1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
# include <cppad_ipopt_nlp.hpp>
namespace { // Begin empty namespace
using namespace cppad_ipopt;
// ---------------------------------------------------------------------------
/*
This solve the same problem as
../cppad_ipopt/cppad_ipopt_simple.cpp (repository revision
1276) in a convoluted way in order to test the representation code.
*/
class FG_K_gt_one : public cppad_ipopt_fg_info
{
private:
bool retape_;
public:
// derived class part of constructor
FG_K_gt_one(bool retape_in)
: retape_ (retape_in)
{ }
// Evaluation of the objective f(x), and constraints g(x)
// using an Algorithmic Differentiation (AD) class.
ADVector eval_r(size_t k, const ADVector& u)
{
// Fortran style indexing
ADNumber x1 = u[3];
ADNumber x2 = u[2];
ADNumber x3 = u[1];
ADNumber x4 = u[0];
if( k == 0 )
{ ADVector r(1);
// f(x)
r[0] = x1 * x4 * (x1 + x2 + x3) + x3;
return r;
}
ADVector r(2);
// g_1 (x)
r[0] = x1 * x2 * x3 * x4;
// g_2 (x)
r[1] = x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4;
return r;
}
bool retape(size_t k)
{ return retape_; }
size_t number_functions(void)
{ return 2; }
size_t domain_size(size_t k)
{ return 4; }
size_t range_size(size_t k)
{ if( k == 0 )
return 1;
return 2;
}
size_t number_terms(size_t k)
{ return 1; }
void index(size_t k, size_t ell, SizeVector& I, SizeVector& J)
{
if( k == 0 )
I[0] = 0;
else
{ I[0] = 1;
I[1] = 2;
}
// reverse the order of the variables in u from that in x
for(size_t j = 0; j < 4; j++)
J[j] = 3-j;
}
};
} // end empty namespace
bool k_gt_one(void)
{ bool ok = true;
size_t j;
// number of independent variables (domain dimension for f and g)
size_t n = 4;
// number of constraints (range dimension for g)
size_t m = 2;
// initial value of the independent variables
NumberVector x_i(n);
x_i[0] = 1.0;
x_i[1] = 5.0;
x_i[2] = 5.0;
x_i[3] = 1.0;
// lower and upper limits for x
NumberVector x_l(n);
NumberVector x_u(n);
for(j = 0; j < n; j++)
{ x_l[j] = 1.0;
x_u[j] = 5.0;
}
// lower and upper limits for g
NumberVector g_l(m);
NumberVector g_u(m);
g_l[0] = 25.0; g_u[0] = 1.0e19;
g_l[1] = 40.0; g_u[1] = 40.0;
// known solution to check against
double check_x[] = { 1.000000, 4.743000, 3.82115, 1.379408 };
size_t icase;
for(icase = 0; icase <= 1; icase++)
{ // Should cppad_ipopt_nlp retape the operation sequence for
// every new x. Can test both true and false cases because
// the operation sequence does not depend on x (for this case).
bool retape = bool(icase);
// check case where upper and lower limits are equal
if( icase == 1 )
{ x_l[2] = check_x[2];
x_u[2] = check_x[2];
}
// object in derived class
FG_K_gt_one my_fg_info(retape);
cppad_ipopt_fg_info *fg_info = &my_fg_info;
// create the Ipopt interface
cppad_ipopt_solution solution;
Ipopt::SmartPtr<Ipopt::TNLP> cppad_nlp = new cppad_ipopt_nlp(
n, m, x_i, x_l, x_u, g_l, g_u, fg_info, &solution
);
// Create an instance of the IpoptApplication
using Ipopt::IpoptApplication;
Ipopt::SmartPtr<IpoptApplication> app = new IpoptApplication();
// turn off any printing
app->Options()->SetIntegerValue("print_level", 0);
app->Options()->SetStringValue("sb", "yes");
// maximum number of iterations
app->Options()->SetIntegerValue("max_iter", 10);
// approximate accuracy in first order necessary conditions;
// see Mathematical Programming, Volume 106, Number 1,
// Pages 25-57, Equation (6)
app->Options()->SetNumericValue("tol", 1e-9);
// derivative testing
app->Options()->
SetStringValue("derivative_test", "second-order");
// Initialize the IpoptApplication and process the options
Ipopt::ApplicationReturnStatus status = app->Initialize();
ok &= status == Ipopt::Solve_Succeeded;
// Run the IpoptApplication
status = app->OptimizeTNLP(cppad_nlp);
ok &= status == Ipopt::Solve_Succeeded;
/*
Check some of the solution values
*/
ok &= solution.status == cppad_ipopt_solution::success;
//
double check_z_l[] = { 1.087871, 0., 0., 0. };
double check_z_u[] = { 0., 0., 0., 0. };
double rel_tol = 1e-6; // relative tolerance
double abs_tol = 1e-6; // absolute tolerance
for(j = 0; j < n; j++)
{ ok &= CppAD::NearEqual(
check_x[j], solution.x[j], rel_tol, abs_tol
);
ok &= CppAD::NearEqual(
check_z_l[j], solution.z_l[j], rel_tol, abs_tol
);
ok &= CppAD::NearEqual(
check_z_u[j], solution.z_u[j], rel_tol, abs_tol
);
}
}
return ok;
}
|