File: ode2.xrst

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (604 lines) | stat: -rw-r--r-- 16,314 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
# SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
# SPDX-FileContributor: 2003-24 Bradley M. Bell
# ----------------------------------------------------------------------------
{xrst_begin ipopt_nlp_ode_problem dev}
{xrst_spell
  ny
  nz
}

An ODE Inverse Problem Example
##############################

Notation
********
The table below contains
the name of a variable,
the meaning of the variable value,
and the value for this particular example.
If the value is not specified in the table below,
the corresponding value in ``ipopt_nlp_ode_problem.hpp``
can be changed and the example should still run
(with no other changes).

.. csv-table::
   :widths: auto

   **Name**,**Meaning**,**Value**
   :math:`Na`,number of parameters to fit,3
   :math:`Ny`,number components in ODE,2
   :math:`Nz`,number of measurements,4
   :math:`N(i)`,# of grid points between *i-1*-th and *i*-th measurement,
   :math:`S(i)`,# of grid points up to an including *i*-th measurement,

Forward Problem
***************
We consider the following ordinary differential equation:

.. math::
   :nowrap:

   \begin{eqnarray}
      \partial_t y_0 ( t , a ) & = & - a_1 * y_0 (t, a )
      \\
      \partial_t y_1 (t , a ) & = & + a_1 * y_0 (t, a ) - a_2 * y_1 (t, a )
   \end{eqnarray}

with the initial conditions

.. math::

   y_0 (0 , a) = F(a) = \left( \begin{array}{c} a_0 \\ 0 \end{array} \right)

where :math:`Na` is the number of parameters,
:math:`a \in \B{R}^{Na}` is an unknown parameter vector.
The function and :math:`F : \B{R}^{Na} \rightarrow \B{R}^{Ny}`
is defined by the equation above
where :math:`Ny` is the number of components in :math:`y(t, a)`.
Our forward problem is stated as follows: Given :math:`a \in \B{R}^{Na}`
determine the value of :math:`y ( t , a )`, for :math:`t \in R`, that
solves the initial value problem above.

Measurements
************
We use :math:`Nz` to denote the number of measurements.
Suppose we are also given a measurement vector :math:`z \in \B{R}^{Nz}`
and for :math:`i = 1, \ldots, Nz`,
we model :math:`z_i` by

.. math::

   z_i = y_1 ( s_i , a) + e_i

where :math:`s_i \in \B{R}` is the time for the *i*-th measurement,
:math:`e_i \sim {\bf N} (0 , \sigma^2 )` is the corresponding noise,
and :math:`\sigma \in \B{R}_+` is the corresponding standard deviation.

Simulation Analytic Solution
============================
The following analytic solution to the forward problem is used
to simulate a data set:

.. math::
   :nowrap:

   \begin{eqnarray}
      y_0 (t , a) & = & a_0 * \exp( - a_1 * t )
      \\
      y_1 (t , a) & = &
      a_0 * a_1 * \frac{\exp( - a_2 * t ) - \exp( -a_1 * t )}{ a_1 - a_2 }
   \end{eqnarray}

Simulation Parameter Values
===========================

.. list-table::
   :widths: auto

   * - :math:`\bar{a}_0 = 1`
     - initial value of :math:`y_0 (t, a)`
   * - :math:`\bar{a}_1 = 2`
     - transfer rate from compartment zero to compartment one
   * - :math:`\bar{a}_2 = 1`
     - transfer rate from compartment one to outside world
   * - :math:`\sigma = 0`
     - standard deviation of measurement noise
   * - :math:`e_i = 0`
     - simulated measurement noise, :math:`i = 1 , \ldots , Nz`
   * - :math:`s_i = i * .5`
     - time corresponding to the *i*-th measurement,
       :math:`i = 1 , \ldots , Nz`

Simulated Measurement Values
============================
The simulated measurement values are given by the equation

.. math::
   :nowrap:

   \begin{eqnarray}
   z_i
   & = &  e_i + y_1 ( s_i , \bar{a} )
   \\
   & = &
   e_i + \bar{a}_0 * \bar{a}_1 *
      \frac{\exp( - \bar{a}_2 * s_i ) - \exp( -\bar{a}_1 * s_i )}
         { \bar{a}_1 - \bar{a}_2 }
   \end{eqnarray}

for :math:`k = 1, \ldots , Nz`.

