1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
# ifndef CPPAD_EXAMPLE_ABS_NORMAL_QP_BOX_HPP
# define CPPAD_EXAMPLE_ABS_NORMAL_QP_BOX_HPP
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin qp_box}
{xrst_spell
maxitr
rl
xin
xout
}
abs_normal: Solve a Quadratic Program With Box Constraints
##########################################################
Syntax
******
| *ok* = ``qp_box`` (
| |tab| *level* , *a* , *b* , *c* , *C* , *g* , *G* , *epsilon* , *maxitr* , *xin* , *xout*
| )
Prototype
*********
{xrst_literal
// BEGIN PROTOTYPE
// END PROTOTYPE
}
Source
******
This following is a link to the source code for this example:
:ref:`qp_box.hpp-name` .
Purpose
*******
This routine could be used to create a version of :ref:`abs_min_linear-name`
that solved quadratic programs (instead of linear programs).
Problem
*******
We are given
:math:`a \in \B{R}^n`,
:math:`b \in \B{R}^n`,
:math:`c \in \B{R}^m`,
:math:`C \in \B{R}^{m \times n}`,
:math:`g \in \B{R}^n`,
:math:`G \in \B{R}^{n \times n}`,
where :math:`G` is positive semi-definite.
This routine solves the problem
.. math::
\begin{array}{rl}
\R{minimize} &
\frac{1}{2} x^T G x + g^T x \; \R{w.r.t} \; x \in \B{R}^n
\\
\R{subject \; to} & C x + c \leq 0 \; \R{and} \; a \leq x \leq b
\end{array}
The matrix :math:`G + C^T C` must be positive definite on components
of the vector :math:`x` where the lower limit minus infinity
and the upper limit is plus infinity; see *a* and *b* below.
Vector
******
The type *Vector* is a
simple vector with elements of type ``double`` .
level
*****
This value is less that or equal two.
If *level* == 0 ,
no tracing is printed.
If *level* >= 1 ,
a trace of the ``qp_box`` operations is printed.
If *level* == 2 ,
a trace of the :ref:`qp_interior-name` sub-problem is printed.
a
*
This is the vector of lower limits for :math:`x` in the problem.
If *a* [ *j* ] is minus infinity, there is no lower limit
for :math:`x_j`.
b
*
This is the vector of upper limits for :math:`x` in the problem.
If *a* [ *j* ] is plus infinity, there is no upper limit
for :math:`x_j`.
Lower c
*******
This is the value of the inequality constraint function at :math:`x = 0`.
Upper C
*******
This is a :ref:`row-major<glossary@Row-major Representation>` representation
of thee the inequality constraint matrix :math:`C`.
Lower g
*******
This is the gradient of the objective function.
Upper G
*******
This is a row-major representation of the Hessian of the objective function.
For :math:`j = 0 , \ldots , n-1`,
:math:`- \infty < a_j` or
:math:`b_j < + \infty` or
:math:`G_{j,j} > 0.0`.
epsilon
*******
This argument is the convergence criteria;
see :ref:`qp_box@KKT Conditions` below.
It must be greater than zero.
maxitr
******
This is the maximum number of
:ref:`qp_interior-name` iterations to try before giving up
on convergence.
xin
***
This argument has size *n* and is the initial point for the algorithm.
It must strictly satisfy the constraints; i.e.,
*a* < *xin* , *xin* < *b* , *C* * *xin* ``-`` *c* < 0
xout
****
This argument has size is *n* and
the input value of its elements does no matter.
Upon return it is the primal variables
:math:`x` corresponding to the problem solution.
ok
**
If the return value *ok* is true, convergence is obtained; i.e.,
.. math::
| F ( x , y_a, s_a, y_b, s_b, y_c, s_c ) |_\infty < \varepsilon
where :math:`|v|_\infty` is the infinity norm of the vector :math:`v`,
:math:`\varepsilon` is *epsilon* ,
:math:`x` is equal to *xout* ,
:math:`y_a, s_a \in \B{R}_+^n`,
:math:`y_b, s_b \in \B{R}_+^n` and
:math:`y_c, s_c \in \B{R}_+^m`.
KKT Conditions
**************
Give a vector :math:`v \in \B{R}^m` we define
:math:`D(v) \in \B{R}^{m \times m}` as the corresponding diagonal matrix.
We also define :math:`1_m \in \B{R}^m` as the vector of ones.
