File: abs_min_quad.hpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (510 lines) | stat: -rw-r--r-- 14,564 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# ifndef CPPAD_EXAMPLE_ABS_NORMAL_ABS_MIN_QUAD_HPP
# define CPPAD_EXAMPLE_ABS_NORMAL_ABS_MIN_QUAD_HPP
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin abs_min_quad}
{xrst_spell
  dbl
  lll
  maxitr
}
abs_normal: Minimize a Linear Abs-normal Approximation
######################################################

Syntax
******
| *ok* = ``abs_min_quad`` (
| |tab| *level* , *n* , *m* , *s* ,
| |tab| *g_hat* , *g_jac* , *hessian* , *bound* , *epsilon* , *maxitr* , *delta_x*
| )

Prototype
*********
{xrst_literal
   // BEGIN PROTOTYPE
   // END PROTOTYPE
}

Source
******
This following is a link to the source code for this example:
:ref:`abs_min_quad.hpp-name` .

Purpose
*******
We are given a point :math:`\hat{x} \in \B{R}^n` and
use the notation :math:`\tilde{f} (x)` for the abs-normal
:ref:`approximation for f(x)<abs_normal_fun@Abs-normal Approximation@Approximating f(x)>`
near :math:`\hat{x}`.
We are also given a vector :math:`b \in \B{R}_+^n`
and a positive definite matrix :math:`H \in \B{R}^{n \times n}`.
This routine solves the problem

.. math::

   \begin{array}{lll}
   \R{minimize} &
      \Delta x^T H \Delta x / 2 + \tilde{f}( \hat{x} + \Delta x ) &
      \R{w.r.t} \; \Delta x \in \B{R}^n
   \\
   \R{subject \; to} & | \Delta x_j | \leq b_j & j = 0 , \ldots , n-1
   \end{array}

DblVector
*********
is a :ref:`SimpleVector-name` class with elements of type ``double`` .

SizeVector
**********
is a :ref:`SimpleVector-name` class with elements of type ``size_t`` .

f
*
We use the notation *f* for the original function; see
:ref:`abs_normal_fun@f` .

level
*****
This value is less that or equal 3.
If *level*  == 0 ,
no tracing of the optimization is printed.
If *level*  >= 1 ,
a trace of each iteration of ``abs_min_quad`` is printed.
If *level*  >= 2 ,
a trace of the :ref:`qp_box-name` sub-problem is printed.
If *level*  >= 3 ,
a trace of the :ref:`qp_interior-name` sub-problem is printed.

n
*
This is the dimension of the domain space for *f* ; see
:ref:`abs_normal_fun@f@n` .

m
*
This is the dimension of the range space for *f* ; see
:ref:`abs_normal_fun@f@m` . This must be one so that :math:`f`
is an objective function.

s
*
This is the number of absolute value terms in *f* ; see
:ref:`abs_normal_fun@f@s` .

g
*
We use the notation *g* for the abs-normal representation of *f* ;
see :ref:`abs_normal_fun@g` .

g_hat
*****
This vector has size *m* + *s* and is the value of
*g* ( *x* , *u* ) at :math:`x = \hat{x}` and :math:`u = a( \hat{x} )`.

g_jac
*****
This vector has size ( *m* + *s* ) * ( *n* + *s* ) and is the Jacobian of
:math:`g(x, u)` at :math:`x = \hat{x}` and :math:`u = a( \hat{x} )`.

hessian
*******
This vector has size *n* * *n* .
It is a :ref:`row-major<glossary@Row-major Representation>` representation
of the matrix :math:`H \in \B{R}^{n \times n}`.

bound
*****
This vector has size *n* and is the vector :math:`b \in \B{R}^n`.
The trust region is defined as the set of :math:`\Delta x` such that

.. math::

   | \Delta x | \leq b_j

for :math:`j = 0 , \ldots , n-1`.

epsilon
*******
The value *epsilon* [0] is convergence criteria in terms
of the infinity norm of the difference of *delta_x*
between iterations.
The value *epsilon* [1] is convergence criteria in terms
of the derivative of the objective; i.e.