Inverse Problem
***************
The maximum likelihood estimate for :math:`a` given :math:`z`
solves the following inverse problem

.. math::
   :nowrap:

   \begin{eqnarray}
   {\rm minimize} \;
      & \sum_{i=1}^{Nz} H_i [ y( s_i , a ) , a ]
      & \;{\rm w.r.t} \; a \in \B{R}^{Na}
   \end{eqnarray}

where the functions
:math:`H_i : \B{R}^{Ny} \times \B{R}^{Na} \rightarrow \B{R}` is
defined by

.. math::

   H_i (y, a) = ( z_i - y_1 )^2

Trapezoidal Approximation
*************************
This example uses a trapezoidal approximation to solve the ODE.
This approximation procedures starts with

.. math::

   y^0 = y(0, a) = \left( \begin{array}{c} a_0 \\ 0 \end{array} \right)

Given a time grid :math:`\{ t_i \}` and
an approximate value :math:`y^{i-1}` for :math:`y ( t_{i-1} , a )`,
the a trapezoidal method approximates :math:`y ( t_i , a )`
(denoted by :math:`y^i` ) by solving the equation

.. math::

   y^i  =  y^{i-1} +
   \left[ G( y^i , a ) + G( y^{i-1} , a ) \right] * \frac{t_i - t_{i-1} }{ 2 }

where :math:`G : \B{R}^{Ny} \times \B{R}^{Na} \rightarrow \B{R}^{Ny}` is the
function representing this ODE; i.e.

.. math::

   G(y, a) = \left(  \begin{array}{c}
      - a_1 * y_0
      \\
      + a_1 * y_0 - a_2 * y_1
   \end{array} \right)

This :math:`G(y, a)` is linear with respect to :math:`y`, hence
the implicit equation defining :math:`y^i` can be solved
inverting the a set of linear equations.
In the general case,
where :math:`G(y, a)` is non-linear with respect to :math:`y`,
an iterative procedure is used to calculate :math:`y^i`
from :math:`y^{i-1}`.

Trapezoidal Time Grid
=====================
The discrete time grid, used for the trapezoidal approximation, is
denoted by :math:`\{ t_i \}` which is defined by:
:math:`t_0 = 0` and
for :math:`i = 1 , \ldots , Nz` and for :math:`j = 1 , \ldots , N(i)`,

.. math::
   :nowrap:

   \begin{eqnarray}
      \Delta t_i & = & ( s_i - s_{i-1} ) / N(i)
      \\
      t_{S(i-1)+j} & = & s_{i-1} + \Delta t_i * j
   \end{eqnarray}

where :math:`s_0 = 0`,
:math:`N(i)` is the number of time grid points between
:math:`s_{i-1}` and :math:`s_i`,
:math:`S(0) = 0`, and
:math:`S(i) = N(1) + \ldots + N(i)`.
Note that for :math:`i = 0 , \ldots , S(Nz)`,
:math:`y^i` denotes our approximation for :math:`y( t_i , a )`
and :math:`t_{S(i)}` is equal to :math:`s_i`.

Black Box Method
****************
A common approach to an inverse problem is to treat the forward problem
as a black box (that we do not look inside of or try to understand).
In this approach, for each value of the parameter vector :math:`a`
one uses the
:ref:`ipopt_nlp_ode_problem@Trapezoidal Approximation`
(on a finer grid that :math:`\{ s_i \}`)
to solve for :math:`y_1 ( s_i , a )` for :math:`i = 1 , \ldots , Nz`.

Two levels of Iteration
=======================
As noted above, the trapezoidal approximation
often requires an iterative procedure.
Thus, in this approach, there are two levels of iterations,
one with respect to the parameter values during the minimization
and the other for solving the trapezoidal approximation equation.

