   @ingroup cpl_image
   @brief    The bit-wise xor of two images with integer pixels
   @param    self     Pre-allocated image to hold the result
   @param    first    First operand, or NULL for an in-place operation
   @param    second   Second operand
   @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
   @note CPL_TYPE_INT is required
   @see cpl_mask_xor() for the equivalent logical operation

   Possible #_cpl_error_code_ set in this function:
   - CPL_ERROR_NULL_INPUT if an input pointer is NULL
   - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
   - CPL_ERROR_INVALID_TYPE if the passed image type is as required
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_xor(cpl_image * self,
                             const cpl_image * first,
                             const cpl_image * second)
{
    cpl_ensure_code(self   != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(second != NULL, CPL_ERROR_NULL_INPUT);

    cpl_ensure_code(self->nx == second->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(self->ny == second->ny, CPL_ERROR_INCOMPATIBLE_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }
    if (cpl_image_get_type(second) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "second-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(second)));
    }


    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask(self, first, second);

    cpl_mask_xor_((cpl_binary*)self->pixels,
                  first ? (const cpl_binary*)first->pixels : NULL,
                  (const cpl_binary*)second->pixels,
                  cpl_type_get_sizeof(CPL_TYPE_INT)
                  *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
   @ingroup cpl_image
   @brief    The bit-wise complement (not) of an image with integer pixels
   @param    self     Pre-allocated image to hold the result
   @param    first    First operand, or NULL for an in-place operation
   @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
   @note CPL_TYPE_INT is required
   @see cpl_mask_not() for the equivalent logical operation

   Possible #_cpl_error_code_ set in this function:
   - CPL_ERROR_NULL_INPUT if an input pointer is NULL
   - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
   - CPL_ERROR_INVALID_TYPE if the passed image type is as required
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_not(cpl_image * self,
                             const cpl_image * first)
{
    cpl_ensure_code(self   != NULL, CPL_ERROR_NULL_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }

    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask_unary(self, first);

    cpl_mask_xor_scalar((cpl_binary*)self->pixels,
                        first ? (const cpl_binary*)first->pixels : NULL,
                        (cpl_bitmask)-1,
                        cpl_type_get_sizeof(CPL_TYPE_INT)
                        *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    The bit-wise and of a scalar and an image with integer pixels
  @param    self     Pre-allocated image to hold the result
  @param    first    First operand, or NULL for an in-place operation
  @param    second   Second operand (scalar)
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @note CPL_TYPE_INT is required

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
  - CPL_ERROR_INVALID_TYPE if the passed image type is as required
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_and_scalar(cpl_image * self,
                                    const cpl_image * first,
                                    cpl_bitmask second)
{
    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }

    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask_unary(self, first);

    cpl_mask_and_scalar((cpl_binary*)self->pixels,
                        first ? (const cpl_binary*)first->pixels : NULL,
                        (second & (uint32_t)-1) | (second << 32),
                         cpl_type_get_sizeof(CPL_TYPE_INT)
                         *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    The bit-wise or of a scalar and an image with integer pixels
  @param    self     Pre-allocated image to hold the result
  @param    first    First operand, or NULL for an in-place operation
  @param    second   Second operand (scalar)
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @note CPL_TYPE_INT is required

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
  - CPL_ERROR_INVALID_TYPE if the passed image type is as required
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_or_scalar(cpl_image * self,
                                    const cpl_image * first,
                                    cpl_bitmask second)
{
    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }

    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask_unary(self, first);

    cpl_mask_or_scalar((cpl_binary*)self->pixels,
                       first ? (const cpl_binary*)first->pixels : NULL,
                       (second & (uint32_t)-1) | (second << 32),
                       cpl_type_get_sizeof(CPL_TYPE_INT)
                       *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    The bit-wise xor of a scalar and an image with integer pixels
  @param    self     Pre-allocated image to hold the result
  @param    first    First operand, or NULL for an in-place operation
  @param    second   Second operand (scalar)
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  @note CPL_TYPE_INT is required

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
  - CPL_ERROR_INVALID_TYPE if the passed image type is as required
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_xor_scalar(cpl_image * self,
                                    const cpl_image * first,
                                    cpl_bitmask second)
{
    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_INT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s', not int",
                                      cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
        if (cpl_image_get_type(first) != CPL_TYPE_INT) {
            return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                          "first-type='%s', not int",
                                          cpl_type_get_name
                                          (cpl_image_get_type(first)));
        }
    }

    /* Cannot fail now */

    /* Update the output bad pixel map */
    cpl_image_or_mask_unary(self, first);

    cpl_mask_xor_scalar((cpl_binary*)self->pixels,
                        first ? (const cpl_binary*)first->pixels : NULL,
                        (second & (uint32_t)-1) | (second << 32),
                        cpl_type_get_sizeof(CPL_TYPE_INT)
                        *(size_t)(self->nx * self->ny));

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    The pixel-wise Euclidean distance function of the images
  @param    self     Pre-allocated image to hold the result
  @param    first    First operand, or NULL for an in-place operation
  @param    second   Second operand
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error

  The Euclidean distance function is useful for gaussian error propagation
  on addition/subtraction operations.

  For pixel values a and b the Euclidean distance c is defined as:
  $$c = sqrt{a^2 + b^2}$$

  first may be NULL, in this case the distance is computed in-place on self
  using second as the other operand.

  Images can be of type CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  If both input operands are of type CPL_TYPE_FLOAT the distance is computed
  in single precision (using hypotf()), otherwise in double precision
  (using hypot()).

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INCOMPATIBLE_INPUT if the images have different sizes
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_hypot(cpl_image * self,
                               const cpl_image * first,
                               const cpl_image * second)
{

    cpl_error_code error;
    /* Only used to determine the type of the first hypot operand */
    const cpl_image * myfirst = first ? first : second;

    cpl_ensure_code(self   != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(second != NULL, CPL_ERROR_NULL_INPUT);

    if (cpl_image_get_type(self) != CPL_TYPE_DOUBLE &&
        cpl_image_get_type(self) != CPL_TYPE_FLOAT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "self-type='%s'", cpl_type_get_name
                                      (cpl_image_get_type(self)));
    }
    if (first != NULL && cpl_image_get_type(first) != CPL_TYPE_DOUBLE &&
        cpl_image_get_type(first) != CPL_TYPE_FLOAT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "first-type='%s'", cpl_type_get_name
                                      (cpl_image_get_type(first)));
    }
    if (cpl_image_get_type(second) != CPL_TYPE_DOUBLE &&
        cpl_image_get_type(second) != CPL_TYPE_FLOAT) {
        return cpl_error_set_message_(CPL_ERROR_INVALID_TYPE,
                                      "second-type='%s'", cpl_type_get_name
                                      (cpl_image_get_type(second)));
    }

    if (first != NULL) {
        cpl_ensure_code(self->nx == first->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
        cpl_ensure_code(self->ny == first->ny, CPL_ERROR_INCOMPATIBLE_INPUT);
    }
    cpl_ensure_code(self->nx == second->nx, CPL_ERROR_INCOMPATIBLE_INPUT);
    cpl_ensure_code(self->ny == second->ny, CPL_ERROR_INCOMPATIBLE_INPUT);


    /* Switch on image type */
    switch ((cpl_image_get_type(self)    == CPL_TYPE_FLOAT ? 4 : 0) +
            (cpl_image_get_type(myfirst) == CPL_TYPE_FLOAT ? 2 : 0) +
            (cpl_image_get_type(second)  == CPL_TYPE_FLOAT ? 1 : 0)) {

    case 7: /* float, float, float */
        error = cpl_image_hypot_float_float_float(self, first, second);
        break;
    case 6: /* float, float, double */
        error = cpl_image_hypot_float_float_double(self, first, second);
        break;
    case 5: /* float, double, float */
        error = cpl_image_hypot_float_double_float(self, first, second);
        break;
    case 4: /* float, double, double */
        error = cpl_image_hypot_float_double_double(self, first, second);
        break;
    case 3: /* double, float, float */
        error = cpl_image_hypot_double_float_float(self, first, second);
        break;
    case 2: /* double, float, double */
        error = cpl_image_hypot_double_float_double(self, first, second);
        break;
    case 1: /* double, double, float */
        error = cpl_image_hypot_double_double_float(self, first, second);
        break;
    default: /* double, double, double */
        error = cpl_image_hypot_double_double_double(self, first, second);
        break;
    }

    return error ? cpl_error_set_where_() : CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Normalise pixels in an image.
  @param    image    Image operand.
  @param    mode     Normalisation mode.
  @return   CPL_ERROR_NONE, or the relevant #_cpl_error_code_ on error.
 
  Normalises an image according to a given criterion.
 
  Possible normalisations are:
  - CPL_NORM_SCALE sets the pixel interval to [0,1].
  - CPL_NORM_MEAN sets the mean value to 1.
  - CPL_NORM_FLUX sets the flux to 1.
  - CPL_NORM_ABSFLUX sets the absolute flux to 1.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_normalise(
        cpl_image * image, 
        cpl_norm    mode)
{
    double scale;


    cpl_ensure_code(image, CPL_ERROR_NULL_INPUT);

    switch (mode) {
        case CPL_NORM_SCALE: {
            cpl_stats stats;

            if (cpl_stats_fill_from_image(&stats, image, CPL_STATS_MIN
                                          | CPL_STATS_MAX)) {
                return cpl_error_set_where_();
            }
            scale = cpl_stats_get_max(&stats) - cpl_stats_get_min(&stats);
            if (scale > 0 &&
                cpl_image_subtract_scalar(image, cpl_stats_get_min(&stats))) {
                return cpl_error_set_where_();
            }
            break;
        }
        case CPL_NORM_MEAN: {
            scale = cpl_image_get_mean(image);
            break;
    }
        case CPL_NORM_FLUX: {
            scale = cpl_image_get_flux(image);
            break;
    }
        case CPL_NORM_ABSFLUX: {
            scale = cpl_image_get_absflux(image);
            break;
    }
        default:
            /* This case can only be reached if cpl_norm is extended in error */
            return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    cpl_ensure_code( !cpl_image_divide_scalar(image, scale),
                     cpl_error_get_code());

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new normalised image from an existing image.
  @param    image_in    Image operand.
  @param    mode        Normalisation mode.
  @return   1 newly allocated image or NULL on error
  @see      cpl_image_normalise 

  Stores the result in a newly allocated image and returns it.
  The returned image must be deallocated using cpl_image_delete().
 
