File: reverse.cpp

package info (click to toggle)
cppad 2025.00.00.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,552 kB
  • sloc: cpp: 112,594; sh: 5,972; ansic: 179; python: 71; sed: 12; makefile: 10
file content (270 lines) | stat: -rw-r--r-- 6,564 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_lin_ode_reverse.cpp}
{xrst_spell
  cccc
}

Atomic Linear ODE Reverse Mode: Example and Test
################################################

Purpose
*******
This example demonstrates using reverse mode with
the :ref:`atomic_four_lin_ode-name` class.

f(u)
****
For this example, the function :math:`f(u) = z(r, u)` where
:math:`z(t, u)` solves the following ODE

.. math::

   z_t (t, u) =
   \left( \begin{array}{cccc}
   0   & 0  & 0    & 0   \\
   u_4 & 0  & 0    & 0   \\
   0   & u_5 & 0   & 0   \\
   0   & 0   & u_6 & 0   \\
   \end{array} \right)
   z(t, u)
   \W{,}
   z(0, u) =
   \left( \begin{array}{c}
   u_0 \\
   u_1 \\
   u_2 \\
   u_3 \\
   \end{array} \right)

Solution
********
The actual solution to this ODE is

.. math::

   z(t, u) =
   \left( \begin{array}{l}
   u_0  \\
   u_1 + u_4 u_0 t \\
   u_2 + u_5 u_1 t + u_5 u_4 u_0 t^2 / 2  \\
   u_3 + u_6 u_2 t + u_6 u_5 u_1 t^2 / 2 + u_6 u_5 u_4 u_0 t^3 / 6
   \end{array} \right)

g(u)
****

.. math::

   z_2 (t, u) = u_2 + u_5 u_1 t + u_5 u_4 u_0 t^2 / 2

Fix :math:`r` and define :math:`g(u) = [ \partial_u z(r, u) ]^\R{T}`.
It follows that

.. math::

   g(u)
   =
   \left( \begin{array}{c}
   u_5 u_4 r^2 / 2 \\
   u_5 r \\
   1 \\
   0 \\
   u_5 u_0 r^2 / 2 \\
   u_t r + u_4 u_0 r^2 / 2 \\
   0
   \end{array} \right)

Source
******
{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end atomic_four_lin_ode_reverse.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>

namespace { // BEGIN_EMPTY_NAMESPACE

template <class Scalar, class Vector>
Vector Z(Scalar t, const Vector& u)
{  size_t nz = 4;
   Vector z(nz);
   //
   z[0]  = u[0];
   z[1]  = u[1] + u[4]*u[0]*t;
   z[2]  = u[2] + u[5]*u[1]*t + u[5]*u[4]*u[0]*t*t/2.0;
   z[3]  = u[3] + u[6]*u[2]*t + u[6]*u[5]*u[1]*t*t/2.0
          + u[6]*u[5]*u[4]*u[0]*t*t*t/6.0;
   //
   return z;
}

template <class Scalar, class Vector>
Vector G(Scalar t, const Vector& u)
{  size_t nu = 7;
   Vector g(nu);
   //
   g[0]  = u[5]*u[4]*t*t/2.0;
   g[1]  = u[5]*t;
   g[2]  = Scalar(1.0);
   g[3]  = Scalar(0.0);
   g[4]  = u[5]*u[0]*t*t/2.0;
   g[5]  = u[1]*t + u[4]*u[0]*t*t/2.0;
   g[6]  = Scalar(0.0);
   //
   return g;
}