Derivatives
===========
In addition, in the black box approach, differentiating the ODE solution
often involves differentiating an iterative procedure.
Direct application of AD to compute these derivatives
requires a huge amount of memory and calculations to differentiate the
iterative procedure.
(There are special techniques for applying AD to the solutions of iterative
procedures, but that is outside the scope of this presentation).

Simultaneous Method
*******************
The simultaneous forward and inverse method
uses constraints to include the solution of
the forward problem in the inverse problem.
To be specific for our example,

.. math::
   :nowrap:

   \begin{eqnarray}
   {\rm minimize}
   & \sum_{i=1}^{Nz} H_i ( y^{N(i)} , a )
   & \; {\rm w.r.t} \; y^1 \in \B{R}^{Ny} , \ldots , y^{S(Nz)} \in \B{R}^{Ny} ,
     \; a \in \B{R}^{Na}
   \\
   {\rm subject \; to}
      & y^j  =  y^{j-1} +
   \left[ G( y^{j-1} , a ) + G( y^j , a ) \right] * \frac{ t_j - t_{j-1} }{ 2 }
      & \; {\rm for} \; j = 1 , \ldots , S(Nz)
   \\
      & y^0 = F(a)
   \end{eqnarray}

where for :math:`i = 1, \ldots , Nz`,
:math:`N(i)` is the number of time intervals between
:math:`s_{i-1}` and :math:`s_i` (with :math:`s_0 = 0`)
and :math:`S(i) = N(1) + \ldots + N(i)`.
Note that, in this form, the iterations of the optimization procedure
also solve the forward problem equations.
In addition, the functions that need to be differentiated
do not involve an iterative procedure.
{xrst_toc_hidden
   cppad_ipopt/example/ode_problem.hpp
}
Source
******
The file ``ipopt_nlp_ode_problem.hpp`` contains
source code that defines the example values and functions defined above.

{xrst_end ipopt_nlp_ode_problem}
-----------------------------------------------------------------------------
{xrst_begin ipopt_nlp_ode_simple dev}
{xrst_spell
  fg
  ny
  nz
}

ODE Fitting Using Simple Representation
#######################################

Purpose
*******
In this section we represent the objective and constraint functions,
(in the simultaneous forward and reverse optimization problem)
using the :ref:`cppad_ipopt_nlp@Simple Representation`
in the sense of ``cppad_ipopt_nlp`` .

Argument Vector
***************
The argument vector that we are optimizing with respect to
( :math:`x` in :ref:`cppad_ipopt_nlp-name` )
has the following structure

.. math::

   x = ( y^0 , \cdots , y^{S(Nz)} , a )

Note that :math:`x \in \B{R}^{S(Nz) + Na}` and

.. math::
   :nowrap:

   \begin{eqnarray}
      y^i & = & ( x_{Ny * i} , \ldots ,  x_{Ny * i + Ny - 1} )
      \\
      a   & = & ( x_{Ny *S(Nz) + Ny} , \ldots , x_{Ny * S(Nz) + Na - 1} )
   \end{eqnarray}

Objective Function
******************
The objective function
( :math:`fg_0 (x)` in :ref:`cppad_ipopt_nlp-name` )
has the following representation,

.. math::

   fg_0 (x) = \sum_{i=1}^{Nz} H_i ( y^{S(i)} , a )

Initial Condition Constraint
****************************
For :math:`i = 1 , \ldots , Ny`,
we define the component functions :math:`fg_i (x)`,
and corresponding constraint equations, by

.. math::

   0 = fg_i ( x ) = y_i^0 - F_i (a)

Trapezoidal Approximation Constraint
************************************
For :math:`i = 1, \ldots , S(Nz)`,
and for :math:`j = 1 , \ldots , Ny`,
we define the component functions :math:`fg_{Ny*i + j} (x)`,
and corresponding constraint equations, by

.. math::

   0 = fg_{Ny*i + j } = y_j^{i}  -  y_j^{i-1} -
      \left[ G_j ( y^i , a ) + G_j ( y^{i-1} , a ) \right] *
         \frac{t_i - t_{i-1} }{ 2 }

{xrst_toc_hidden
   cppad_ipopt/example/ode_simple.hpp
}
Source
******
The file ``ipopt_nlp_ode_simple.hpp``
contains source code for this representation of the
objective and constraints.