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_normalise_create(
        const cpl_image *   image_in, 
        cpl_norm            mode)
{
    cpl_image  *   image_out;


    cpl_ensure(image_in, CPL_ERROR_NULL_INPUT, NULL);

    image_out = cpl_image_duplicate(image_in);

    if (cpl_image_normalise(image_out, mode)) {
        cpl_image_delete(image_out);
        image_out = NULL;
        (void)cpl_error_set_where_();
    }

    return image_out;
}


/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new image by elementwise addition of a scalar to an image
  @param    image   Image to add
  @param    addend  Number to add
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_add_scalar

  Creates a new image, being the result of the operation, and returns it to
  the caller. The returned image must be deallocated using cpl_image_delete().
  The function supports images with different types among CPL_TYPE_INT, 
  CPL_TYPE_FLOAT and CPL_TYPE_DOUBLE. The type of the created image is that of
  the passed image.
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_add_scalar_create(
        const cpl_image   *   image,
        double                addend)
{
    cpl_image  * result =  cpl_image_duplicate(image);

    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_add_scalar(result, addend)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }
    return result;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create an image by elementwise subtraction of a scalar from an image
  @param    image       Image to be subtracted from
  @param    subtrahend  Number to subtract
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_subtract_scalar
  @see      cpl_image_add_scalar_create
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_subtract_scalar_create(
        const cpl_image   *   image,
        double                subtrahend)
{
    cpl_image  * result =  cpl_image_duplicate(image);


    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_subtract_scalar(result, subtrahend)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new image by multiplication of a scalar and an image
  @param    image   Image to be multiplied
  @param    factor  Number to multiply with
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_multiply_scalar
  @see      cpl_image_add_scalar_create
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_multiply_scalar_create(
        const cpl_image   *   image,
        double                factor)
{
    cpl_image  * result =  cpl_image_duplicate(image);


    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_multiply_scalar(result, factor)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new image by elementwise division of an image with a scalar
  @param    image    Image to divide
  @param    divisor  Non-zero number to divide with
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_divide_scalar
  @see      cpl_image_add_scalar_create
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_divide_scalar_create(
        const cpl_image   *   image,
        double                divisor)
{
    cpl_image  * result =  cpl_image_duplicate(image);


    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_divide_scalar(result, divisor)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new image by taking the elementwise logarithm of an image
  @param    image   Image to take logarithm of
  @param    base    Base of the logarithm.
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_logarithm
  @see      cpl_image_add_scalar_create
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_logarithm_create(
        const cpl_image   *   image,
        double          base)
{
    cpl_image  * result =  cpl_image_duplicate(image);

    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_logarithm(result, base)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}
        
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new image by elementwise exponentiation of an image
  @param    image   Image to exponentiate
  @param    base    Base of the exponential
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_logarithm
  @see      cpl_image_add_scalar_create
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_exponential_create(
        const cpl_image   *   image,
        double          base)
{
    cpl_image  * result =  cpl_image_duplicate(image);

    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_exponential(result, base)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}
        
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Create a new image by elementwise raising of an image to a power
  @param    image    Image to raise to a power
  @param    exponent scalar exponent
  @return   1 newly allocated image or NULL in case of an error
  @see      cpl_image_power
  @see      cpl_image_add_scalar_create
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_power_create(
        const cpl_image   *   image,
        double          exponent)
{
    cpl_image  * result =  cpl_image_duplicate(image);

    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_power(result, exponent)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}
        
#define CPL_OPERATION CPL_IMAGE_BASIC_THRESHOLD
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Threshold an image to a given interval.
  @param    image_in            Image to threshold.
  @param    lo_cut              Lower bound.
  @param    hi_cut              Higher bound.
  @param    assign_lo_cut       Value to assign to pixels below low bound.
  @param    assign_hi_cut       Value to assign to pixels above high bound.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  
  Pixels outside of the provided interval are assigned the given values.

  Use FLT_MIN and FLT_MAX for floating point images and DBL_MIN and DBL_MAX 
  for double images for the lo_cut and hi_cut to avoid any pixel
  replacement.
  
  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.
  lo_cut must be smaller than or equal to hi_cut.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
  - CPL_ERROR_ILLEGAL_INPUT if lo_cut is greater than hi_cut
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_threshold(
        cpl_image *   image_in,
        double              lo_cut,
        double              hi_cut,
        double              assign_lo_cut,
        double              assign_hi_cut)
{

    cpl_ensure_code(image_in != NULL, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(lo_cut <= hi_cut, CPL_ERROR_ILLEGAL_INPUT);

    /* Switch on image type */
    switch (image_in->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
          return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    return CPL_ERROR_NONE;
}
#undef CPL_OPERATION

#define CPL_OPERATION CPL_IMAGE_BASIC_ABS
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Take the absolute value of an image.
  @param    image    Image to be modified in place
  @return   CPL_ERROR_NONE or the relevant the #_cpl_error_code_ on error
  
  Set each pixel to its absolute value.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_abs(cpl_image * image)
{
    /* Check entries */
    cpl_ensure_code(image, CPL_ERROR_NULL_INPUT);

    /* Switch on image type */
    switch (image->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    return CPL_ERROR_NONE;
}

#undef CPL_OPERATION

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Take the absolute value of an image.
  @param    image_in    Image operand.
  @return   1 newly allocated image or NULL on error
  @see      cpl_image_abs
  
  For each pixel, out = abs(in). The returned image must be deallocated using
  cpl_image_delete().
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_abs_create(const cpl_image * image_in)
{

    cpl_image  * result = cpl_image_duplicate(image_in);

    cpl_ensure(result, cpl_error_get_code(), NULL);

    if (cpl_image_abs(result)) {
        cpl_image_delete(result);
        result = NULL;
        (void)cpl_error_set_where_();
    }

    return result;
}

#define CPL_OPERATION CPL_IMAGE_BASIC_AVERAGE
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Build the average of two images.
  @param    image_1     First image operand.
  @param    image_2     Second image operand.
  @return   1 newly allocated image or NULL on error
 
  Builds the average of two images and returns a newly allocated image,
  to be deallocated using cpl_image_delete(). The average is arithmetic, i.e.
  outpix=(pix1+pix2)/2
  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_average_create(
        const cpl_image *   image_1,
        const cpl_image *   image_2)
{   
    cpl_image   *   image_out;
    int         *   pii2;
    float       *   pfi2;
    double      *   pdi2;

    /* Check entries   */
    cpl_ensure(image_1 && image_2, CPL_ERROR_NULL_INPUT, NULL);
   
    /* Input data images shall have the same sizes */
    cpl_ensure(image_1->nx == image_2->nx && image_1->ny == image_2->ny,
               CPL_ERROR_ILLEGAL_INPUT, NULL);

    /* Switch on first passed image type */
    switch (image_1->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
            return NULL;
    }
    
    /* Handle bad pixels map */
    if (image_1->bpm == NULL && image_2->bpm == NULL) {
        image_out->bpm = NULL;
    } else if (image_1->bpm == NULL) {
        image_out->bpm = cpl_mask_duplicate(image_2->bpm);
    } else if (image_2->bpm == NULL) {
        image_out->bpm = cpl_mask_duplicate(image_1->bpm);
    } else {
        image_out->bpm = cpl_mask_duplicate(image_1->bpm);
        cpl_mask_or(image_out->bpm, image_2->bpm);
    }

    return image_out;
}
#undef CPL_OPERATION


/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Collapse an image region along its rows or columns.
  @param    self        Image to collapse.
  @param    llx         lower left x coord.
  @param    lly         lower left y coord
  @param    urx         upper right x coord
  @param    ury         upper right y coord
  @param    direction   Collapsing direction.
  @return   a newly allocated image or NULL on error
  @see      cpl_image_collapse_create()
  
  llx, lly, urx, ury are the image region coordinates in FITS convention.
  Those specified bounds are included in the collapsed region.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if the specified window is not valid
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_collapse_window_create(const cpl_image * self,
                                             cpl_size          llx,
                                             cpl_size          lly,
                                             cpl_size          urx,
                                             cpl_size          ury,
                                             int               direction)
{
    cpl_image * other;


    /* Switch on image type */
    switch (cpl_image_get_type(self)) {
    case CPL_TYPE_DOUBLE:
        other = cpl_image_collapse_window_create_double(self, llx, lly, urx,
                                                        ury, direction);
        break;
    case CPL_TYPE_FLOAT:
        other = cpl_image_collapse_window_create_float(self, llx, lly, urx,
                                                       ury, direction);
        break;
    case CPL_TYPE_INT:
        other = cpl_image_collapse_window_create_int(self, llx, lly, urx,
                                                     ury, direction);
        break;
    default:
        /* NULL input will be go here, after having set a CPL error */
        other = NULL;
    }

    /* Propagate error, if any */
    if (other == NULL) (void)cpl_error_set_where_();
    
    return other;
}
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Collapse an image along its rows or columns.
  @param    self       Input image to collapse.
  @param    direction  Collapsing direction.
  @return   1 newly allocated 1D image or NULL on error
 
  On success the function returns a 1D image, created by adding up all pixels
  on the same row or column.
 