.. math::

   \Delta x^T H \Delta x / 2 + \tilde{f}( \hat{x} + \Delta x)

maxitr
******
This is a vector with size 2.
The value *maxitr* [0] is the maximum number of
``abs_min_quad`` iterations to try before giving up on convergence.
The value *maxitr* [1] is the maximum number of iterations in
the :ref:`qp_interior<qp_interior@maxitr>` sub-problems.

delta_x
*******
This vector :math:`\Delta x` has size *n* .
The input value of its elements does not matter.
Upon return,
the approximate minimizer of the objective with respect to the trust region.

Method
******

sigma
=====
We use the notation

.. math::

   \sigma (x) = \R{sign} ( z[ x , a(x) ] )

where
:ref:`abs_normal_fun@a@a(x)` and
:ref:`abs_normal_fun@g@z(x, u)`
are as defined in the abs-normal representation of :math:`f(x)`.

Cutting Planes
==============
At each iteration,
we are given affine functions :math:`p_k (x)`
such that :math:`p_k ( x_k ) = \tilde{f}( x_k )`  and
:math:`p_k^{(1)} ( x_k )` is the derivative :math:`\tilde{f}^{(1)} ( x_k )`
corresponding to :math:`\sigma ( x_k )`.

Iteration
=========
At iteration :math:`k`, we solve the problem

.. math::

   \begin{array}{lll}
   \R{minimize}
   & \Delta x^T H \Delta x / 2 +
      \max \{ p_k ( \hat{x} + \Delta x) \W{:} k = 0 , \ldots , K-1 \}
   & \R{w.r.t} \; \Delta x
   \\
   \R{subject \; to} & - b \leq \Delta x \leq + b
   \end{array}

The solution is the new point :math:`x_K`
at which the new affine approximation
:math:`p_K (x)` is constructed.
This process is iterated until the difference
:math:`x_K - x_{K-1}` is small enough.
{xrst_toc_hidden
   example/abs_normal/abs_min_quad.cpp
   example/abs_normal/abs_min_quad.xrst
}
Example
*******
The file :ref:`abs_min_quad.cpp-name` contains an example and test of
``abs_min_quad`` .

{xrst_end abs_min_quad}
-----------------------------------------------------------------------------
*/
# include <cppad/cppad.hpp>
# include "qp_box.hpp"
# include "abs_eval.hpp"