{xrst_end ipopt_nlp_ode_simple}
-----------------------------------------------------------------------------
{xrst_begin ipopt_nlp_ode_fast dev}
{xrst_spell
  fg
  ny
  nz
}

ODE Fitting Using Fast Representation
#####################################

Purpose
*******
In this section we represent a more complex representation of the
simultaneous forward and reverse ODE fitting problem (described above).
The representation defines the problem using
simpler functions that are faster to differentiate
(either by hand coding or by using AD).

Objective Function
******************
We use the following representation for the
:ref:`ipopt_nlp_ode_simple@Objective Function` :
For :math:`k = 0 , \ldots , Nz - 1`,
we define the function :math:`r^k : \B{R}^{Ny+Na} \rightarrow \B{R}`
by

.. math::
   :nowrap:

   \begin{eqnarray}
   fg_0 (x) & = & \sum_{i=1}^{Nz} H_i ( y^{S(i)} , a )
   \\
   fg_0 (x) & = & \sum_{k=0}^{Nz-1} r^k ( u^{k,0} )
   \end{eqnarray}

where for :math:`k = 0 , \ldots , Nz-1`,
:math:`u^{k,0} \in \B{R}^{Ny + Na}` is defined by
:math:`u^{k,0} =   ( y^{S(k+1)} , a )`

Range Indices I(k,0)
====================
For :math:`k = 0 , \ldots , Nz - 1`,
the range index in the vector :math:`fg (x)`
corresponding to :math:`r^k ( u^{k,0} )` is 0.
Thus, the range indices are given by
:math:`I(k,0) = \{ 0 \}` for :math:`k = 0 , \ldots , Nz-1`.

Domain Indices J(k,0)
=====================
For :math:`k = 0 , \ldots , Nz - 1`,
the components of the vector :math:`x`
corresponding to the vector :math:`u^{k,0}` are

.. math::
   :nowrap:

   \begin{eqnarray}
   u^{k,0} & = & ( y^{S(k+1} , a )
   \\
   & = &
   (   x_{Ny * S(k+1)} \; , \;
      \ldots \; , \;
      x_{Ny * S(k+1) + Ny - 1} \; , \;
      x_{Ny * S(Nz) + Ny } \; , \;
      \ldots \; , \;
      x_{Ny * S(Nz) + Ny + Na - 1}
   )
   \end{eqnarray}

Thus, the domain indices are given by

.. math::

   J(k,0) = \{
      Ny * S(k+1) \; , \;
      \ldots  \; , \;
      Ny * S(k+1) + Ny - 1 \; , \;
      Ny * S(Nz) + Ny \; , \;
      \ldots  \; , \;
      Ny * S(Nz) + Ny + Na - 1
   \}

Initial Condition
*****************
We use the following representation for the
:ref:`ipopt_nlp_ode_simple@Initial Condition Constraint` :
For :math:`k = Nz` we define the function
:math:`r^k : \B{R}^{Ny} \times \B{R}^{Na + Ny}` by

.. math::
   :nowrap:

   \begin{eqnarray}
      0 & = & fg_i ( x ) = y_i^0 - F_i (a)
      \\
      0 & = & r_{i-1}^k ( u^{k,0} ) = y_i^0 - F_i(a)
   \end{eqnarray}

where :math:`i = 1 , \ldots , Ny` and
where :math:`u^{k,0} \in \B{R}^{Ny + Na}` is defined by
:math:`u^{k,0}  = ( y^0 , a)`.

Range Indices I(k,0)
====================
For :math:`k = Nz`,
the range index in the vector :math:`fg (x)`
corresponding to :math:`r^k ( u^{k,0} )` are
:math:`I(k,0) = \{ 1 , \ldots , Ny \}`.