  @verbatim
  Collapse along y (sum of rows):
 
  p7  p8  p9     Input image is a 3x3 image containing 9 pixels.
  p4  p5  p6     The output is an image containing one row with
  p1  p2  p3     3 pixels A, B, C, where:
  ----------
 
  A   B   C      A = p1+p4+p7
                 B = p2+p5+p8
                 C = p3+p6+p9

  If p7 is a bad pixel, A = (p1+p4)*3/2.
  If p1, p4, p7 are bad, A is flagged as bad.
  @endverbatim
 
  Provide the collapsing direction as an int. Give 0 to collapse along y
  (sum of rows) and get an image with a single row in output, or give 1
  to collapse along x (sum of columns) to get an image with a single
  column in output.
  Only the good pixels are collapsed.
  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.
  The returned image must be deallocated using cpl_image_delete().

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_collapse_create(const cpl_image * self,
                                      int               direction)
{
    cpl_image * other
        = cpl_image_collapse_window_create(self, 1, 1,
                                           cpl_image_get_size_x(self),
                                           cpl_image_get_size_y(self),
                                           direction);

    /* Propagate error, if any */
    cpl_ensure(other != NULL, cpl_error_get_code(), NULL);
   
    return other;
}

#define CPL_OPERATION CPL_IMAGE_BASIC_COLLAPSE_MEDIAN
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Collapse an image along its rows or columns, with filtering.
  @param    self      Input image to collapse.
  @param    direction Collapsing direction.
  @param    drop_ll   Ignore this many lower rows/leftmost columns
  @param    drop_ur   Ignore this many upper rows/rightmost columns
  @return   1 newly allocated image having 1 row or 1 column or NULL on error
  @see      cpl_image_collapse_create()
  
  The collapsing direction is defined as for cpl_image_collapse_create().
  For each output pixel, the median of the corresponding non-ignored pixels
  is computed. A combination of bad pixels and drop parameters can cause a
  median value in the output image to be undefined. Such pixels will be
  flagged as bad and set to zero.

  If the output would contain only bad pixels an error is set.

  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.
  The returned image must be deallocated using cpl_image_delete().

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if a rejection parameter is negative,
    or if the sum of ignored pixels is bigger than the image size
    in the collapsing direction
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
  - CPL_ERROR_DATA_NOT_FOUND if the output image would have only bad pixels
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_collapse_median_create(const cpl_image * self,
                                             int               direction,
                                             cpl_size          drop_ll,
                                             cpl_size          drop_ur)
{
    cpl_image    * other = NULL;
    const cpl_size ndrop = drop_ll + drop_ur;

    cpl_ensure(self != NULL,    CPL_ERROR_NULL_INPUT,    NULL);
    cpl_ensure(drop_ll >= 0, CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(drop_ur >= 0, CPL_ERROR_ILLEGAL_INPUT, NULL);

    if (direction == 0) {
        cpl_ensure(ndrop < self->ny, CPL_ERROR_ILLEGAL_INPUT, NULL);
    } else if (direction == 1) {
        cpl_ensure(ndrop < self->nx, CPL_ERROR_ILLEGAL_INPUT, NULL);
    } else {
        (void)cpl_error_set_(CPL_ERROR_ILLEGAL_INPUT);
        return NULL;
    }
    
    /* Switch on image type */
    switch (self->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS

        default:
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    } 
    
    return other;
}
#undef CPL_OPERATION

#define CPL_OPERATION CPL_IMAGE_BASIC_EXTRACT
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Extract a rectangular zone from an image into another image.
  @param    in    Input image
  @param    llx   Lower left X coordinate
  @param    lly   Lower left Y coordinate
  @param    urx   Upper right X coordinate
  @param    ury   Upper right Y coordinate
  @return   1 newly allocated image or NULL on error
  @note  The returned image must be deallocated using cpl_image_delete()
 
  The input coordinates define the extracted region by giving the coordinates 
  of the lower left and upper right corners (inclusive).
 
  Coordinates must be provided in the FITS convention: lower left
  corner of the image is at (1,1), x increasing from left to right,
  y increasing from bottom to top.
  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if the window coordinates are not valid
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_image * cpl_image_extract(const cpl_image * in,
                              cpl_size          llx,
                              cpl_size          lly,
                              cpl_size          urx,
                              cpl_size          ury)
{
    cpl_image * self = NULL;

    cpl_ensure(in != NULL,     CPL_ERROR_NULL_INPUT,    NULL);

    cpl_ensure(llx  >= 1,     CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(llx  <= urx,   CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(urx <= in->nx, CPL_ERROR_ILLEGAL_INPUT, NULL);

    cpl_ensure(lly  >= 1,     CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(lly  <= ury,   CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(ury <= in->ny, CPL_ERROR_ILLEGAL_INPUT, NULL);

    /* Switch on image type */
    switch (in->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_DOUBLE_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            /* It is an error in CPL to enter here */
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    if (self != NULL) {
        /* Bad pixels handling */
        self->bpm = in->bpm == NULL ? NULL
            : cpl_mask_extract(in->bpm, llx, lly, urx, ury);
    }

    return self;
}
#undef CPL_OPERATION

#define CPL_OPERATION CPL_IMAGE_BASIC_EXTRACTROW
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Extract a row from an image
  @param    image_in    Input image
  @param    pos         Position of the row (1 for the bottom one)
  @return   1 newly allocated cpl_vector or NULL on error
 
  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.
  The returned vector must be deallocated using cpl_vector_delete().

  The bad pixels map is not taken into account in this function.
  
  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if pos is not valid
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_vector * cpl_vector_new_from_image_row(const cpl_image * image_in,
                                           cpl_size           pos)
{
    cpl_vector  *   out;
    double      *   out_data;

    /* Test entries */
    cpl_ensure(image_in, CPL_ERROR_NULL_INPUT, NULL);
    cpl_ensure(pos>=1 && pos<=image_in->ny, CPL_ERROR_ILLEGAL_INPUT,NULL);
    
    /* Allocate output vector */
    out = cpl_vector_new(image_in->nx);
    out_data = cpl_vector_get_data(out);
    
    /* Switch on image type */
    switch (image_in->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            cpl_vector_delete(out);
            out = NULL;
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    
    return out;
}
#undef CPL_OPERATION

#define CPL_OPERATION CPL_IMAGE_BASIC_EXTRACTCOL
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Extract a column from an image
  @param    image_in    Input image
  @param    pos         Position of the column (1 for the left one)
  @return   1 newly allocated cpl_vector or NULL on error
 
  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.
  The returned vector must be deallocated using cpl_vector_delete().

  The bad pixels map is not taken into account in this function.
  
  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if pos is not valid
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_vector * cpl_vector_new_from_image_column(const cpl_image * image_in,
                                              cpl_size          pos)
{
    cpl_vector * out;
    double     * out_data;

    /* Check entries */
    cpl_ensure(image_in != NULL,         CPL_ERROR_NULL_INPUT,    NULL);
    cpl_ensure(pos      >= 1,            CPL_ERROR_ILLEGAL_INPUT, NULL);
    cpl_ensure(pos      <= image_in->nx, CPL_ERROR_ILLEGAL_INPUT, NULL);
    
    /* Allocate output vector */
    out = cpl_vector_new(image_in->ny);
    out_data = cpl_vector_get_data(out);
    
    /* Switch on image type */
    switch (image_in->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            cpl_vector_delete(out);
            out = NULL;
            (void)cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }
    
    return out;
}
#undef CPL_OPERATION

#define CPL_OPERATION CPL_IMAGE_BASIC_ROTATE_INT_LOCAL
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Rotate an image by a multiple of 90 degrees clockwise.
  @param    self    The image to rotate in place.
  @param    rot     The multiple: -1 is a rotation of 90 deg counterclockwise.
  @return   CPL_ERROR_NONE on success, otherwise the relevant #_cpl_error_code_
  @note The dimension of a rectangular image is changed.

  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  The definition of the rotation relies on the FITS convention:
  The lower left corner of the image is at (1,1), x increasing from left to
  right, y increasing from bottom to top.

  For rotations of +90 or -90 degrees on rectangular non-1D-images,
  the pixel buffer is temporarily duplicated.

  rot may be any integer value, its modulo 4 determines the rotation:
  - -3 to turn 270 degrees counterclockwise.
  - -2 to turn 180 degrees counterclockwise.
  - -1 to turn  90 degrees counterclockwise.
  -  0 to not turn
  - +1 to turn  90 degrees clockwise (same as -3)
  - +2 to turn 180 degrees clockwise (same as -2).
  - +3 to turn 270 degrees clockwise (same as -1).