// BEGIN C++
namespace CppAD { // BEGIN_CPPAD_NAMESPACE

// BEGIN PROTOTYPE
template <class DblVector, class SizeVector>
bool abs_min_quad(
   size_t            level   ,
   size_t            n       ,
   size_t            m       ,
   size_t            s       ,
   const DblVector&  g_hat   ,
   const DblVector&  g_jac   ,
   const DblVector&  hessian ,
   const DblVector&  bound   ,
   const DblVector&  epsilon ,
   const SizeVector& maxitr  ,
   DblVector&        delta_x )
// END PROTOTYPE
{  using std::fabs;
   bool ok    = true;
   double inf = std::numeric_limits<double>::infinity();
   //
   CPPAD_ASSERT_KNOWN(
      level <= 4,
      "abs_min_quad: level is not less that or equal 3"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(epsilon.size()) == 2,
      "abs_min_quad: size of epsilon not equal to 2"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(maxitr.size()) == 2,
      "abs_min_quad: size of maxitr not equal to 2"
   );
   CPPAD_ASSERT_KNOWN(
      m == 1,
      "abs_min_quad: m is not equal to 1"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(delta_x.size()) == n,
      "abs_min_quad: size of delta_x not equal to n"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(bound.size()) == n,
      "abs_min_quad: size of bound not equal to n"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(g_hat.size()) == m + s,
      "abs_min_quad: size of g_hat not equal to m + s"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(g_jac.size()) == (m + s) * (n + s),
      "abs_min_quad: size of g_jac not equal to (m + s)*(n + s)"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(hessian.size()) == n * n,
      "abs_min_quad: size of hessian not equal to n * n"
   );
   CPPAD_ASSERT_KNOWN(
      size_t(bound.size()) == n,
      "abs_min_quad: size of bound is not equal to n"
   );
   if( level > 0 )
   {  std::cout << "start abs_min_quad\n";
      CppAD::abs_print_mat("g_hat", m + s, 1, g_hat);
      CppAD::abs_print_mat("g_jac", m + s, n + s, g_jac);
      CppAD::abs_print_mat("hessian", n, n, hessian);
      CppAD::abs_print_mat("bound", n, 1, bound);
   }
   // partial y(x, u) w.r.t x (J in reference)
   DblVector py_px(n);
   for(size_t j = 0; j < n; j++)
      py_px[ j ] = g_jac[ j ];
   //
   // partial y(x, u) w.r.t u (Y in reference)
   DblVector py_pu(s);
   for(size_t j = 0; j < s; j++)
      py_pu[ j ] = g_jac[ n + j ];
   //
   // partial z(x, u) w.r.t x (Z in reference)
   DblVector pz_px(s * n);
   for(size_t i = 0; i < s; i++)
   {  for(size_t j = 0; j < n; j++)
      {  pz_px[ i * n + j ] = g_jac[ (n + s) * (i + m) + j ];
      }
   }
   // partial z(x, u) w.r.t u (L in reference)
   DblVector pz_pu(s * s);
   for(size_t i = 0; i < s; i++)
   {  for(size_t j = 0; j < s; j++)
      {  pz_pu[ i * s + j ] = g_jac[ (n + s) * (i + m) + n + j ];
      }
   }
   // initailize delta_x
   for(size_t j = 0; j < n; j++)
      delta_x[j] = 0.0;
   //
   // current set of cutting planes
   DblVector C(maxitr[0] * n), c(maxitr[0]);
   //
   // value of abs-normal approximation at x_hat + delta_x
   DblVector g_tilde = CppAD::abs_eval(n, m, s, g_hat, g_jac, delta_x);
   //
   // value of sigma at delta_x = 0; i.e., sign( z(x, u) )
   CppAD::vector<double> sigma(s);
   for(size_t i = 0; i < s; i++)
      sigma[i] = CppAD::sign( g_tilde[m + i] );
   //
   // initial value of the objective
   double obj_cur =  g_tilde[0];
   //
   // initial number of cutting planes
   size_t n_plane = 0;
   //
   if( level > 0 )
   {  std::cout << "obj = " << obj_cur << "\n";
      CppAD::abs_print_mat("delta_x", n, 1, delta_x);
   }
   for(size_t itr = 0; itr < maxitr[0]; itr++)
   {
      // Equation (5), Propostion 3.1 of reference
      // dy_dx = py_px + py_pu * Sigma * (I - pz_pu * Sigma)^-1 * pz_px
      //
      // tmp_ss = I - pz_pu * Sigma
      DblVector tmp_ss(s * s);
      for(size_t i = 0; i < s; i++)
      {  for(size_t j = 0; j < s; j++)
            tmp_ss[i * s + j] = - pz_pu[i * s + j] * sigma[j];
         tmp_ss[i * s + i] += 1.0;
      }
      // tmp_sn = (I - pz_pu * Sigma)^-1 * pz_px
      double logdet;
      DblVector tmp_sn(s * n);
      LuSolve(s, n, tmp_ss, pz_px, tmp_sn, logdet);
      //
      // tmp_sn = Sigma * (I - pz_pu * Sigma)^-1 * pz_px
      for(size_t i = 0; i < s; i++)
      {  for(size_t j = 0; j < n; j++)
            tmp_sn[i * n + j] *= sigma[i];
      }
      // dy_dx = py_px + py_pu * Sigma * (I - pz_pu * Sigma)^-1 * pz_px
      DblVector dy_dx(n);
      for(size_t j = 0; j < n; j++)
      {  dy_dx[j] = py_px[j];
         for(size_t k = 0; k < s; k++)
