1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin abs_min_linear.cpp}
abs_min_linear: Example and Test
################################
Purpose
*******
The function
:math:`f : \B{R}^3 \rightarrow \B{R}` defined by
.. math::
:nowrap:
\begin{eqnarray}
f( x_0, x_1 )
& = &
| d_0 - x_0 | + | d_1 - x_0 | + | d_2 - x_0 |
\\
& + &
| d_3 - x_1 | + | d_4 - x_1 | + | d_5 - x_1 |
\\
\end{eqnarray}
is affine, except for its absolute value terms.
For this case, the abs_normal approximation should be equal
to the function itself.
In addition, the function is convex and
:ref:`abs_min_linear-name` should find its global minimizer.
The minimizer of this function is
:math:`x_0 = \R{median}( d_0, d_1, d_2 )`
and
:math:`x_1 = \R{median}( d_3, d_4, d_5 )`
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end abs_min_linear.cpp}
-------------------------------------------------------------------------------
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include "abs_min_linear.hpp"
namespace {
CPPAD_TESTVECTOR(double) join(
const CPPAD_TESTVECTOR(double)& x ,
const CPPAD_TESTVECTOR(double)& u )
{ size_t n = x.size();
size_t s = u.size();
CPPAD_TESTVECTOR(double) xu(n + s);
for(size_t j = 0; j < n; j++)
xu[j] = x[j];
for(size_t j = 0; j < s; j++)
xu[n + j] = u[j];
return xu;
}
}
bool abs_min_linear(void)
{ bool ok = true;
//
using CppAD::AD;
using CppAD::ADFun;
//
typedef CPPAD_TESTVECTOR(size_t) s_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR( AD<double> ) ad_vector;
//
size_t dpx = 3; // number of data points per x variable
size_t level = 0; // level of tracing
size_t n = 2; // size of x
size_t m = 1; // size of y
size_t s = dpx * n; // number of data points and absolute values
// data points
d_vector data(s);
for(size_t i = 0; i < s; i++)
data[i] = double(s - i) + 5.0 - double(i % 2) / 2.0;
//
// record the function f(x)
ad_vector ad_x(n), ad_y(m);
for(size_t j = 0; j < n; j++)
ad_x[j] = double(j + 1);
Independent( ad_x );
AD<double> sum = 0.0;
for(size_t j = 0; j < n; j++)
for(size_t k = 0; k < dpx; k++)
sum += abs( data[j * dpx + k] - ad_x[j] );
ad_y[0] = sum;
ADFun<double> f(ad_x, ad_y);
// create its abs_normal representation in g, a
ADFun<double> g, a;
f.abs_normal_fun(g, a);
// check dimension of domain and range space for g
ok &= g.Domain() == n + s;
ok &= g.Range() == m + s;
// check dimension of domain and range space for a
ok &= a.Domain() == n;
ok &= a.Range() == s;
// --------------------------------------------------------------------
// Choose a point x_hat
d_vector x_hat(n);
for(size_t j = 0; j < n; j++)
x_hat[j] = double(0.0);
// value of a_hat = a(x_hat)
d_vector a_hat = a.Forward(0, x_hat);
// (x_hat, a_hat)
d_vector xu_hat = join(x_hat, a_hat);
// value of g[ x_hat, a_hat ]
d_vector g_hat = g.Forward(0, xu_hat);
// Jacobian of g[ x_hat, a_hat ]
d_vector g_jac = g.Jacobian(xu_hat);
// trust region bound (make large enough to include solutuion)
d_vector bound(n);
for(size_t j = 0; j < n; j++)
bound[j] = 10.0;
// convergence criteria
d_vector epsilon(2);
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
epsilon[0] = eps99;
epsilon[1] = eps99;
// maximum number of iterations
s_vector maxitr(2);
maxitr[0] = 10; // maximum number of abs_min_linear iterations
maxitr[1] = 35; // maximum number of qp_interior iterations
// minimize the approxiamtion for f, which is equal to f because
// f is affine, except for absolute value terms
d_vector delta_x(n);
ok &= CppAD::abs_min_linear(
level, n, m, s, g_hat, g_jac, bound, epsilon, maxitr, delta_x
);
// number of data points per variable is odd
ok &= dpx % 2 == 1;
// check that the solution is the median of the corresponding data`
for(size_t j = 0; j < n; j++)
{ // data[j * dpx + 0] , ... , data[j * dpx + dpx - 1] corresponds to x[j]
// the median of this data has index j * dpx + dpx / 2
size_t j_median = j * dpx + (dpx / 2);
//
ok &= CppAD::NearEqual( delta_x[j], data[j_median], eps99, eps99 );
}
return ok;
}
// END C++
|