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_turn(cpl_image * self, int rot)
{

    cpl_ensure_code(self, CPL_ERROR_NULL_INPUT);

    rot %= 4;
    if (rot < 0) rot += 4;

    /* rot is 0, 1, 2 or 3. */

    /* Rotate the bad pixel map */
    if (rot != 0 && self->bpm != NULL) cpl_mask_turn(self->bpm, rot);

    /* Switch on the image type */
    switch (self->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            /* It is a bug in CPL to reach this point */
            return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    return CPL_ERROR_NONE;
}
#undef CPL_OPERATION

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Shift an image by integer offsets
  @param    self    The image to shift in place
  @param    dx The shift in X
  @param    dy The shift in Y
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE

  The new zones (in the result image) where no new value is computed are set 
  to 0 and flagged as bad pixels.
  The shift values have to be valid:
  -nx < dx < nx and -ny < dy < ny

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if the requested shift is bigger than the
    image size
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_shift(cpl_image * self,
                               cpl_size    dx,
                               cpl_size    dy)
{

    cpl_ensure_code(self != NULL, CPL_ERROR_NULL_INPUT);

    if (dx != 0 || dy != 0) {
        /* Rejected pixels are set to a zero-bit-pattern */
        if (cpl_tools_shift_window(self->pixels,
                                   cpl_type_get_sizeof(self->type),
                                   self->nx, self->ny, 0, dx, dy)) {
            return cpl_error_set_where_();
        }

        /* Shift the bad pixel map */
        if (self->bpm == NULL) self->bpm = cpl_mask_new(self->nx, self->ny);
        /* Cannot fail now */
        (void)cpl_mask_shift(self->bpm, dx, dy);
    }

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Copy one image into another
  @param    im1     the image in which im2 is inserted
  @param    im2     the inserted image
  @param    xpos    the x pixel position in im1 where the lower left pixel of 
                    im2 should go (from 1 to the x size of im1)
  @param    ypos    the y pixel position in im1 where the lower left pixel of 
                    im2 should go (from 1 to the y size of im1)
  @return   CPL_ERROR_NONE or the relevant #_cpl_error_code_ on error.
  @note The two pixel buffers may not overlap
 
  (xpos, ypos) must be a valid position in im1. If im2 is bigger than the place
  left in im1, the part that falls outside of im1 is simply ignored, an no 
  error is raised.
  The bad pixels are inherited from im2 in the concerned im1 zone.
  
  The two input images must be of the same type, namely one of
  CPL_TYPE_INT, CPL_TYPE_FLOAT, CPL_TYPE_DOUBLE.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_TYPE_MISMATCH if the input images are of different types
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
  - CPL_ERROR_ACCESS_OUT_OF_RANGE if xpos or ypos are outside the
    specified range
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_copy(cpl_image       *   im1,
                              const cpl_image *   im2,
                              cpl_size            xpos,
                              cpl_size            ypos)
{

    /* FIXME: Support overlapping pixel buffers ? */
    /* FIXME: Need to do pointer arithmetic */
    char          * pim1   = (char*)cpl_image_get_data(im1);
    const cpl_size  nx1    = cpl_image_get_size_x(im1); 
    const cpl_size  ny1    = cpl_image_get_size_y(im1); 
    const cpl_size  nx2    = cpl_image_get_size_x(im2); 
    const cpl_size  ny2    = cpl_image_get_size_y(im2); 
    /* Define the zone to modify in im1: xpos, ypos, urx, ury */
    const cpl_size  urx    = CX_MIN(nx1, nx2 + xpos - 1);
    const cpl_size  ury    = CX_MIN(ny1, ny2 + ypos - 1);
    const size_t    pixsz  = cpl_type_get_sizeof(cpl_image_get_type(im1));
    const size_t    linesz = (size_t)(urx - (xpos-1)) * pixsz;
    
    /* Check entries */
    cpl_ensure_code(im1       != NULL,      CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(im2       != NULL,      CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(xpos      >= 1,         CPL_ERROR_ACCESS_OUT_OF_RANGE);
    cpl_ensure_code(xpos      <= nx1,       CPL_ERROR_ACCESS_OUT_OF_RANGE);
    cpl_ensure_code(ypos      >= 1,         CPL_ERROR_ACCESS_OUT_OF_RANGE);
    cpl_ensure_code(ypos      <= ny1,       CPL_ERROR_ACCESS_OUT_OF_RANGE);
    cpl_ensure_code(im1->type == im2->type, CPL_ERROR_TYPE_MISMATCH);

    pim1 += (ypos - 1) * nx1 * pixsz;

    if (xpos == 1 && urx == nx1 && nx1 == nx2) {
        /* The zone consists of whole lines in both in1 and in2 */
        memcpy(pim1, im2->pixels, (ury - (ypos - 1)) * linesz);
    } else {
        /* FIXME: Need to do pointer arithmetic */
        const char   * pim2 = (const char*)im2->pixels;
        const size_t   sz1 = (size_t)nx1 * pixsz;
        const size_t   sz2 = (size_t)nx2 * pixsz;
        cpl_size       j;

        pim1 += (size_t)(xpos - 1) * pixsz;

        /* Loop on the zone */
        for (j = ypos - 1; j < ury; j++, pim1 += sz1, pim2 += sz2) {
            memcpy(pim1, pim2, linesz);
        }
    }

    /* Handle the bad pixels */
    if (im1->bpm != NULL || im2->bpm != NULL) {
        cpl_mask * bpm2;
        if (im1->bpm == NULL) im1->bpm = cpl_mask_new(im1->nx, im1->ny);
        bpm2 = im2->bpm ? im2->bpm : cpl_mask_new(im2->nx, im2->ny);

        cpl_mask_copy(im1->bpm, bpm2, xpos, ypos);

        if (bpm2 != im2->bpm) cpl_mask_delete(bpm2);
        /* FIXME: im1->bpm may be empty... */
    }

    return CPL_ERROR_NONE;
}

#define CPL_OPERATION CPL_IMAGE_BASIC_FLIP_LOCAL
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Flip an image on a given mirror line.
  @param    im      the image to flip.  
  @param    angle   mirror line in polar coord. is theta = (PI/4) * angle 
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
 
  This function operates locally on the pixel buffer.

  angle can take one of the following values:
  - 0 (theta=0) to flip the image around the horizontal
  - 1 (theta=pi/4) to flip the image around y=x
  - 2 (theta=pi/2) to flip the image around the vertical
  - 3 (theta=3pi/4) to flip the image around y=-x

  Images can be of type CPL_TYPE_INT, CPL_TYPE_FLOAT or CPL_TYPE_DOUBLE.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if the angle is different from the allowed values
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_flip(
        cpl_image   *   im,
        int             angle)
{
    /* Check entries */
    cpl_ensure_code(im != NULL, CPL_ERROR_NULL_INPUT);
    
    /* Switch on the image type */
    switch (im->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
        default:
            return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    /* Flip the bad pixel map */
    if (im->bpm != NULL) cpl_mask_flip(im->bpm, angle);

    return CPL_ERROR_NONE;
}
#undef CPL_OPERATION


#define CPL_OPERATION CPL_IMAGE_BASIC_MOVE_PIXELS
/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Reorganize the pixels in an image
  @param    im          the image to reorganize
  @param    nb_cut      the number of cut in x and y
  @param    new_pos     array with the nb_cut^2 new positions
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE

  nb_cut^2 defines in how many tiles the images will be moved. Each tile will
  then be moved to an other place defined in new_pos. 1 will leave the image
  unchanged, 2 is used to move the quadrants, etc..
  new_pos contains nb_cut^2 values between 1 and nb_cut^2.
  The zones positions are counted from the lower left part of the image.
  It is not allowed to move two tiles to the same position (the relation
  between th new tiles positions and the initial position is bijective !).

  The image x and y sizes have to be multiples of nb_cut.

  @verbatim
  Example:

  16   17   18           6    5    4
  13   14   15           3    2    1

  10   11   12   ---->  12   11   10
   7    8    9           9    8    7

   4    5    6          18   17   16
   1    2    3          15   14   13

   image 3x6            cpl_image_move(image, 3, new_pos);
                        with new_pos = {9,8,7,6,5,4,3,2,1};
   @endverbatim

  The bad pixels are moved accordingly.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if nb_cut is not strictly positive or cannot
    divide one of the image sizes or if the new_pos array specifies to
    move two tiles to the same position.
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_move(cpl_image      * im,
                              cpl_size         nb_cut,
                              const cpl_size * new_pos)
{
    cpl_size        test_sum;
    cpl_size        tile_sz_x, tile_sz_y;
    cpl_size        tile_x, tile_y;
    cpl_size        npos, opos;
    cpl_size        i, j, k, l;

    /* Check entries */
    cpl_ensure_code(im,                   CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(new_pos,              CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(nb_cut > 0,           CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(im->nx % nb_cut == 0, CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(im->ny % nb_cut == 0, CPL_ERROR_ILLEGAL_INPUT);

    /* Test that new_pos takes all values between 1 and nb_cut*nb_cut */
    /* The test here is not strict, but should be sufficient */
    test_sum = 0;
    for (i=0; i<nb_cut*nb_cut; i++) test_sum += new_pos[i];
    cpl_ensure_code(test_sum==nb_cut*nb_cut*(nb_cut*nb_cut+1)/2,
            CPL_ERROR_ILLEGAL_INPUT);

    /* Initialize */
    tile_sz_x = im->nx / nb_cut;
    tile_sz_y = im->ny / nb_cut;

    /* Switch on the image type */
    switch (im->type) {
#define CPL_CLASS CPL_CLASS_DOUBLE
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_INT
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_DOUBLE_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
#define CPL_CLASS CPL_CLASS_FLOAT_COMPLEX
#include "cpl_image_basic_body.h"
#undef CPL_CLASS
    default:
        return cpl_error_set_(CPL_ERROR_INVALID_TYPE);
    }

    /* Handle the bad pixels */
    if (im->bpm != NULL) cpl_mask_move(im->bpm, nb_cut, new_pos);
    
    return CPL_ERROR_NONE;

