1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin atomic_four_lin_ode_sparsity.cpp}
{xrst_spell
cccc
}
Atomic Linear ODE Sparsity Calculations: Example and Test
#########################################################
Purpose
*******
This example demonstrates calculating sparsity patterns with
the :ref:`atomic_four_lin_ode-name` class.
f(u)
****
For this example, the function :math:`f(u) = z(r, u)` where
:math:`z(t, u)` solves the following ODE
.. math::
z_t (t, u) =
\left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
u_4 & 0 & 0 & 0 \\
0 & u_5 & 0 & 0 \\
0 & 0 & u_6 & 0 \\
\end{array} \right)
z(t, u)
\W{,}
z(0, u) =
\left( \begin{array}{c}
u_0 \\
u_1 \\
u_2 \\
u_3 \\
\end{array} \right)
Solution
********
The actual solution to this ODE is
.. math::
z(t, u) =
\left( \begin{array}{l}
u_0 \\
u_1 + u_4 u_0 t \\
u_2 + u_5 u_1 t + u_5 u_4 u_0 t^2 / 2 \\
u_3 + u_6 u_2 t + u_6 u_5 u_1 t^2 / 2 + u_6 u_5 u_4 u_0 t^3 / 6
\end{array} \right)
Source
******
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end atomic_four_lin_ode_sparsity.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace { // BEGIN_EMPTY_NAMESPACE
template <class Scalar, class Vector>
Vector Z(Scalar t, const Vector& u)
{ size_t nz = 4;
Vector z(nz);
//
z[0] = u[0];
z[1] = u[1] + u[4]*u[0]*t;
z[2] = u[2] + u[5]*u[1]*t + u[5]*u[4]*u[0]*t*t/2.0;
z[3] = u[3] + u[6]*u[2]*t + u[6]*u[5]*u[1]*t*t/2.0
+ u[6]*u[5]*u[4]*u[0]*t*t*t/6.0;
//
return z;
}
} // END_EMPTY_NAMESPACE
bool sparsity(void)
{ // ok
bool ok = true;
//
// sparse_rc, AD
typedef CppAD::sparse_rc< CppAD::vector<size_t> > sparse_rc;
using CppAD::AD;
// -----------------------------------------------------------------------
// Record f
// -----------------------------------------------------------------------
//
// afun
CppAD::atomic_lin_ode<double> afun("atomic_lin_ode");
//
// m, r
size_t m = 4;
double r = 2.0;
double step = 0.5;
//
// pattern, transpose
size_t nr = m;
size_t nc = m;
size_t nnz = 3;
CppAD::sparse_rc< CppAD::vector<size_t> > pattern(nr, nc, nnz);
for(size_t k = 0; k < nnz; ++k)
{ size_t i = k + 1;
size_t j = k;
pattern.set(k, i, j);
}
bool transpose = false;
//
// ny, ay
size_t ny = m;
CPPAD_TESTVECTOR( AD<double> ) ay(ny);
//
// nu, au
size_t nu = nnz + m;
CPPAD_TESTVECTOR( AD<double> ) au(nu);
for(size_t j = 0; j < nu; ++j)
au[j] = AD<double>(j + 1);
CppAD::Independent(au);
//
// ax
CPPAD_TESTVECTOR( AD<double> ) ax(nnz + m);
for(size_t k = 0; k < nnz; ++k)
ax[k] = au[m + k];
for(size_t i = 0; i < m; ++i)
ax[nnz + i] = au[i];
//
// ay
size_t call_id = afun.set(r, step, pattern, transpose);
afun(call_id, ax, ay);
//
// f
CppAD::ADFun<double> f(au, ay);
// -----------------------------------------------------------------------
// ar, check_f
CppAD::Independent(au);
AD<double> ar = r;
ay = Z(ar, au);
CppAD::ADFun<double> check_f(au, ay);
// -----------------------------------------------------------------------
// Jacobian Sparsity
// -----------------------------------------------------------------------
//
// eye_sparsity
// nu by nu identitty matrix
sparse_rc eye_sparsity(nu, nu, nu);
for(size_t i = 0; i < nu; ++i)
eye_sparsity.set(i, i, i);
//
// internal_bool
bool internal_bool = false;
//
// jac_sparsity
transpose = false;
bool dependency = false;
sparse_rc jac_sparsity;
f.for_jac_sparsity(
eye_sparsity, transpose, dependency, internal_bool, jac_sparsity
);
//
// check_jac_sparsity
sparse_rc check_jac_sparsity;
check_f.for_jac_sparsity(
eye_sparsity, transpose, dependency, internal_bool, check_jac_sparsity
);
//
// ok
ok &= jac_sparsity == check_jac_sparsity;
// -----------------------------------------------------------------------
// Hessian Sparsity
// -----------------------------------------------------------------------
//
// select_domain
CPPAD_TESTVECTOR(bool) select_domain(nu);
for(size_t j = 0; j < nu; ++j)
select_domain[j] = true;
//
// select_range
CPPAD_TESTVECTOR(bool) select_range(ny);
for(size_t i = 0; i < ny; ++i)
select_range[i] = false;
select_range[1] = true;
//
// hes_sparsity
sparse_rc hes_sparsity;
f.for_hes_sparsity(
select_domain, select_range, internal_bool, hes_sparsity
);
//
// check_hes_sparsity
sparse_rc check_hes_sparsity;
check_f.for_hes_sparsity(
select_domain, select_range, internal_bool, check_hes_sparsity
);
//
// ok
ok &= hes_sparsity == check_hes_sparsity;
// -----------------------------------------------------------------------
return ok;
}
// END C++
|