1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
# include <cppad_ipopt_nlp.hpp>
namespace { // Begin empty namespace
using namespace cppad_ipopt;
// ---------------------------------------------------------------------------
/*
f(x) = x[1]; k=0, ell=0, I[0] = 0, J[0] = 1
g_0 (x) = x[0]; k=0, ell=1, I[0] = 1, J[0] = 0
g_1 (x) = x[1]; k=0, ell=2, I[0] = 2, J[0] = 1
minimize f(x)
subject to -1 <= g_0(x) <= 0
0 <= g_1 (x) <= 1
The solution is x[1] = 0 and x[0] arbitrary.
*/
class FG_J_changes : public cppad_ipopt_fg_info
{
private:
bool retape_;
public:
// constructor
FG_J_changes(bool retape_in)
: retape_ (retape_in)
{ }
size_t number_functions(void)
{ return 1; }
size_t domain_size(size_t k)
{ size_t q = 1;
assert(k == 0);
return q;
}
size_t range_size(size_t k)
{ size_t p = 1;
assert(k == 0);
return p;
}
size_t number_terms(size_t k)
{ size_t L = 3;
assert(k == 0);
return L;
}
void index(size_t k, size_t ell, SizeVector&I, SizeVector& J)
{ assert( I.size() >= 1 );
assert( J.size() >= 1 );
I[0] = ell;
if( ell == 0 )
{ J[0] = 1;
return;
}
J[0] = ell - 1;
return;
}
// retape function
bool retape(size_t k)
{ return retape_; }
ADVector eval_r(size_t k, const ADVector& u)
{
assert( u.size() == 1 );
ADVector r(1);
r[0] = u[0] ;
return r;
}
};
} // end empty namespace
bool multiple_solution(void)
{
bool ok = true;
// number of independent variables (domain dimension for f and g)
size_t n = 2;
// number of constraints (range dimension for g)
size_t m = 2;
// initial value of the independent variables
NumberVector x_i(n);
NumberVector x_l(n);
NumberVector x_u(n);
size_t i = 0;
for(i = 0; i < n; i++)
{ x_i[i] = 0.;
x_l[i] = -1.0;
x_u[i] = +1.0;
}
// lower and upper limits for g
NumberVector g_l(m);
NumberVector g_u(m);
g_l[0] = -1; g_u[0] = 0.;
g_l[1] = 0.; g_u[1] = 1.;
// object for evaluating function
bool retape = false;
FG_J_changes my_fg_info(retape);
cppad_ipopt_fg_info *fg_info = &my_fg_info;
cppad_ipopt_solution solution;
Ipopt::SmartPtr<Ipopt::TNLP> cppad_nlp = new cppad_ipopt_nlp(
n, m, x_i, x_l, x_u, g_l, g_u, fg_info, &solution
);
// Create an instance of the IpoptApplication
using Ipopt::IpoptApplication;
Ipopt::SmartPtr<IpoptApplication> app = new IpoptApplication();
// turn off any printing
app->Options()->SetIntegerValue("print_level", 0);
app->Options()->SetStringValue("sb", "yes");
// approximate accuracy in first order necessary conditions;
// see Mathematical Programming, Volume 106, Number 1,
// Pages 25-57, Equation (6)
app->Options()->SetNumericValue("tol", 1e-9);
app->Options()-> SetStringValue("derivative_test", "second-order");
// Initialize the IpoptApplication and process the options
Ipopt::ApplicationReturnStatus status = app->Initialize();
ok &= status == Ipopt::Solve_Succeeded;
// Run the IpoptApplication
status = app->OptimizeTNLP(cppad_nlp);
ok &= status == Ipopt::Solve_Succeeded;
/*
Check solution status
*/
ok &= solution.status == cppad_ipopt_solution::success;
ok &= CppAD::NearEqual(solution.x[1], 0., 1e-6, 1e-6);
return ok;
}
|