}
#undef CPL_OPERATION

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Apply a gaussian fit on an image sub window
  @param    im      the input image
  @param    xpos    the x position of the center (1 for the first pixel)
  @param    ypos    the y position of the center (1 for the first pixel)
  @param    size    the window size in pixels, at least 4
  @param    norm    the norm of the gaussian or NULL
  @param    xcen    the x center of the gaussian or NULL
  @param    ycen    the y center of the gaussian or NULL
  @param    sig_x   the semi-major axis of the gaussian or NULL
  @param    sig_y   the semi-minor axis of the gaussian or NULL
  @param    fwhm_x  the FHHM in x or NULL
  @param    fwhm_y  the FHHM in y or NULL
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE 
  @see      cpl_fit_image_gaussian()
  @see      cpl_image_iqe()
  @deprecated If you need a 2D gaussian fit please 
  use the function @em cpl_fit_image_gaussian(). Please note that
  on CPL versions earlier than 5.1.0 this function was wrongly
  documented: the parameters @em sig_x and @em sig_y were defined
  as "the sigma in x (or y) of the gaussian", while actually they
  returned the semi-major and semi-minor axes of the gaussian distribution
  at 1-sigma. <b><i>PLEASE NOTE THAT IF YOU USED THIS FUNCTION FOR DETERMINING
  THE SPREAD OF A DISTRIBUTION ALONG THE X DIRECTION, THIS WAS VERY
  LIKELY OVERESTIMATED</i></b> (because @em sig_x was always assigned the
  semi-major axis of the distribution ignoring the rotation), 
  <b><i>WHILE THE SPREAD ALONG THE Y DIRECTION WOULD BE UNDERESTIMATED</i></b>.
  In addition to that, even with circular distributions this function 
  may lead to an underestimation of @em sig_x and @em sig_y (up to 25% 
  underestimation in the case of noiseless data with a box 4 times the 
  sigma, 1% underestimation in the case of noiseless data with a box 7 
  times the sigma). This latter problem is related to the function 
  @em cpl_image_iqe().

  This function is only acceptable for determining the position of a peak.
*/
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_fit_gaussian(
        const cpl_image *   im,
        cpl_size            xpos,
        cpl_size            ypos,
        cpl_size            size,
        double          *   norm,
        double          *   xcen,
        double          *   ycen,
        double          *   sig_x,
        double          *   sig_y,
        double          *   fwhm_x,
        double          *   fwhm_y) 
{
    const cpl_image * im_use;
    cpl_image       * im_cast = NULL;
    cpl_size          llx, lly, urx, ury;
    cpl_bivector    * stats;
    double          * pstats;

    /* Check entries */
    cpl_ensure_code(im != NULL,     CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(xpos >= 1,      CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(ypos >= 1,      CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(xpos <= im->nx, CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(ypos <= im->ny, CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(size >= 1,      CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(size < im->nx,  CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(size < im->ny,  CPL_ERROR_ILLEGAL_INPUT);

    /* Extraction zone */
    llx = xpos - size / 2;
    lly = ypos - size / 2;
    urx = xpos + size / 2;
    ury = ypos + size / 2;
    if (llx < 1) llx = 1;
    if (lly < 1) lly = 1;
    if (urx > im->nx) urx = im->nx;
    if (ury > im->ny) ury = im->ny;
    
    /* Convert the image to FLOAT, if needed */
    im_use = cpl_image_get_type(im) == CPL_TYPE_FLOAT ? im : 
        (im_cast = cpl_image_cast(im, CPL_TYPE_FLOAT));

    /* Call cpl_image_iqe */
    stats = cpl_image_iqe(im_use, llx, lly, urx, ury);
    cpl_image_delete(im_cast);

    if (stats == NULL) return cpl_error_set_where_();
    
    /* Write the results */
    pstats = cpl_bivector_get_x_data(stats);
    if (xcen) *xcen = pstats[0];
    if (ycen) *ycen = pstats[1];
    if (fwhm_x) *fwhm_x = pstats[2];
    if (fwhm_y) *fwhm_y = pstats[3];
    if (sig_x) *sig_x = pstats[2] / CPL_MATH_FWHM_SIG; 
    if (sig_y) *sig_y = pstats[3] / CPL_MATH_FWHM_SIG; 
    if (norm) *norm = pstats[5] * CPL_MATH_2PI *
        (pstats[2]*pstats[3]) / (CPL_MATH_FWHM_SIG*CPL_MATH_FWHM_SIG); 

    cpl_bivector_delete(stats);
    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Compute FWHM values in x and y for an object
  @param    in      the input image
  @param    xpos    the x position of the object (1 for the first pixel)
  @param    ypos    the y position of the object (1 for the first pixel)
  @param    fwhm_x  the computed FWHM in x or -1 on error
  @param    fwhm_y  the computed FWHM in y or -1 on error
  @return   CPL_ERROR_NONE or the relevant #_cpl_error_code_

  This function uses a basic method: start from the center of the object
  and go away until the half maximum value is reached in x and y.

  For the FWHM in x (resp. y) to be computed, the image size in the x (resp. y)
  direction should be at least of 5 pixels.
  
  If for any reason, one of the FHWMs cannot be computed, its returned value 
  is -1.0, but an error is not necessarily raised. For example, if a 4 column
  image is passed, the fwhm_x would be -1.0, the fwhm_y would be correctly 
  computed, and no error would be raised.
  
  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_DATA_NOT_FOUND if (xpos, ypos) specifies a rejected pixel or a
      pixel with a non-positive value
  - CPL_ERROR_ACCESS_OUT_OF_RANGE if xpos or ypos is outside the image
    size range
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_get_fwhm(
        const cpl_image *   in,
        cpl_size            xpos,
        cpl_size            ypos,
        double          *   fwhm_x,
        double          *   fwhm_y)
{
    double              half_max;
    double              thres;
    const cpl_size      minimum_size = 5;
    int                 is_rejected;


    /* Check entries - and initialize *fwhm_{x,y} */
    if (fwhm_y != NULL) *fwhm_y = -1;
    cpl_ensure_code(fwhm_x,         CPL_ERROR_NULL_INPUT);
    *fwhm_x = -1;
    cpl_ensure_code(fwhm_y,         CPL_ERROR_NULL_INPUT);

    /* This call will check the validity of image, xpos and ypos */
    half_max = 0.5 * cpl_image_get(in, xpos, ypos, &is_rejected);

    cpl_ensure_code(is_rejected >= 0, cpl_error_get_code());
    cpl_ensure_code(!is_rejected, CPL_ERROR_DATA_NOT_FOUND);

    cpl_ensure_code(half_max > 0, CPL_ERROR_DATA_NOT_FOUND);
    
    /* FWHM in x */
    if (in->nx >= minimum_size) {
        cpl_errorstate pstate;

        /* Extract the vector centered on the maximum */
        cpl_vector * row = cpl_vector_new_from_image_row(in, ypos);

        /* If an error happened, update its location */
        cpl_ensure_code(row, cpl_error_get_code());

        pstate = cpl_errorstate_get();

        /* Find out threshold */
        thres = cpl_vector_get_noise(row, xpos);
        
        /* Compute the FWHM */
        if (cpl_errorstate_is_equal(pstate))
            *fwhm_x = cpl_vector_get_fwhm(row, xpos, half_max + thres * 0.5);

        cpl_vector_delete(row);

        /* Propagate the error, if any */
        cpl_ensure_code(cpl_errorstate_is_equal(pstate), cpl_error_get_code());

    }
     
    /* FWHM in y */
    if (in->ny >= minimum_size) {
        cpl_errorstate pstate;

        /* Extract the vector centered on the maximum */
        cpl_vector * col = cpl_vector_new_from_image_column(in, xpos);

        /* If an error happened, update its location */
        cpl_ensure_code(col, cpl_error_get_code());

        pstate = cpl_errorstate_get();

        /* Find out threshold */
        thres = cpl_vector_get_noise(col, ypos);
        
        /* Compute the FWHM */
        if (cpl_errorstate_is_equal(pstate))
            *fwhm_y = cpl_vector_get_fwhm(col, ypos, half_max + thres * 0.5);

        cpl_vector_delete(col);

        /* Propagate the error, if any */
        cpl_ensure_code(cpl_errorstate_is_equal(pstate), cpl_error_get_code());
    }
        
    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @ingroup cpl_image
  @brief    Fast Fourier Transform a square, power-of-two sized image
  @param    img_real   The image real part to be transformed in place
  @param    img_imag   The image imaginary part to be transformed in place
  @param    mode   The desired FFT options (combined with bitwise or)
  @return   CPL_ERROR_NONE or the relevant #_cpl_error_code_ on error

  The input images must be of double type.
 
  If the second passed image is NULL, the resulting imaginary part
  cannot be returned. This can be useful if the input is real and the
  output is known to also be real. But if the output has a significant
  imaginary part, you might want to pass a 0-valued image as the second
  parameter.
  
  Any rejected pixel is used as if it were a good pixel.

  The image must be square with a size that is a power of two.

