1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_lin_ode_reverse.cpp}
{xrst_spell
cccc
}
Atomic Linear ODE Reverse Mode: Example and Test
################################################
Purpose
*******
This example demonstrates using reverse mode with
the :ref:`atomic_four_lin_ode-name` class.
f(u)
****
For this example, the function :math:`f(u) = z(r, u)` where
:math:`z(t, u)` solves the following ODE
.. math::
z_t (t, u) =
\left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
u_4 & 0 & 0 & 0 \\
0 & u_5 & 0 & 0 \\
0 & 0 & u_6 & 0 \\
\end{array} \right)
z(t, u)
\W{,}
z(0, u) =
\left( \begin{array}{c}
u_0 \\
u_1 \\
u_2 \\
u_3 \\
\end{array} \right)
Solution
********
The actual solution to this ODE is
.. math::
z(t, u) =
\left( \begin{array}{l}
u_0 \\
u_1 + u_4 u_0 t \\
u_2 + u_5 u_1 t + u_5 u_4 u_0 t^2 / 2 \\
u_3 + u_6 u_2 t + u_6 u_5 u_1 t^2 / 2 + u_6 u_5 u_4 u_0 t^3 / 6
\end{array} \right)
g(u)
****
.. math::
z_2 (t, u) = u_2 + u_5 u_1 t + u_5 u_4 u_0 t^2 / 2
Fix :math:`r` and define :math:`g(u) = [ \partial_u z(r, u) ]^\R{T}`.
It follows that
.. math::
g(u)
=
\left( \begin{array}{c}
u_5 u_4 r^2 / 2 \\
u_5 r \\
1 \\
0 \\
u_5 u_0 r^2 / 2 \\
u_t r + u_4 u_0 r^2 / 2 \\
0
\end{array} \right)
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end atomic_four_lin_ode_reverse.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace { // BEGIN_EMPTY_NAMESPACE
template <class Scalar, class Vector>
Vector Z(Scalar t, const Vector& u)
{ size_t nz = 4;
Vector z(nz);
//
z[0] = u[0];
z[1] = u[1] + u[4]*u[0]*t;
z[2] = u[2] + u[5]*u[1]*t + u[5]*u[4]*u[0]*t*t/2.0;
z[3] = u[3] + u[6]*u[2]*t + u[6]*u[5]*u[1]*t*t/2.0
+ u[6]*u[5]*u[4]*u[0]*t*t*t/6.0;
//
return z;
}
template <class Scalar, class Vector>
Vector G(Scalar t, const Vector& u)
{ size_t nu = 7;
Vector g(nu);
//
g[0] = u[5]*u[4]*t*t/2.0;
g[1] = u[5]*t;
g[2] = Scalar(1.0);
g[3] = Scalar(0.0);
g[4] = u[5]*u[0]*t*t/2.0;
g[5] = u[1]*t + u[4]*u[0]*t*t/2.0;
g[6] = Scalar(0.0);
//
return g;
}
} // END_EMPTY_NAMESPACE
bool reverse(void)
{ // ok
bool ok = true;
//
// AD, NearEqual, eps99
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = std::numeric_limits<double>::epsilon() * 99.0;
// -----------------------------------------------------------------------
// Record f
// -----------------------------------------------------------------------
//
// afun
CppAD::atomic_lin_ode<double> afun("atomic_lin_ode");
//
// m, r
size_t m = 4;
double r = 2.0;
double step = 2.0;
//
// pattern, transpose
size_t nr = m;
size_t nc = m;
size_t nnz = 3;
CppAD::sparse_rc< CppAD::vector<size_t> > pattern(nr, nc, nnz);
for(size_t k = 0; k < nnz; ++k)
{ size_t i = k + 1;
size_t j = k;
pattern.set(k, i, j);
}
bool transpose = false;
//
// ny, ay
size_t ny = m;
CPPAD_TESTVECTOR( AD<double> ) ay(ny);
//
// nu, au
size_t nu = nnz + m;
CPPAD_TESTVECTOR( AD<double> ) au(nu);
for(size_t j = 0; j < nu; ++j)
au[j] = AD<double>(j + 1);
CppAD::Independent(au);
//
// ax
CPPAD_TESTVECTOR( AD<double> ) ax(nnz + m);
for(size_t k = 0; k < nnz; ++k)
ax[k] = au[m + k];
for(size_t i = 0; i < m; ++i)
ax[nnz + i] = au[i];
//
// ay
size_t call_id = afun.set(r, step, pattern, transpose);
afun(call_id, ax, ay);
//
// f
CppAD::ADFun<double> f(au, ay);
// -----------------------------------------------------------------------
// ar, check_f
CppAD::Independent(au);
AD<double> ar = r;
ay = Z(ar, au);
CppAD::ADFun<double> check_f(au, ay);
// -----------------------------------------------------------------------
// reverse mode on f
// -----------------------------------------------------------------------
//
// u
CPPAD_TESTVECTOR(double) u(nu);
for(size_t j = 0; j < nu; ++j)
u[j] = double( j + 2 );
//
// y
// zero order forward mode computation of f(u)
CPPAD_TESTVECTOR(double) y(ny);
y = f.Forward(0, u);
//
// ok
CPPAD_TESTVECTOR(double) check_y = check_f.Forward(0, u);
for(size_t i = 0; i < ny; ++i)
ok &= NearEqual(y[i], check_y[i], eps99, eps99);
//
// w, ok
CPPAD_TESTVECTOR(double) w(ny), dw(nu), check_dw(nu);
for(size_t i = 0; i < ny; ++i)
w[i] = 0.0;
for(size_t i = 0; i < ny; ++i)
{ w[i] = 1.0;
dw = f.Reverse(1, w);
check_dw = check_f.Reverse(1, w);
for(size_t j = 0; j < nu; ++j)
ok &= NearEqual(dw[j], check_dw[j], eps99, eps99);
w[i] = 0.0;
}
// -----------------------------------------------------------------------
// Record g
// -----------------------------------------------------------------------
//
// af
CppAD::ADFun< AD<double>, double> af = f.base2ad();
//
// au
CppAD::Independent(au);
CPPAD_TESTVECTOR( AD<double> ) aw(ny), adw(nu);
af.Forward(0, au);
for(size_t i = 0; i < ny; ++i)
aw[i] = 0.0;
aw[2] = 1.0;
adw = af.Reverse(1, aw);
// g
CppAD::ADFun<double> g(au, adw);
// -----------------------------------------------------------------------
// check_g
CppAD::Independent(au);
ay = G(ar, au);
CppAD::ADFun<double> check_g(au, ay);
// -----------------------------------------------------------------------
//
// v
// zero order forward mode computation of g(u)
CPPAD_TESTVECTOR(double) v(nu);
v = g.Forward(0, u);
//
// ok
CPPAD_TESTVECTOR(double) check_v = check_g.Forward(0, u);
for(size_t i = 0; i < nu; ++i)
ok &= NearEqual(v[i], check_v[i], eps99, eps99);
//
// w, ok
w.resize(nu);
for(size_t i = 0; i < nu; ++i)
w[i] = 0.0;
for(size_t i = 0; i < nu; ++i)
{ w[i] = 1.0;
dw = g.Reverse(1, w);
check_dw = check_g.Reverse(1, w);
for(size_t j = 0; j < nu; ++j)
ok &= NearEqual(dw[j], check_dw[j], eps99, eps99);
w[i] = 0.0;
}
// -----------------------------------------------------------------------
return ok;
}
// END C++
|