Domain Indices J(k,0)
=====================
For :math:`k = Nz`,
the components of the vector :math:`x`
corresponding to the vector :math:`u^{k,0}` are

.. math::
   :nowrap:

   \begin{eqnarray}
   u^{k,0} & = & ( y^0 , a)
   \\
   & = &
   (   x_0 \; , \;
      \ldots \; , \;
      x_{Ny-1} \; , \;
      x_{Ny * S(Nz) + Ny } \; , \;
      \ldots \; , \;
      x_{Ny * S(Nz) + Ny + Na - 1}
   )
   \end{eqnarray}

Thus, the domain indices are given by

.. math::

   J(k,0) = \{
      0 \; , \;
      \ldots  \; , \;
      Ny - 1 \; , \;
      Ny * S(Nz) + Ny \; , \;
      \ldots  \; , \;
      Ny * S(Nz) + Ny + Na - 1
   \}

Trapezoidal Approximation
*************************
We use the following representation for the
:ref:`ipopt_nlp_ode_simple@Trapezoidal Approximation Constraint` :
For :math:`k = 1 , \ldots , Nz`,
we define the function :math:`r^{Nz+k} : \B{R}^{2*Ny+Na} \rightarrow \B{R}^{Ny}` by

.. math::

   r^{Nz+k} ( y , w , a )
   =
   y - w -  [ G( y , a ) + G( w , a ) ] * \frac{ \Delta t_k }{ 2 }

For :math:`\ell = 0 , \ldots , N(k)-1`,
using the notation :math:`i = Ny * S(k-1) + \ell + 1`,
the corresponding trapezoidal approximation is represented by

.. math::
   :nowrap:

   \begin{eqnarray}
   0 & = & fg_{Ny+i} (x)
   \\
   & = &
   y^i  -  y^{i-1} -
   \left[ G( y^i , a ) + G( y^{i-1} , a ) \right] * \frac{\Delta t_k }{ 2 }
   \\
   & = &
   r^{Nz+k} ( u^{Nz+k , \ell} )
   \end{eqnarray}

where :math:`u^{Nz+k,\ell} \in \B{R}^{2*Ny + Na}` is defined by
:math:`u^{Nz+k,\ell}  = ( y^{i-1} , y^i , a)`.

Range Indices I(k,0)
====================
For :math:`k = Nz + 1, \ldots , 2*Nz`,
and :math:`\ell = 0 , \ldots , N(k)-1`,
the range index in the vector :math:`fg (x)`
corresponding to :math:`r^k ( u^{k,\ell} )` are
:math:`I(k,\ell) = \{ Ny + i , \ldots , 2*Ny + i - 1  \}`
where :math:`i = Ny * S(k-1) + \ell + 1`.

Domain Indices J(k,0)
=====================
For :math:`k = Nz + 1, \ldots , 2*Nz`,
and :math:`\ell = 0 , \ldots , N(k)-1`,
define :math:`i = Ny * S(k-1) + \ell + 1`.
The components of the vector :math:`x`
corresponding to the vector :math:`u^{k,\ell}` are
(and the function :math:`fg (x)` in :ref:`cppad_ipopt_nlp-name` )

.. math::
   :nowrap:

   \begin{eqnarray}
   u^{k, \ell} & = & ( y^{i-1} , y^i , a )
   \\
   & = &
   (   x_{Ny * (i-1)} \; , \;
      \ldots \; , \;
      x_{Ny * (i+1) - 1} \; , \;
      x_{Ny * S(Nz) + Ny } \; , \;
      \ldots \; , \;
      x_{Ny * S(Nz) + Ny + Na - 1}
   )
   \end{eqnarray}

Thus, the domain indices are given by

.. math::

   J(k,\ell) = \{
      Ny * (i-1) \; , \;
      \ldots  \; , \;
      Ny * (i+1) - 1 \; , \;
      Ny * S(Nz) + Ny \; , \;
      \ldots  \; , \;
      Ny * S(Nz) + Ny + Na - 1
   \}

{xrst_toc_hidden
   cppad_ipopt/example/ode_fast.hpp
}
Source
******
The file ``ipopt_nlp_ode_fast.hpp``
contains source code for this representation of the objective
and constraints.

{xrst_end ipopt_nlp_ode_fast}
------------------------------------------------------------------------------