} // END_EMPTY_NAMESPACE

bool reverse(void)
{  // ok
   bool ok = true;
   //
   // AD, NearEqual, eps99
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps99 = std::numeric_limits<double>::epsilon() * 99.0;
   // -----------------------------------------------------------------------
   // Record f
   // -----------------------------------------------------------------------
   //
   // afun
   CppAD::atomic_lin_ode<double> afun("atomic_lin_ode");
   //
   // m, r
   size_t m      = 4;
   double r      = 2.0;
   double step   = 2.0;
   //
   // pattern, transpose
   size_t nr  = m;
   size_t nc  = m;
   size_t nnz = 3;
   CppAD::sparse_rc< CppAD::vector<size_t> > pattern(nr, nc, nnz);
   for(size_t k = 0; k < nnz; ++k)
   {  size_t i = k + 1;
      size_t j = k;
      pattern.set(k, i, j);
   }
   bool transpose = false;
   //
   // ny, ay
   size_t ny = m;
   CPPAD_TESTVECTOR( AD<double> ) ay(ny);
   //
   // nu, au
   size_t nu = nnz + m;
   CPPAD_TESTVECTOR( AD<double> ) au(nu);
   for(size_t j = 0; j < nu; ++j)
      au[j] = AD<double>(j + 1);
   CppAD::Independent(au);
   //
   // ax
   CPPAD_TESTVECTOR( AD<double> ) ax(nnz + m);
   for(size_t k = 0; k < nnz; ++k)
      ax[k] = au[m + k];
   for(size_t i = 0; i < m; ++i)
      ax[nnz + i] = au[i];
   //
   // ay
   size_t call_id = afun.set(r, step, pattern, transpose);
   afun(call_id, ax, ay);
   //
   // f
   CppAD::ADFun<double> f(au, ay);
   // -----------------------------------------------------------------------
   // ar, check_f
   CppAD::Independent(au);
   AD<double> ar = r;
   ay = Z(ar, au);
   CppAD::ADFun<double> check_f(au, ay);
   // -----------------------------------------------------------------------
   // reverse mode on f
   // -----------------------------------------------------------------------
   //
   // u
   CPPAD_TESTVECTOR(double) u(nu);
   for(size_t j = 0; j < nu; ++j)
      u[j] = double( j + 2 );
   //
   // y
   // zero order forward mode computation of f(u)
   CPPAD_TESTVECTOR(double) y(ny);
   y = f.Forward(0, u);
   //
   // ok
   CPPAD_TESTVECTOR(double) check_y = check_f.Forward(0, u);
   for(size_t i = 0; i < ny; ++i)
      ok &= NearEqual(y[i], check_y[i], eps99, eps99);
   //
   // w, ok
   CPPAD_TESTVECTOR(double) w(ny), dw(nu), check_dw(nu);
   for(size_t i = 0; i < ny; ++i)
      w[i] = 0.0;
   for(size_t i = 0; i < ny; ++i)
   {  w[i] = 1.0;
      dw        = f.Reverse(1, w);
      check_dw  = check_f.Reverse(1, w);
      for(size_t j = 0; j < nu; ++j)
         ok &= NearEqual(dw[j], check_dw[j], eps99, eps99);
      w[i] = 0.0;
   }
   // -----------------------------------------------------------------------
   // Record g
   // -----------------------------------------------------------------------
   //
   // af
   CppAD::ADFun< AD<double>, double> af = f.base2ad();
   //
   // au
   CppAD::Independent(au);
   CPPAD_TESTVECTOR( AD<double> ) aw(ny), adw(nu);
   af.Forward(0, au);
   for(size_t i = 0; i < ny; ++i)
      aw[i] = 0.0;
   aw[2] = 1.0;
   adw = af.Reverse(1, aw);
   // g
   CppAD::ADFun<double> g(au, adw);
   // -----------------------------------------------------------------------
   // check_g
   CppAD::Independent(au);
   ay = G(ar, au);
   CppAD::ADFun<double> check_g(au, ay);
   // -----------------------------------------------------------------------
   //
   // v
   // zero order forward mode computation of g(u)
   CPPAD_TESTVECTOR(double) v(nu);
   v = g.Forward(0, u);
   //
   // ok
   CPPAD_TESTVECTOR(double) check_v = check_g.Forward(0, u);
   for(size_t i = 0; i < nu; ++i)
      ok &= NearEqual(v[i], check_v[i], eps99, eps99);
   //
   // w, ok
   w.resize(nu);
   for(size_t i = 0; i < nu; ++i)
      w[i] = 0.0;
   for(size_t i = 0; i < nu; ++i)
   {  w[i] = 1.0;
      dw        = g.Reverse(1, w);
      check_dw  = check_g.Reverse(1, w);
      for(size_t j = 0; j < nu; ++j)
         ok &= NearEqual(dw[j], check_dw[j], eps99, eps99);
      w[i] = 0.0;
   }
   // -----------------------------------------------------------------------
   return ok;
}
// END C++