1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin simplex_method.cpp}
{xrst_spell
rlr
}
abs_normal simplex_method: Example and Test
###########################################
Problem
*******
Our original problem is
.. math::
\R{minimize} \; | u - 1| \; \R{w.r.t} \; u \in \B{R}
We reformulate this as the following problem
.. math::
\begin{array}{rlr}
\R{minimize} & v & \R{w.r.t} \; (u,v) \in \B{R}^2 \\
\R{subject \; to} & u - 1 \leq v \\
& 1 - u \leq v
\end{array}
We know that the value of :math:`v` at the solution is greater than
or equal zero. Hence we can reformulate this problem as
.. math::
\begin{array}{rlr}
\R{minimize} & v & \R{w.r.t} \; ( u_- , u_+ , v) \in \B{R}_+^3 \\
\R{subject \; to} & u_+ - u_- - 1 \leq v \\
& 1 - u_+ + u_- \leq v
\end{array}
This is equivalent to
.. math::
\begin{array}{rlr}
\R{minimize}
& (0, 0, 1) \cdot ( u_+, u_- , v)^T & \R{w.r.t} \; (u,v) \in \B{R}_+^3 \\
\R{subject \; to}
&
\left( \begin{array}{ccc}
+1 & -1 & -1 \\
-1 & +1 & +1
\end{array} \right)
\left( \begin{array}{c} u_+ \\ u_- \\ v \end{array} \right)
+
\left( \begin{array}{c} -1 \\ 1 \end{array} \right)
\leq
0
\end{array}
which is in the form expected by :ref:`simplex_method-name` .
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end simplex_method.cpp}
*/
// BEGIN C++
# include <limits>
# include <cppad/utility/vector.hpp>
# include "simplex_method.hpp"
bool simplex_method(void)
{ bool ok = true;
typedef CppAD::vector<double> vector;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
//
size_t n = 3;
size_t m = 2;
vector A(m * n), b(m), c(n), xout(n);
A[ 0 * n + 0 ] = 1.0; // A(0,0)
A[ 0 * n + 1 ] = -1.0; // A(0,1)
A[ 0 * n + 2 ] = -1.0; // A(0,2)
//
A[ 1 * n + 0 ] = -1.0; // A(1,0)
A[ 1 * n + 1 ] = +1.0; // A(1,1)
A[ 1 * n + 2 ] = -1.0; // A(1,2)
//
b[0] = -1.0;
b[1] = 1.0;
//
c[0] = 0.0;
c[1] = 0.0;
c[2] = 1.0;
//
size_t maxitr = 10;
size_t level = 0;
//
ok &= CppAD::simplex_method(level, A, b, c, maxitr, xout);
//
// check optimal value for u
ok &= std::fabs( xout[0] - 1.0 ) < eps99;
//
// check optimal value for v
ok &= std::fabs( xout[1] ) < eps99;
//
return ok;
}
// END C++
|