  These are the supported FFT modes:
  CPL_FFT_DEFAULT: Default, forward FFT transform
  CPL_FFT_INVERSE: Inverse FFT transform
  CPL_FFT_UNNORMALIZED: Do not normalize (with N*N for N-by-N image) on inverse.
    Has no effect on forward transform.
  CPL_FFT_SWAP_HALVES: Swap the four quadrants of the result image.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if (one of) the input pointer(s) is NULL
  - CPL_ERROR_ILLEGAL_INPUT if the image is not square or if the image size is
    not a power of 2.
  - CPL_ERROR_INVALID_TYPE if mode is 1, e.g. due to a logical or (||) of the
      allowed FFT options.
  - CPL_ERROR_UNSUPPORTED_MODE if mode is otherwise different from the allowed
       FFT options.
  - CPL_ERROR_INVALID_TYPE if the passed image type is not supported
 */
/*----------------------------------------------------------------------------*/
cpl_error_code cpl_image_fft(
        cpl_image   *   img_real, 
        cpl_image   *   img_imag, 
        unsigned        mode)
{
    unsigned                dim[2];
    double              *   imag_part;

    /* Check entries */
    cpl_ensure_code(img_real, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(mode != 1, CPL_ERROR_INVALID_TYPE);
    cpl_ensure_code(
            mode <= (CPL_FFT_INVERSE|CPL_FFT_UNNORMALIZED|CPL_FFT_SWAP_HALVES), 
            CPL_ERROR_UNSUPPORTED_MODE);
    cpl_ensure_code(img_real->nx==img_real->ny, CPL_ERROR_ILLEGAL_INPUT);
    cpl_ensure_code(img_real->type==CPL_TYPE_DOUBLE,CPL_ERROR_INVALID_TYPE);
    cpl_ensure_code(cpl_tools_is_power_of_2(img_real->nx)>=0,
                    CPL_ERROR_ILLEGAL_INPUT);
    if (img_imag != NULL) {
        cpl_ensure_code(img_real->nx==img_imag->nx,CPL_ERROR_ILLEGAL_INPUT);
        cpl_ensure_code(img_real->ny==img_imag->ny,CPL_ERROR_ILLEGAL_INPUT);
        cpl_ensure_code(img_imag->type==CPL_TYPE_DOUBLE,
                CPL_ERROR_INVALID_TYPE);
    }

    /* Initialize */
    dim[0] = dim[1] = (unsigned)img_real->nx;

    cpl_ensure_code((cpl_size)dim[0] == img_real->nx, CPL_ERROR_ILLEGAL_INPUT);

    if (img_imag == NULL) {
        /* Create the imaginary part and set it to 0  */
        imag_part = cpl_calloc(dim[0]*dim[1], sizeof(double));
    } else {
        /* Put the input imaginary part in a local object */
        imag_part = img_imag->pixels;
    }

    /* APPLY THE FFT HERE */
    cpl_ensure_code(!cpl_fft(img_real->pixels, imag_part, dim, 2,
                (mode & CPL_FFT_INVERSE) ? -1 : 1),cpl_error_get_code());

    /* Free the imaginary part result in the input image */
    if (img_imag == NULL) {
        cpl_free(imag_part);
    }

    /* Normalize on the inverse transform  */
    if (!(mode & CPL_FFT_UNNORMALIZED) && (mode & CPL_FFT_INVERSE)) {
        cpl_ensure_code(!cpl_image_divide_scalar(img_real, dim[0]*dim[1]),
                        cpl_error_get_code());
        if (img_imag != NULL) {
            cpl_ensure_code(!cpl_image_divide_scalar(img_imag, dim[0]*dim[1]),
                            cpl_error_get_code());
        }
    }

    /* Swap halves in both dimensions */
    if (mode & CPL_FFT_SWAP_HALVES) {
        const cpl_size new_pos[] = {4, 3, 2, 1};
        cpl_ensure_code(!cpl_image_move(img_real, 2, new_pos),
                        cpl_error_get_code());
        if (img_imag != NULL) {
            cpl_ensure_code(!cpl_image_move(img_imag, 2, new_pos),
                            cpl_error_get_code());
        }
    }

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
   @ingroup cpl_image
   @brief    The bit-wise or of the input masks onto the output mask
   @param    self     Pre-allocated image to hold the result
   @param    first    First operand, or NULL for an in-place operation
   @param    second   Second operand
   @return   void
   @note Error checking assumed to have been performed by the caller
*/
/*----------------------------------------------------------------------------*/
void cpl_image_or_mask(cpl_image * self,
                       const cpl_image * first,
                       const cpl_image * second)
{

    const size_t nxy = (size_t)self->nx * (size_t)self->ny;

    if (self->bpm == NULL) {
        /* Create the bad pixel map, if an input one is non-NULL */
        if (first != NULL && first->bpm != NULL && second->bpm != NULL) {
            self->bpm = cpl_mask_wrap(self->nx, self->ny, cpl_malloc(nxy));
            cpl_mask_or_(cpl_mask_get_data(self->bpm),
                         cpl_mask_get_data_const(first->bpm),
                         cpl_mask_get_data_const(second->bpm), nxy);
        } else if (second->bpm != NULL) {
            self->bpm = cpl_mask_duplicate(second->bpm);
        } else if (first != NULL && first->bpm != NULL) {
            self->bpm = cpl_mask_duplicate(first->bpm);
        }
    } else {
        /* The self bpm is non-NULL. If first is NULL, then the operation is
           in-place, so self is an input parameter */
        if (first != NULL && first->bpm != NULL && second->bpm != NULL) {
            cpl_mask_or_(cpl_mask_get_data(self->bpm),
                         cpl_mask_get_data_const(first->bpm),
                         cpl_mask_get_data_const(second->bpm), nxy);
        } else if (first != NULL && first->bpm != NULL) {
            assert(second->bpm == NULL);
            (void)memcpy(cpl_mask_get_data(self->bpm),
                         cpl_mask_get_data_const(first->bpm), nxy);
        } else if (second->bpm != NULL) {
            if (first == NULL) {
                /* Self is an input parameter */
                cpl_mask_or(self->bpm, second->bpm);
            } else {
                /* First is non-NULL, but happens to have a NULL bpm */
                assert(first->bpm == NULL);
                (void)memcpy(cpl_mask_get_data(self->bpm),
                             cpl_mask_get_data_const(second->bpm), nxy);
            }
        } else if (first != NULL) {
            /* First is non-NULL, but happens to have a NULL bpm,
               so the result is an empty bpm */
            (void)memset(cpl_mask_get_data(self->bpm), 0, nxy);
        }
    }
}


/*----------------------------------------------------------------------------*/
/**
   @ingroup cpl_image
   @brief    The bit-wise or of the input mask(s) onto the output mask
   @param    self     Pre-allocated image to hold the result
   @param    first    First operand, or NULL for an in-place operation
   @return   void
   @note Error checking assumed to have been performed by the caller
   @see cpl_image_or_mask
*/
/*----------------------------------------------------------------------------*/
void cpl_image_or_mask_unary(cpl_image * self,
                              const cpl_image * first)
{

    const size_t nxy = (size_t)self->nx * (size_t)self->ny;

    if (self->bpm == NULL) {
        /* Create the bad pixel map, if an input one is non-NULL */
        if (first != NULL && first->bpm != NULL) {
            self->bpm = cpl_mask_duplicate(first->bpm);
        }
    } else {
        /* The self bpm is non-NULL. If first is NULL, then the operation is
           in-place, so self is an input parameter */
        if (first != NULL && first->bpm != NULL) {
            (void)memcpy(cpl_mask_get_data(self->bpm),
                         cpl_mask_get_data_const(first->bpm), nxy);
        } else if (first != NULL) {
            /* First is non-NULL, but happens to have a NULL bpm,
               so the result is an empty bpm */
            (void)memset(cpl_mask_get_data(self->bpm), 0, nxy);
        }
    }
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    N-dimensional FFT.
  @param    real        N-dimensional data set stored in 1d (real part).
  @param    imag        N-dimensional data set stored in 1d (imaginary part).
  @param    nn          Dimensions of the set.
  @param    ndim        How many dimensions this set has.
  @param    isign       Transform direction.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE

  This routine is a public domain FFT. See extract of Usenet article below. 
  Found on http://www.tu-chemnitz.de/~arndt/joerg.html

  @verbatim
  From: alee@tybalt.caltech.edu (Andrew Lee)
  Newsgroups: comp.sources.misc
  Subject: N-dimensional, Radix 2 FFT Routine
  Date: 17 Jul 87 22:26:29 GMT
  Approved: allbery@ncoast.UUCP
  X-Archive: comp.sources.misc/8707/48

  [..]
  Now for the usage (finally):
  real[] and imag[] are the array of complex numbers to be transformed,
  nn[] is the array giving the dimensions (I mean size) of the array,
  ndim is the number of dimensions of the array, and
  isign is +1 for a forward transform, and -1 for an inverse transform.

  real[], imag[] and nn[] are stored in the "natural" order for C:
  nn[0] gives the number of elements along the leftmost index,
  nn[ndim - 1] gives the number of elements along the rightmost index.

  Additional notes: The routine does NO NORMALIZATION, so if you do a forward, 
  and then an inverse transform on an array, the result will be identical to 
  the original array MULTIPLIED BY THE NUMBER OF ELEMENTS IN THE ARRAY. Also, 
  of course, the dimensions of real[] and imag[] must all be powers of 2.
  @endverbatim

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code cpl_fft(
        double          *   real,
        double          *   imag,
        const unsigned  *   nn,
        int                 ndim,
        int                 isign)
{
    int                 idim;
    unsigned            i1, i2rev, i3rev, ibit;
    unsigned            ip2, ifp1, ifp2, k2, n;
    unsigned            nprev = 1, ntot = 1;
    register unsigned   i2, i3;
    double              theta;
    double              w_r, w_i, wp_r, wp_i;
    double              wtemp;
    double              temp_r, temp_i, wt_r, wt_i;
    double              t1, t2;

    /* Check entries */
    cpl_ensure_code(real, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(imag, CPL_ERROR_NULL_INPUT);
    cpl_ensure_code(nn, CPL_ERROR_NULL_INPUT);
    for (idim = 0; idim < ndim; ++idim) 
        cpl_ensure_code(cpl_tools_is_power_of_2(nn[idim])>=0,
                        CPL_ERROR_ILLEGAL_INPUT);

    /* Compute total number of complex values  */
    for (idim = 0; idim < ndim; ++idim) ntot *= nn[idim];

    for (idim = ndim - 1; idim >= 0; --idim) {
        n = nn[idim];

        ip2 = nprev * n;        /*  Unit step for next dimension */
        i2rev = 0;              /*  Bit reversed i2 */

