1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin abs_min_quad.cpp}
abs_min_quad: Example and Test
##############################
Purpose
*******
The function
:math:`f : \B{R}^3 \rightarrow \B{R}` defined by
.. math::
f( x_0, x_1 )
=
( x_0^2 + x_1^2 ) / 2 + | x_0 - 5 | + | x_1 + 5 |
For this case, the :ref:`abs_min_quad-name` object should be equal
to the function itself.
In addition, the function is convex and
:ref:`abs_min_quad-name` should find its global minimizer.
The minimizer of this function is
:math:`x_0 = 1`, :math:`x_1 = -1`.
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end abs_min_quad.cpp}
-------------------------------------------------------------------------------
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include "abs_min_quad.hpp"
namespace {
CPPAD_TESTVECTOR(double) join(
const CPPAD_TESTVECTOR(double)& x ,
const CPPAD_TESTVECTOR(double)& u )
{ size_t n = x.size();
size_t s = u.size();
CPPAD_TESTVECTOR(double) xu(n + s);
for(size_t j = 0; j < n; j++)
xu[j] = x[j];
for(size_t j = 0; j < s; j++)
xu[n + j] = u[j];
return xu;
}
}
bool abs_min_quad(void)
{ bool ok = true;
//
using CppAD::AD;
using CppAD::ADFun;
//
typedef CPPAD_TESTVECTOR(size_t) s_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR( AD<double> ) ad_vector;
//
size_t level = 0; // level of tracing
size_t n = 2; // size of x
size_t m = 1; // size of y
size_t s = 2 ; // number of data points and absolute values
//
// record the function f(x)
ad_vector ad_x(n), ad_y(m);
for(size_t j = 0; j < n; j++)
ad_x[j] = double(j + 1);
Independent( ad_x );
AD<double> sum = 0.0;
sum += ad_x[0] * ad_x[0] / 2.0 + abs( ad_x[0] - 5 );
sum += ad_x[1] * ad_x[1] / 2.0 + abs( ad_x[1] + 5 );
ad_y[0] = sum;
ADFun<double> f(ad_x, ad_y);
// create its abs_normal representation in g, a
ADFun<double> g, a;
f.abs_normal_fun(g, a);
// check dimension of domain and range space for g
ok &= g.Domain() == n + s;
ok &= g.Range() == m + s;
// check dimension of domain and range space for a
ok &= a.Domain() == n;
ok &= a.Range() == s;
// --------------------------------------------------------------------
// Choose the point x_hat = 0
d_vector x_hat(n);
for(size_t j = 0; j < n; j++)
x_hat[j] = 0.0;
// value of a_hat = a(x_hat)
d_vector a_hat = a.Forward(0, x_hat);
// (x_hat, a_hat)
d_vector xu_hat = join(x_hat, a_hat);
// value of g[ x_hat, a_hat ]
d_vector g_hat = g.Forward(0, xu_hat);
// Jacobian of g[ x_hat, a_hat ]
d_vector g_jac = g.Jacobian(xu_hat);
// trust region bound
d_vector bound(n);
for(size_t j = 0; j < n; j++)
bound[j] = 10.0;
// convergence criteria
d_vector epsilon(2);
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
epsilon[0] = eps99;
epsilon[1] = eps99;
// maximum number of iterations
s_vector maxitr(2);
maxitr[0] = 10; // maximum number of abs_min_quad iterations
maxitr[1] = 35; // maximum number of qp_interior iterations
// set Hessian equal to identity matrix I
d_vector hessian(n * n);
for(size_t i = 0; i < n; i++)
{ for(size_t j = 0; j < n; j++)
hessian[i * n + j] = 0.0;
hessian[i * n + i] = 1.0;
}
// minimize the approxiamtion for f (which is equal to f for this case)
d_vector delta_x(n);
ok &= CppAD::abs_min_quad(
level, n, m, s,
g_hat, g_jac, hessian, bound, epsilon, maxitr, delta_x
);
// check that the solution
ok &= CppAD::NearEqual( delta_x[0], +1.0, eps99, eps99 );
ok &= CppAD::NearEqual( delta_x[1], -1.0, eps99, eps99 );
return ok;
}
// END C++
|