We define
.. math::
F ( x , y_a, s_a, y_b, s_b, y_c, s_c )
=
\left(
\begin{array}{c}
g + G x - y_a + y_b + y_c^T C \\
a + s_a - x \\
x + s_b - b \\
C x + c + s_c \\
D(s_a) D(y_a) 1_m \\
D(s_b) D(y_b) 1_m \\
D(s_c) D(y_c) 1_m
\end{array}
\right)
where
:math:`x \in \B{R}^n`,
:math:`y_a, s_a \in \B{R}_+^n`,
:math:`y_b, s_b \in \B{R}_+^n` and
:math:`y_c, s_c \in \B{R}_+^m`.
The KKT conditions for a solution of this problem is
.. math::
F ( x , y_a, s_a, y_b, s_b, y_c, s_c ) = 0
{xrst_toc_hidden
example/abs_normal/qp_box.cpp
example/abs_normal/qp_box.xrst
}
Example
*******
The file :ref:`qp_box.cpp-name` contains an example and test of
``qp_box`` .
{xrst_end qp_box}
-----------------------------------------------------------------------------
*/
# include "qp_interior.hpp"
// BEGIN C++
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
// BEGIN PROTOTYPE
template <class Vector>
bool qp_box(
size_t level ,
const Vector& a ,
const Vector& b ,
const Vector& c ,
const Vector& C ,
const Vector& g ,
const Vector& G ,
double epsilon ,
size_t maxitr ,
const Vector& xin ,
Vector& xout )
// END PROTOTYPE
{ double inf = std::numeric_limits<double>::infinity();
//
size_t n = a.size();
size_t m = c.size();
//
CPPAD_ASSERT_KNOWN(level <= 2, "qp_interior: level is greater than 2");
CPPAD_ASSERT_KNOWN(
size_t(b.size()) == n, "qp_box: size of b is not n"
);
CPPAD_ASSERT_KNOWN(
size_t(C.size()) == m * n, "qp_box: size of C is not m * n"
);
CPPAD_ASSERT_KNOWN(
size_t(g.size()) == n, "qp_box: size of g is not n"
);
CPPAD_ASSERT_KNOWN(
size_t(G.size()) == n * n, "qp_box: size of G is not n * n"
);
if( level > 0 )
{ std::cout << "start qp_box\n";
CppAD::abs_print_mat("a", n, 1, a);
CppAD::abs_print_mat("b", n, 1, b);
CppAD::abs_print_mat("c", m, 1, c);
CppAD::abs_print_mat("C", m, n, C);
CppAD::abs_print_mat("g", 1, n, g);
CppAD::abs_print_mat("G", n, n, G);
CppAD::abs_print_mat("xin", n, 1, xin);
}
//
// count number of lower and upper limits
size_t n_limit = 0;
for(size_t j = 0; j < n; j++)
{ CPPAD_ASSERT_KNOWN(G[j * n + j] >= 0.0, "qp_box: G_{j,j} < 0.0");
if( -inf < a[j] )
++n_limit;
if( b[j] < inf )
++n_limit;
}
//
// C_int and c_int define the extended constraints
Vector C_int((m + n_limit) * n ), c_int(m + n_limit);
for(size_t i = 0; i < size_t(C_int.size()); i++)
C_int[i] = 0.0;
//
// put C * x + c <= 0 in C_int, c_int
for(size_t i = 0; i < m; i++)
{ c_int[i] = c[i];
for(size_t j = 0; j < n; j++)
C_int[i * n + j] = C[i * n + j];
}
//
// put I * x - b <= 0 in C_int, c_int
size_t i_limit = 0;
for(size_t j = 0; j < n; j++) if( b[j] < inf )
{ c_int[m + i_limit] = - b[j];
C_int[(m + i_limit) * n + j] = 1.0;
++i_limit;
}
//
// put a - I * x <= 0 in C_int, c_int
for(size_t j = 0; j < n; j++) if( -inf < a[j] )
{ c_int[m + i_limit] = a[j];
C_int[(m + i_limit) * n + j] = -1.0;
++i_limit;
}
Vector yout(m + n_limit), sout(m + n_limit);
size_t level_int = 0;
if( level == 2 )
level_int = 1;
bool ok = qp_interior( level_int,
c_int, C_int, g, G, epsilon, maxitr, xin, xout, yout, sout
);
if( level > 0 )
{ if( level < 2 )
CppAD::abs_print_mat("xout", n, 1, xout);
if( ok )
std::cout << "end q_box: ok = true\n";
else
std::cout << "end q_box: ok = false\n";
}
return ok;
}
} // END_CPPAD_NAMESPACE
// END C++
# endif
|