        /* This is the bit reversal section of the routine */
        /* Loop over current dimension */
        for (i2 = 0; i2 < ip2; i2 += nprev) {
            if (i2 < i2rev)
                /*      Loop over lower dimensions      */
                for (i1 = i2; i1 < i2 + nprev; ++i1)
                    /*      Loop over higher dimensions  */
                    for (i3 = i1; i3 < ntot; i3 += ip2) {
                        i3rev = i3 + i2rev - i2;
                        temp_r = real[i3];
                        temp_i = imag[i3];
                        real[i3] = real[i3rev];
                        imag[i3] = imag[i3rev];
                        real[i3rev] = temp_r;
                        imag[i3rev] = temp_i;
                    }

            ibit = ip2;
            /* Increment from high end of i2rev to low */
            do {
                ibit >>= 1;
                i2rev ^= ibit;
            } while (ibit >= nprev && !(ibit & i2rev));
        }

        /* Here begins the Danielson-Lanczos section of the routine */
        /* Loop over step sizes    */
        for (ifp1 = nprev; ifp1 < ip2; ifp1 <<= 1) {
            ifp2 = ifp1 << 1;
            /*  Initialize for the trig. recurrence */
            theta = isign * CPL_MATH_2PI / (ifp2 / nprev);
            wp_r = sin(0.5 * theta);
            wp_r *= -2.0 * wp_r;
            wp_i = sin(theta);
            w_r = 1.0;
            w_i = 0.0;

            /* Loop by unit step in current dimension  */
            for (i3 = 0; i3 < ifp1; i3 += nprev) {
                /* Loop over lower dimensions      */
                for (i1 = i3; i1 < i3 + nprev; ++i1)
                    /* Loop over higher dimensions */
                    for (i2 = i1; i2 < ntot; i2 += ifp2) {
                        /* Danielson-Lanczos formula */
                        k2 = i2 + ifp1;
                        wt_r = real[k2];
                        wt_i = imag[k2];

                        /* Complex multiply using 3 real multiplies. */
                        real[k2] = real[i2] - (temp_r =
                            (t1 = w_r * wt_r) - (t2 = w_i * wt_i));
                        imag[k2] = imag[i2] - (temp_i =
                            (w_r + w_i) * (wt_r + wt_i) - t1 - t2);
                        real[i2] += temp_r;
                        imag[i2] += temp_i;
                    }
                /* Trigonometric recurrence */
                wtemp = w_r;
                /* Complex multiply using 3 real multiplies. */
                w_r += (t1 = w_r * wp_r) - (t2 = w_i * wp_i);
                w_i += (wtemp + w_i) * (wp_r + wp_i) - t1 - t2;
            }
        }
        nprev *= n;
    }
    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    Compute the noise around a peak in a vector
  @param    vec     the input cpl_vector
  @param    pos     the peak position (from 1 to the vector size)
  @return   the noise value.

  The passed cpl_vector object must have at least two elements.
  
  In case of error, the #_cpl_error_code_ code is set, and the returned double
  is undefined.

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT
 */
/*----------------------------------------------------------------------------*/
static double cpl_vector_get_noise(
        const cpl_vector    *   vec,
        cpl_size                pos)
{
    cpl_size            nelem;
    cpl_vector       *  smooth_vec;
    const double     *  vector_data;
    double              noise_left, noise_right;
    cpl_errorstate      prestate = cpl_errorstate_get();
    cpl_size            i;

    /* Check entries */
    cpl_ensure(vec,          CPL_ERROR_NULL_INPUT, -1.0);
    nelem = cpl_vector_get_size(vec);
    cpl_ensure(pos >= 1,     CPL_ERROR_ILLEGAL_INPUT, -1.0);
    cpl_ensure(pos <= nelem, CPL_ERROR_ILLEGAL_INPUT, -1.0);
    cpl_ensure(nelem > 1,    CPL_ERROR_ILLEGAL_INPUT, -1.0);

    /* Smooth out the array to be less sensitive to noise */
    smooth_vec = cpl_vector_filter_lowpass_create(vec, CPL_LOWPASS_LINEAR, 1);
    if (!cpl_errorstate_is_equal(prestate)) {
        /* Recover and use the unsmoothed vector */
        cpl_errorstate_set(prestate);
        cpl_vector_delete(smooth_vec);
        smooth_vec = NULL;
    }
    vector_data = cpl_vector_get_data_const(smooth_vec ? smooth_vec : vec);

    if (smooth_vec != NULL) {
        /* The smoothing (half-size is 1) may have moved the maximum 1 pixel */
        if (pos < nelem && vector_data[pos-1] < vector_data[pos]) {
            pos++;
        } else if (pos > 1 && vector_data[pos-1] < vector_data[pos-2]) {
            pos--;
        }
    }

    /* Find noise level on the left side of the peak. */
    i = pos - 1;
    while (i > 0) {
        if (vector_data[i] > vector_data[i-1]) i--;
        else break;
    }
    noise_left = vector_data[i];

    /* Find noise level on the right side of the peak */
    i = pos - 1;
    while (i < nelem-1) {
        if (vector_data[i] > vector_data[i+1]) i++;
        else break;
    }
    noise_right = vector_data[i];

    cpl_vector_delete(smooth_vec);

    return 0.5 * (noise_left + noise_right);
}

/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    Compute the FWHM of an object in a cpl_vector
  @param    vec         the input cpl_vector
  @param    pos         the object position (from 1 to the vector size)
  @param    half_max    the half maximum value
  @return   the FWHM or a negative value on error
  @note The return value may be -1 with no error condition

  Possible #_cpl_error_code_ set in this function:
  - CPL_ERROR_NULL_INPUT if an input pointer is NULL
  - CPL_ERROR_ILLEGAL_INPUT if pos is less than 1 or greater than the vec-length
 */
/*----------------------------------------------------------------------------*/
static double cpl_vector_get_fwhm(
        const cpl_vector    *   vec,
        cpl_size                pos,
        double                  half_max)
{
    const double * vec_data;
    cpl_size       nelem;
    double         x_left, x_right;
    double         y_1, y_2;
    cpl_size       i;

    /* Check entries */
    cpl_ensure(vec,          CPL_ERROR_NULL_INPUT, -1.0);
    nelem = cpl_vector_get_size(vec);
    cpl_ensure(pos >= 1,     CPL_ERROR_ILLEGAL_INPUT, -1.0);
    cpl_ensure(pos <= nelem, CPL_ERROR_ILLEGAL_INPUT, -1.0);

    vec_data = cpl_vector_get_data_const(vec);

    /* Object may be too noisy - or strange in some other way */
    if (vec_data[pos - 1] <= half_max) return -1.0;

    /* Find first pair of values, y(i) <= half_max < y(i+1)
         on the left of the maximum */
    i = pos - 1;

    while ((vec_data[i] > half_max) && (i > 0)) i--;
    if (vec_data[i] > half_max) return -1.0;  /* y_1 could not be found */

    y_1 = vec_data[i];
    y_2 = vec_data[i+1];

    /* assert ( y_1 <= half_max && half_max < y_2 ); */

    /* Assume linearity between y_1 and y_2 */
    x_left = (double)i + (half_max-y_1) / (y_2-y_1);

    /* assert( x_left >= i ); */

    /* Find first pair of values, y(i-1) > half_max >= y(i)
         on the right of the maximum */
    i = pos - 1;
 
    while ((vec_data[i] > half_max) && (i < nelem-1)) i++;
    if (vec_data[i] > half_max) return -1.0;   /* y_2 could not be found */

    y_1 = vec_data[i-1];
    y_2 = vec_data[i];

    /* assert( y_1 > half_max && half_max >= y_2 ); */

    /* Assume linearity between y_1 and y_2 */
    x_right = (double)i + (half_max-y_2) / (y_2-y_1);

    /* assert( x_right < i ); */

    if (x_right < x_left || x_right - x_left > FLT_MAX) return -1;

    return x_right - x_left;
}


#if (defined __SSE3__ || defined __SSE2__)


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    multiply two vectors of two complex floats
  @param    a     first operand
  @param    b     second operand
  @param    i     offset
  @return   result of the multiplication
  @see fcompl_mult_sse_aligned()

  Function not inlineable to work around code generation issue of gcc.
  The pointer additions must be hidden in this function or gcc will pointlessly
  add them to the inner loop of the complex multiplication even though they
  are only required in the unlikely branch.
  Tested with gcc <= 4.7. Up to 30% speed improvement on some machines.
 */
/*----------------------------------------------------------------------------*/
static void CPL_ATTR_NOINLINE
fcompl_mult_scalar2(float complex * a, const float complex * b, const size_t i)
{
    a[i] = a[i] * b[i];
    a[i + 1] = a[i + 1] * b[i + 1];
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    check result for NaN and recompute correctly if so
  @return   true if nan was fixed and stored, false if no fixup required
            if false no store was done
  @see fcompl_mult_sse_aligned()
 */
/*----------------------------------------------------------------------------*/
static inline cpl_boolean
fcompl_fix_nan(__m128 res, float complex * a,
               const float complex * b,
               const size_t i)
{
#ifndef __FAST_MATH__
        /* check for NaN, redo all in libc if found */
        __m128 n = _mm_cmpneq_ps(res, res);
        if (CPL_UNLIKELY(_mm_movemask_ps(n) != 0)) {
            fcompl_mult_scalar2(a, b, i);
            return CPL_TRUE;
        }
        else
#endif
            return CPL_FALSE;
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    vertical multiply two vectors of each two complex floats
  @param    va     first operand (real, imag, real, imag)
  @param    vb     second operand (real, imag, real, imag)
  @return   result of the multiplication

  does not handle NaN's correctly
 */
/*----------------------------------------------------------------------------*/
static inline __m128
fcompl_mult_sse_fast(__m128 va, __m128 vb)
{
    /* optimized to SSE3 _mm_move[hl]dup_ps by gcc */
    __m128 reala = _mm_shuffle_ps(va, va, _MM_SHUFFLE(2, 2, 0, 0)); /* x x */
    __m128 imaga = _mm_shuffle_ps(va, va, _MM_SHUFFLE(3, 3, 1, 1)); /* w w */
    __m128 t1 = _mm_mul_ps(reala, vb); /* x*y x*z */
    __m128 sb = _mm_shuffle_ps(vb, vb, _MM_SHUFFLE(2, 3, 0, 1)); /* z y */
    __m128 t2 = _mm_mul_ps(imaga, sb); /* w*z w*y */
    return CPL_MM_ADDSUB_PS(t1, t2); /* x*y-w*z x*z+w*y*/
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    complex multiplication loop, aligned
  @param    im1     first operand, must be 16 byte aligned
  @param    im2     second operand, must be 16 byte aligned
  @param    Nt      number of pixels
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code
fcompl_mult_sse_aligned(float complex * a,
                        const float complex * b,
                        const size_t Nt)
{
    const size_t n = (Nt % 2) == 1 ? Nt - 1 : Nt;

