File: ode_evaluate.cpp

package info (click to toggle)
cppad 2017.00.00.4-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 26,780 kB
  • ctags: 12,220
  • sloc: xml: 216,822; cpp: 63,586; sh: 9,233; makefile: 1,321; python: 637; ansic: 170
file content (73 lines) | stat: -rw-r--r-- 1,683 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// $Id: ode_evaluate.cpp 3788 2016-02-09 15:50:06Z bradbell $
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-16 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
/*
$begin ode_evaluate.cpp$$
$spell
$$


$section ode_evaluate: Example and test$$
$mindex ode_evaluate$$

$code
$srcfile%speed/example/ode_evaluate.cpp%0%// BEGIN C++%// END C++%1%$$
$$

$end
*/
// BEGIN C++
# include <cppad/speed/ode_evaluate.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/cppad.hpp>

bool ode_evaluate(void)
{	using CppAD::NearEqual;
	using CppAD::AD;

	bool ok = true;

	size_t n = 3;
	CppAD::vector<double>       x(n);
	CppAD::vector<double>       ym(n * n);
	CppAD::vector< AD<double> > X(n);
	CppAD::vector< AD<double> > Ym(n);

	// choose x
	size_t j;
	for(j = 0; j < n; j++)
	{	x[j] = double(j + 1);
		X[j] = x[j];
	}

	// declare independent variables
	Independent(X);

	// evaluate function
	size_t m = 0;
	CppAD::ode_evaluate(X, m, Ym);

	// evaluate derivative
	m = 1;
	CppAD::ode_evaluate(x, m, ym);

	// use AD to evaluate derivative
	CppAD::ADFun<double>   F(X, Ym);
	CppAD::vector<double>  dy(n * n);
	dy = F.Jacobian(x);

	size_t k;
	for(k = 0; k < n * n; k++)
		ok &= NearEqual(ym[k], dy[k] , 1e-7, 1e-7);

	return ok;
}
// END C++