            dy_dx[j] += py_pu[k] * tmp_sn[ k * n + j];
      }
      //
      // compute derivative of the quadratic term
      DblVector dq_dx(n);
      for(size_t j = 0; j < n; j++)
      {  dq_dx[j] = 0.0;
         for(size_t i = 0; i < n; i++)
            dq_dx[j] += delta_x[i] * hessian[i * n + j];
      }
      //
      // check for case where derivative of objective is zero
      // (in convex case, this is the minimizer)
      bool near_zero = true;
      for(size_t j = 0; j < n; j++)
         near_zero &= std::fabs( dq_dx[j] + dy_dx[j] ) < epsilon[1];
      if( near_zero )
      {  if( level > 0 )
            std::cout << "end abs_min_quad: local derivative near zero\n";
         return true;
      }
      // value of hyperplane at delta_x
      double plane_at_zero = g_tilde[0];
      //
      // value of hyperplane at 0
      for(size_t j = 0; j < n; j++)
         plane_at_zero -= dy_dx[j] * delta_x[j];
      //
      // add a cutting plane with value g_tilde[0] at delta_x
      // and derivative dy_dx
      c[n_plane] = plane_at_zero;
      for(size_t j = 0; j < n; j++)
         C[n_plane * n + j] = dy_dx[j];
      ++n_plane;
      //
      // variables for cutting plane problem are (dx, w)
      // c[i] + C[i,:] * dx <= w
      DblVector c_box(n_plane), C_box(n_plane * (n + 1));
      for(size_t i = 0; i < n_plane; i++)
      {  c_box[i] = c[i];
         for(size_t j = 0; j < n; j++)
            C_box[i * (n+1) + j] = C[i * n + j];
         C_box[i * (n+1) + n] = -1.0;
      }
      //
      // w is the objective
      DblVector g_box(n + 1);
      for(size_t i = 0; i < size_t(c_box.size()); i++)
         g_box[i] = 0.0;
      g_box[n] = 1.0;
      //
      // a_box, b_box
      DblVector a_box(n+1), b_box(n+1);
      for(size_t j = 0; j < n; j++)
      {  a_box[j] = - bound[j];
         b_box[j] = + bound[j];
      }
      a_box[n] = - inf;
      b_box[n] = + inf;
      //
      // initial delta_x in qp_box is zero
      DblVector xin_box(n + 1);
      for(size_t j = 0; j < n; j++)
         xin_box[j] = 0.0;
      // initial w in qp_box is 1 + max_i c[i]
      xin_box[n] = 1.0 + c_box[0];
      for(size_t i = 1; i < n_plane; i++)
         xin_box[n] = std::max( xin_box[n], 1.0 + c_box[i] );
      //
      DblVector hessian_box( (n+1) * (n+1) );
      for(size_t i = 0; i < n+1; i++)
      {  for(size_t j = 0; j < n+1; j++)
         {  if( i == n || j == n )
               hessian_box[i * (n+1) + j] = 0.0;
            else
               hessian_box[i * (n+1) + j] = hessian[i * n + j];
         }
      }
      //
      // solve the cutting plane problem
      DblVector xout_box(n + 1);
      size_t level_box = 0;
      if( level > 0 )
         level_box = level - 1;
      ok &= CppAD::qp_box(
         level_box,
         a_box,
         b_box,
         c_box,
         C_box,
         g_box,
         hessian_box,
         epsilon[1],
         maxitr[1],
         xin_box,
         xout_box
      );
      if( ! ok )
      {  if( level > 0 )
         {  CppAD::abs_print_mat("delta_x", n, 1, delta_x);
            std::cout << "end abs_min_quad: qp_box failed\n";
         }
         return false;
      }
      DblVector delta_new(n);
      for(size_t j = 0; j < n; j++)
         delta_new[j] = xout_box[j];
      //
      // check for convergence
      double max_diff = 0.0;
      for(size_t j = 0; j < n; j++)
      {  double diff = delta_x[j] - delta_new[j];
         max_diff    = std::max( max_diff, std::fabs(diff) );
      }
      //
      // new value of the objective
      DblVector g_new   = CppAD::abs_eval(n, m, s, g_hat, g_jac, delta_new);
      double    obj_new = g_new[0];
      for(size_t i = 0; i < n; i++)
      {  for(size_t j = 0; j < n; j++)
            obj_new += delta_new[i] * hessian[i * n + j] * delta_new[j];
      }
      g_tilde = g_new;
      obj_cur = obj_new;
      delta_x = delta_new;
      //
      if( level > 0 )
      {  std::cout << "itr = " << itr << ", max_diff = " << max_diff
            << ", obj_cur = " << obj_cur << "\n";
         CppAD::abs_print_mat("delta_x", n, 1, delta_x);
      }
      //
      // value of sigma at new delta_x; i.e., sign( z(x, u) )
      for(size_t i = 0; i < s; i++)
         sigma[i] = CppAD::sign( g_tilde[m + i] );
      //
      if( max_diff < epsilon[0] )
      {  if( level > 0 )
            std::cout << "end abs_min_quad: change in delta_x near zero\n";
         return true;
      }
   }
   if( level > 0 )
      std::cout << "end abs_min_quad: maximum number of iterations exceeded\n";
   return false;
}
} // END_CPPAD_NAMESPACE
// END C++

# endif