    /* no overflow hint for the compiler */
    cpl_ensure_code(n < SIZE_MAX-1, CPL_ERROR_ACCESS_OUT_OF_RANGE);
    for (size_t i = 0; i < n; i+=2) {
        __m128 va = _mm_load_ps((const float *)&a[i]); /* x w */
        __m128 vb = _mm_load_ps((const float *)&b[i]); /* y z */
        __m128 res = fcompl_mult_sse_fast(va, vb);

        if (CPL_LIKELY(fcompl_fix_nan(res, a, b, i) == CPL_FALSE))
            _mm_store_ps((float *)&a[i], res);
    }

    if ((Nt) % 2 == 1)
        a[Nt - 1] = a[Nt - 1] * b[Nt - 1];

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    complex multiplication loop, unaligned
  @param    im1     first operand
  @param    im2     second operand.
  @param    Nt      number of pixels
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code
fcompl_mult_sse_unaligned(float complex * a,
                          const float complex * b,
                          const size_t Nt)
{
    const size_t n = (Nt % 2) == 1 ? Nt - 1 : Nt;

    /* no overflow hint for the compiler */
    cpl_ensure_code(n < SIZE_MAX-1, CPL_ERROR_ACCESS_OUT_OF_RANGE);
    for (size_t i = 0; i < n; i+=2) {
        __m128 va = _mm_loadu_ps((const float *)&a[i]); /* x w */
        __m128 vb = _mm_loadu_ps((const float *)&b[i]); /* y z */
        __m128 res = fcompl_mult_sse_fast(va, vb);

        if (CPL_LIKELY(fcompl_fix_nan(res, a, b, i) == CPL_FALSE))
            _mm_storeu_ps((float *)&a[i], res);
    }

    if ((Nt) % 2 == 1)
        a[Nt - 1] = a[Nt - 1] * b[Nt - 1];

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    Multiply two float complex images using sse2 or 3
  @param    im1     first operand.
  @param    im2     second operand.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  @see      cpl_image_multiply()
  @note No error checking performed in this static function
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code cpl_image_multiply_fcomplex_sse_(cpl_image       * im1,
                                                       const cpl_image * im2)
{
    const size_t Nt = im1->nx * im1->ny;
    float complex * a = im1->pixels;
    const float complex * b = im2->pixels;
    cpl_error_code err = CPL_ERROR_NONE;

    /* FIXME: cases for a xor b unaligned? */
    if (((intptr_t)a % 16) == 0 && ((intptr_t)b % 16) == 0)
        err = fcompl_mult_sse_aligned(a, b, Nt);
    else if (((intptr_t)a % 16) == 8 && ((intptr_t)b % 16) == 8) {
        a[0] = a[0] * b[0];
        err = fcompl_mult_sse_aligned(a + 1, b + 1, Nt - 1);
    }
    else
        err = fcompl_mult_sse_unaligned(a, b, Nt);


    /* Handle bad pixels map */
    if (im2->bpm != NULL) {
        if (im1->bpm == NULL) {
            im1->bpm = cpl_mask_duplicate(im2->bpm);
        } else {
            cpl_mask_or(im1->bpm, im2->bpm);
        }
    }

    return err;
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    multiply two vectors of two complex double
  @param    a     first operand
  @param    b     second operand
  @param    i     offset
  @return   result of the multiplication
  @see fcompl_mult_scalar2()

 */
/*----------------------------------------------------------------------------*/
static void CPL_ATTR_NOINLINE
dcompl_mult_scalar(double complex * a, const double complex * b, const size_t i)
{
    a[i] = a[i] * b[i];
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    check result for NaN and recompute correctly if so
  @return   true if nan was fixed and stored, false if no fixup required
            if false no store was done
  @see dcompl_mult_sse_aligned()
 */
/*----------------------------------------------------------------------------*/
static inline cpl_boolean
dcompl_fix_nan(__m128d res, double complex * a,
               const double complex * b,
               const size_t i)
{
#ifndef __FAST_MATH__
        /* check for NaN, redo all in libc if found */
        __m128d n = _mm_cmpneq_pd(res, res);
        if (CPL_UNLIKELY(_mm_movemask_pd(n) != 0)) {
            dcompl_mult_scalar(a, b, i);
            return CPL_TRUE;
        }
        else
#endif
            return CPL_FALSE;
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    vertical multiply two vectors of each two complex double
  @param    va     first operand (real, imag, real, imag)
  @param    vb     second operand (real, imag, real, imag)
  @return   result of the multiplication

  does not handle NaN's correctly
 */
/*----------------------------------------------------------------------------*/
static inline __m128d
dcompl_mult_sse_fast(__m128d va, __m128d vb)
{
    /* optimized to SSE3 _mm_movedup_pd by gcc */
    __m128d rb = _mm_unpacklo_pd(vb, vb); /* y, y */
    __m128d ib = _mm_unpackhi_pd(vb, vb); /* w, w*/
    __m128d t1 = _mm_mul_pd(rb, va); /* y * x, y * z */
    __m128d t2 = _mm_mul_pd(ib, va); /* w * x, w * z*/
    __m128d sb = _mm_shuffle_pd(t2, t2, _MM_SHUFFLE2(0, 1)); /* w * z, w * x */
    return CPL_MM_ADDSUB_PD(t1, sb); /* x * y - y * w, z*y + x * w */
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    complex multiplication loop, aligned
  @param    im1     first operand, must be 16 byte aligned
  @param    im2     second operand, must be 16 byte aligned
  @param    Nt      number of pixels
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code CPL_ATTR_NOINLINE
dcompl_mult_sse_aligned(double complex * a,
                        const double complex * b,
                        const size_t n)
{
    /* no overflow hint for the compiler */
    cpl_ensure_code(n < SIZE_MAX, CPL_ERROR_ACCESS_OUT_OF_RANGE);
    for (size_t i = 0; i < n; i++) {
        __m128d va = _mm_load_pd((const double *)&a[i]); /* x w */
        __m128d vb = _mm_load_pd((const double *)&b[i]); /* y z */
        __m128d res = dcompl_mult_sse_fast(va, vb);

        if (CPL_LIKELY(dcompl_fix_nan(res, a, b, i) == CPL_FALSE))
            _mm_store_pd((double *)&a[i], res);
    }

    return CPL_ERROR_NONE;
}


/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    complex multiplication loop, unaligned
  @param    im1     first operand
  @param    im2     second operand.
  @param    Nt      number of pixels
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code
dcompl_mult_sse_unaligned(double complex * a,
                          const double complex * b,
                          const size_t n)
{
    /* no overflow hint for the compiler */
    cpl_ensure_code(n < SIZE_MAX, CPL_ERROR_ACCESS_OUT_OF_RANGE);
    for (size_t i = 0; i < n; i++) {
        __m128d va = _mm_loadu_pd((const double *)&a[i]); /* x w */
        __m128d vb = _mm_loadu_pd((const double *)&b[i]); /* y z */
        __m128d res = dcompl_mult_sse_fast(va, vb);

        if (CPL_LIKELY(dcompl_fix_nan(res, a, b, i) == CPL_FALSE))
            _mm_storeu_pd((double *)&a[i], res);
    }

    return CPL_ERROR_NONE;
}

/*----------------------------------------------------------------------------*/
/**
  @internal
  @ingroup cpl_image
  @brief    Multiply two double complex images using sse2 or 3
  @param    im1     first operand.
  @param    im2     second operand.
  @return   the #_cpl_error_code_ or CPL_ERROR_NONE
  @see      cpl_image_multiply()
  @note No error checking performed in this static function
 */
/*----------------------------------------------------------------------------*/
static cpl_error_code cpl_image_multiply_dcomplex_sse_(cpl_image       * im1,
                                                       const cpl_image * im2)
{
    const size_t Nt = im1->nx * im1->ny;
    double complex * a = im1->pixels;
    const double complex * b = im2->pixels;
    cpl_error_code err = CPL_ERROR_NONE;

    /* FIXME: cases for a xor b unaligned? */
    if (((intptr_t)a % 16) == 0 && ((intptr_t)b % 16) == 0)
        err = dcompl_mult_sse_aligned(a, b, Nt);
    else
        err = dcompl_mult_sse_unaligned(a, b, Nt);


    /* Handle bad pixels map */
    if (im2->bpm != NULL) {
        if (im1->bpm == NULL) {
            im1->bpm = cpl_mask_duplicate(im2->bpm);
        } else {
            cpl_mask_or(im1->bpm, im2->bpm);
        }
    }

    return err;
}
#endif