File: k_gt_one.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (182 lines) | stat: -rw-r--r-- 5,308 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

# include <cppad_ipopt_nlp.hpp>

namespace { // Begin empty namespace
using namespace cppad_ipopt;

// ---------------------------------------------------------------------------
/*
This solve the same problem as
../cppad_ipopt/cppad_ipopt_simple.cpp (repository revision
1276) in a convoluted way in order to test the representation code.
*/
class FG_K_gt_one : public cppad_ipopt_fg_info
{
private:
   bool retape_;
public:
   // derived class part of constructor
   FG_K_gt_one(bool retape_in)
   : retape_ (retape_in)
   { }
   // Evaluation of the objective f(x), and constraints g(x)
   // using an Algorithmic Differentiation (AD) class.
   ADVector eval_r(size_t k, const ADVector&  u)
   {

      // Fortran style indexing
      ADNumber x1 = u[3];
      ADNumber x2 = u[2];
      ADNumber x3 = u[1];
      ADNumber x4 = u[0];
      if( k == 0 )
      {  ADVector r(1);
         // f(x)
         r[0] = x1 * x4 * (x1 + x2 + x3) + x3;
         return r;
      }
      ADVector r(2);
      // g_1 (x)
      r[0] = x1 * x2 * x3 * x4;
      // g_2 (x)
      r[1] = x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4;
      return r;
   }
   bool retape(size_t k)
   {  return retape_; }
   size_t number_functions(void)
   {  return 2; }
   size_t domain_size(size_t k)
   {  return 4; }
   size_t range_size(size_t k)
   {  if( k == 0 )
         return 1;
      return 2;
   }
   size_t number_terms(size_t k)
   {  return 1; }
   void index(size_t k, size_t ell, SizeVector& I, SizeVector& J)
   {
      if( k == 0 )
         I[0] = 0;
      else
      {  I[0] = 1;
         I[1] = 2;
      }
      // reverse the order of the variables in u from that in x
      for(size_t j = 0; j < 4; j++)
         J[j] = 3-j;
   }
};
} // end empty namespace

bool k_gt_one(void)
{  bool ok = true;
   size_t j;


   // number of independent variables (domain dimension for f and g)
   size_t n = 4;
   // number of constraints (range dimension for g)
   size_t m = 2;
   // initial value of the independent variables
   NumberVector x_i(n);
   x_i[0] = 1.0;
   x_i[1] = 5.0;
   x_i[2] = 5.0;
   x_i[3] = 1.0;
   // lower and upper limits for x
   NumberVector x_l(n);
   NumberVector x_u(n);
   for(j = 0; j < n; j++)
   {  x_l[j] = 1.0;
      x_u[j] = 5.0;
   }
   // lower and upper limits for g
   NumberVector g_l(m);
   NumberVector g_u(m);
   g_l[0] = 25.0;     g_u[0] = 1.0e19;
   g_l[1] = 40.0;     g_u[1] = 40.0;

   // known solution to check against
   double check_x[]   = { 1.000000, 4.743000, 3.82115, 1.379408 };

   size_t icase;
   for(icase = 0; icase <= 1; icase++)
   {  // Should cppad_ipopt_nlp retape the operation sequence for
      // every new x. Can test both true and false cases because
      // the operation sequence does not depend on x (for this case).
      bool retape = bool(icase);

      // check case where upper and lower limits are equal
      if( icase == 1 )
      {  x_l[2] = check_x[2];
         x_u[2] = check_x[2];
      }

      // object in derived class
      FG_K_gt_one my_fg_info(retape);
      cppad_ipopt_fg_info *fg_info = &my_fg_info;

      // create the Ipopt interface
      cppad_ipopt_solution solution;
      Ipopt::SmartPtr<Ipopt::TNLP> cppad_nlp = new cppad_ipopt_nlp(
      n, m, x_i, x_l, x_u, g_l, g_u, fg_info, &solution
      );

      // Create an instance of the IpoptApplication
      using Ipopt::IpoptApplication;
      Ipopt::SmartPtr<IpoptApplication> app = new IpoptApplication();

      // turn off any printing
      app->Options()->SetIntegerValue("print_level", 0);
      app->Options()->SetStringValue("sb", "yes");

      // maximum number of iterations
      app->Options()->SetIntegerValue("max_iter", 10);

      // approximate accuracy in first order necessary conditions;
      // see Mathematical Programming, Volume 106, Number 1,
      // Pages 25-57, Equation (6)
      app->Options()->SetNumericValue("tol", 1e-9);

      // derivative testing
      app->Options()->
      SetStringValue("derivative_test", "second-order");

      // Initialize the IpoptApplication and process the options
      Ipopt::ApplicationReturnStatus status = app->Initialize();
      ok    &= status == Ipopt::Solve_Succeeded;

      // Run the IpoptApplication
      status = app->OptimizeTNLP(cppad_nlp);
      ok    &= status == Ipopt::Solve_Succeeded;

      /*
      Check some of the solution values
      */
      ok &= solution.status == cppad_ipopt_solution::success;
      //
      double check_z_l[] = { 1.087871, 0.,       0.,      0.       };
      double check_z_u[] = { 0.,       0.,       0.,      0.       };
      double rel_tol     = 1e-6;  // relative tolerance
      double abs_tol     = 1e-6;  // absolute tolerance
      for(j = 0; j < n; j++)
      {  ok &= CppAD::NearEqual(
         check_x[j],   solution.x[j],   rel_tol, abs_tol
         );
         ok &= CppAD::NearEqual(
         check_z_l[j], solution.z_l[j], rel_tol, abs_tol
         );
         ok &= CppAD::NearEqual(
         check_z_u[j], solution.z_u[j], rel_tol, abs_tol
         );
      }
   }

   return ok;
}