File: retape_k1_l1.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (115 lines) | stat: -rw-r--r-- 3,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

# include <cppad_ipopt_nlp.hpp>

namespace { // Begin empty namespace
using namespace cppad_ipopt;

// ---------------------------------------------------------------------------
class FG_retape : public cppad_ipopt_fg_info
{
public:
   // derived class part of constructor
   FG_retape(void)
   { }
   // Evaluation of the objective f(x), and constraints g(x)
   // using an Algorithmic Differentiation (AD) class.
   ADVector eval_r(size_t k, const ADVector&  x)
   {  ADVector fg(2);

      // f(x)
      if( x[0] >= 1. )
         fg[0] = .5 * (x[0] * x[0] + x[1] * x[1]);
      else
         fg[0] = x[0] + .5 * x[1] * x[1];
      // g (x)
      fg[1] = x[0];

      return fg;
   }
   bool retape(size_t k)
   {  return true; }
};
} // end of empty namespace

bool retape_k1_l1(void)
{  bool ok = true;
   size_t j;


   // number of independent variables (domain dimension for f and g)
   size_t n = 2;
   // number of constraints (range dimension for g)
   size_t m = 1;
   // initial value of the independent variables
   NumberVector x_i(n);
   x_i[0] = 2.0;
   x_i[1] = 2.0;
   // lower and upper limits for x
   NumberVector x_l(n);
   NumberVector x_u(n);
   for(j = 0; j < n; j++)
   {  x_l[j] = -10.; x_u[j] = +10.;
   }
   // lower and upper limits for g
   NumberVector g_l(m);
   NumberVector g_u(m);
   g_l[0] = -1.;     g_u[0] = 1.0e19;

   // object in derived class
   FG_retape fg_retape;
   cppad_ipopt_fg_info *fg_info = &fg_retape;

   // create the Ipopt interface
   cppad_ipopt_solution solution;
   Ipopt::SmartPtr<Ipopt::TNLP> cppad_nlp = new cppad_ipopt_nlp(
      n, m, x_i, x_l, x_u, g_l, g_u, fg_info, &solution
   );

   // Create an instance of the IpoptApplication
   using Ipopt::IpoptApplication;
   Ipopt::SmartPtr<IpoptApplication> app = new IpoptApplication();

   // turn off any printing
   app->Options()->SetIntegerValue("print_level", 0);
   app->Options()->SetStringValue("sb", "yes");

   // maximum number of iterations
   app->Options()->SetIntegerValue("max_iter", 10);

   // approximate accuracy in first order necessary conditions;
   // see Mathematical Programming, Volume 106, Number 1,
   // Pages 25-57, Equation (6)
   app->Options()->SetNumericValue("tol", 1e-9);

   // derivative testing
   app->Options()->
   SetStringValue("derivative_test", "second-order");

   // Initialize the IpoptApplication and process the options
   Ipopt::ApplicationReturnStatus status = app->Initialize();
   ok    &= status == Ipopt::Solve_Succeeded;

   // Run the IpoptApplication
   status = app->OptimizeTNLP(cppad_nlp);
   ok    &= status == Ipopt::Solve_Succeeded;

   /*
   Check some of the solution values
   */
   ok &= solution.status == cppad_ipopt_solution::success;
   //
   double check_x[]   = { -1., 0. };
   double rel_tol     = 1e-6;  // relative tolerance
   double abs_tol     = 1e-6;  // absolute tolerance
   for(j = 0; j < n; j++)
   {  ok &= CppAD::NearEqual(
         check_x[j],   solution.x[j],   rel_tol, abs_tol
      );
   }

   return ok;
}